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Abstract—This paper presents a methodology for dimensioning
the photo-voltaic (PV) and battery requirements of stand-alone,
solar-powered cellular base stations. In contrast to existing
methodologies that use intuitive methods or are based on Typical
Meteorological Year (TMY) data, this paper proposes the use of
series-of-worst-months data for dimensioning the base station.
The proposed approach has the advantages of higher accuracy
as well as being computationally more efficient. The proposed
methodology has been verified using real meteorological data for
a number of geographical locations.

I. INTRODUCTION

With the increasing demand and popularity of mobile com-
munication services, the number of cellular networks deployed
across the globe has been increasing over the last decade. In
contrast to the developed nations which already have good cel-
lular coverage, the increase has been more rapid in developing
nations. Unfortunately, many parts of these developing nations
suffer from unreliable grid supply and thus at times the base
stations have to run on diesel generators. This increases both
the operational cost as well as the contribution of the cellular
network towards greenhouse gas emissions. In such scenarios,
the use of renewable sources like solar and wind energy are
viable avenues for powering cellular networks.

Among cellular network components, base stations typically
consume the maximum energy (around 60-80%) [1]. Thus
one of the key solutions for implementing green cellular
networks is to use stand-alone base stations powered just
by renewable energy, without using grid or depending on
conventional sources. Also, previous studies have shown that
such a base station can be implemented with lower capital
cost as compared to using grid or conventional sources of
energy [2]. Although some work has been done on designing
cellular base stations powered by solar and wind energy, most
lack elaborate use of weather statistics. Thus at times these
designs lead to very optimistic configurations which fail when
the system is actually deployed [3].

Intuitive approaches for dimensioning solar powered sys-
tems are simple and quick, and generally develop a system
configuration such that the average energy produced exceeds
the daily demand [4]. While such methods are simple, their so-
lutions are usually neither cost-optimal nor do the provide any
estimate of the outage probabilities [5]. Analytic approaches
for dimensioning rely on the development and use of expres-
sion that relate the solar irradiance pattern for a given location
to the system performance [6], [7], and are thus site-specific.

On the other hand, numerical approaches for dimensioning
solar powered systems use simulation tools that use long term
solar irradiance data as their input [8], [9]. In addition to being
computationally intensive, such methods are only useful for
places for which long term solar irradiance data is available.
As an alternative, Typical Meteorological Year (TMY) data
that consists of synthetically generated, meteorological data
for a year is used in many studies and simulation softwares
[2], [10]. However, the averaging of weather conditions in
TMY data leads to optimistic dimensioning solutions.

The fundamental problem in designing stand-alone solar
powered systems is thus the tradeoff between reliability and
complexity. While numerical methods provide highly reliable
solutions, they are computationally intensive and are depen-
dent on the existence of long-term meteorological data. On
the other hand, TMY based approaches are faster, but at the
cost of accuracy. To address this problem, this paper proposes
a methodology for dimensioning stand-alone, solar powered
cellular base station using series-of-worst-months (SWM) me-
teorological data that provides accurate PV panel and battery
dimensions with low computational time requirements. The
proposed method is based on selecting the worst month (in
terms of solar irradiation) from each year for a given location,
and then using these worst months in series as the input for a
numerical simulation. To evaluate the proposed method, we
consider three locations: Miami (USA), San Diego (USA)
and Las Vegas (USA) and design the cost-optimal PV panel
and battery requirements for a macro base station for these
locations, for different tolerable worst month outages.

The rest of the paper is organized as follows. Section
II presents the background and system model. Section III
presents the proposed methodology for system dimensioning
and Section IV presents evaluation results. Finally, Section V
concludes the paper.

II. BACKGROUND AND SYSTEM MODEL

This section presents the assumptions and underlying mod-
els used in this paper.

A. Energy and Traffic Models

This paper considers a Long Term Evaluation (LTE) base
station (BS). The base station power consumption comprises
of a fixed part (which is due to air conditioners, losses in cable
feeders etc.), and a variable part, which depends on the cellular
traffic at a given point of time. In particular we consider a
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Fig. 1. Average hourly values of BS power consumption.

macro base station whose power consumption at time t is given
by [11]

PBS(t) = Ntrx(P0 + ∆pPmaxT ), 0 ≤ T ≤ 1 (1)

where Ntrx is the number of transceivers, P0 is the power
consumption at no load (zero traffic), ∆p is a constant for a
given BS, Pmax is the output of the power amplifier at the
maximum traffic, and T is the normalized traffic at the given
time. The typical values of P0, Pmax and ∆p for a macro base
station are 118.7 W, 40 W and 2.66, respectively.

To model the traffic, we use a call based model as proposed
in [12]. The call arrivals are modeled as a Poisson process and
the call durations are taken to be exponentially distributed.
Based on this model, calls are generated on minutely basis
with rate depending on the hour of the day. Each call is
assigned a call duration which is exponentially distributed and
has a mean value of 2 minutes. The normalized traffic denoted
by T in Eqn. (1) at a given time is obtained by normalizing
the instantaneous traffic by the maximum number of calls
the base station can support at any given point of time. An
example of the average base station power consumption profile
for different days (based on data for 30,000 days) is shown
in Figure 1. Note that the traffic levels during weekends are
lower as compared to weekdays, which is in line with large
scale cellular data studies [13].

B. Solar Energy Data and Battery Model

To characterize the harvested solar energy, this paper uses
statistical weather data made available by National Renewable
Energy Laboratories (NREL), USA [14]. In particular we use
ten year’s data for three different locations. This paper assumes
a PV panel with a DC-AC loss factor 0.77 and tilt of the PV
panel as latitude of the location, which are the default values
[15].

This paper assumes that the base station uses lead acid
batteries. Lead acid batteries are a popular choice because
they are cheaper than other battery types. The life duration
of a battery depends on its operating conditions and can be

calculated based on the method of cycles counting [16], which
involves counting the charge/discharge cycles for each range
of depth of discharge (DOD) for a year. Let the entire range
of DOD values (0-100) be divided into N non-overlapping
regions. The battery lifetime (in years) is then given by

Lb =
1∑N

i=1
Zi

CTFi

, (2)

where Zi is the number of cycles with DOD in region i,
and CTFi is the cycles to failure corresponding to region
i. The relationship between cycles to failure and the DOD is
generally provided by the battery manufacturer.

III. PV PANEL SIZE AND BATTERY DIMENSIONING

This section presents the SWM based methodology for
dimensioning solar powered base stations. We first describe
our model for obtaining the outage probability for a base
station with a given PV panel dimension and number of
batteries. The model is then used to determine the cost optimal
configuration of the PV panel and battery size for any desired
bound on the outage probability using either SWM, TMY or
empirical approaches.

A. System Model

Given nPV number of PV panels installed in the BS site,
each with DC rating Epanel, the overall DC rating of the PV
panels for the site PVw is given by

PVw = nPV Epanel. (3)

Similarly, for nb batteries installed, each with capacity Ebat,
the battery bank capacity Bcap is given by

Bcap = nbEbat. (4)

For a particular combination of PVw and nb, the outage
probability can be calculated by using the energy produced
by the PV panels (which depends on the solar irradiance
profile at that location), BS power consumption (which is
traffic dependent), and the battery charge/discharge dynamics
under the influence of the two previous factors. In this paper
we analyze the solar energy resource, base station power
consumption and the energy stored in battery bank on an
hourly basis.

For every time instant t (in hours), the solar data from NREL
provides the solar power generated for a solar panel with DC
rating of 1 kW, which we denote as S(t). Thus for a PV panel
with rating PVw, the energy generated can be expressed as

E(t) = PVwS(t). (5)

We assume that the batteries are initially fully charged and
have an efficiency of 80%. To avoid deep discharges which
adversely affect the battery life, we disconnect the battery from
the system when the overall charge level goes below 30% of
its capacity. Based on these parameters, the level of the battery



power at a given time instant is given by

B(t) =


Bcap B(t) ≥ Bcap

B(t− 1) + E(t) − PBS(t) 0.3Bcap < B(t) < Bcap

0.3Bcap B(t) ≤ 0.3Bcap

(6)
with B(0) = Bcap. Note that the model assumes that the
battery is disconnected when the overall charge level of the
battery goes below 0.3Bcap. The disconnection of the battery
leads to an outage event at the base station. This outage
continues until there is sufficient solar energy to support the
base station while keeping the overall charge of battery above
0.3Bcap. The outage probability in the worst month is denoted
by O and is given by

O = Houtage/H (7)

where Houtage is the number of outage hours in the worst
month and H is the total number of hours of operation in the
worst month.

The optimal PV panel and battery problem is to determine
the least cost configuration in order to satisfy a limit on
the worst month outage probability. The outage probability
in the worst month is used in this paper as a constraint
since for telecommunication applications which require high
reliability, the worst month outage is a major concern for
network operators [3]. The cost optimization problem can then
be expressed as

Minimize: NBatCB + PVwCPV (8)
Subject to: O < β (9)

where CB is the capital cost of one battery, CPV is the cost of
PV panel per kW, and β is the operator’s desired limit on the
worst month outage probability. The total number of batteries
(Nbat) required over the desired time period Trun is given by

NBat = nb(Trun/LBat) (10)

where nb is the number of batteries powering the base station
at a given point of time. LBat is the battery life time for
the given PV wattage (PVw) and number of batteries (nb)
configuration. The value of Trun is typically taken as 20-25
years. The optimization problem can be solved using standard
techniques.

B. Worst Month Estimation

The methodology described above uses the outage proba-
bility in the worst month of the year. To determine the worst
month in a year, we use the historical solar irradiance data
to calculate the average daily solar irradiation value for each
month and denote the month with the minimum value as the
worst month. Table I shows the worst months for some specific
years for three different locations which have been considered
in this paper.

TABLE I
WORST MONTH FOR MIAMI, SAN DIEGO AND LAS VEGAS

Year Worst month
Miami San Diego Las Vegas

2000 December December January
2001 September November January
2002 June October December
2003 December December December
2004 December December December
2005 June January January
2006 December May December
2007 October November December
2008 December December December
2009 December December December
TMY November December December
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Fig. 2. Batteries required vs PV panel dimension comparison between
empirical, TMY and SWM approaches for Miami.

C. Dimensioning with SWM Data

For this approach we consider ten years worth of mete-
orological data for the desired location and first determine
the worst month for each of the years (using Section III-B).
The data from these ten worst months are then combined,
and the series of ten months’ data is given as input to the
model described in Section III-A. For any choice of the
PV panel and battery bank size, the model then outputs the
outage probability in the worst month. The solution to the
optimization problem in Section III-A then provides the lowest
cost PV panel and battery configuration that achieves the
tolerable worst month outage.

IV. RESULTS

This section presents simulation results to validate the pro-
posed methodology. In addition to the SWM based methodol-
ogy proposed in this paper, we consider two other approaches
that are based on data types used in existing literature. In the
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Fig. 3. Batteries required vs PV panel dimension comparison between
empirical, TMY and SWM approaches for San-Diego.
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Fig. 4. Batteries required vs PV panel dimension comparison between
empirical, TMY and SWM approaches for Las Vegas.

TMY based approach, the TMY year data for the given location
is used as the input to the model and optimization framework
of Section III-A, while in the empirical approach, the solar
irradiance data for ten years (120 months) is used as the
input. Note that the empirical approach gives the most accurate
results since it is based on actual yearly data. However, it is
computationally expensive since it requires the use of longer
data streams.

The simulations assume a LTE base station with 10 MHz
Bandwidth and 2 × 2 Multi Input Multi Output (MIMO)
configuration. The base station is assumed to have three
sectors, each with 2 transceivers (NTRX = 6). We assume that
12 V, 205 Ah flooded lead acid batteries are used in the BS.
The BS traffic profile was generated as described in Section
II-A. This model dynamically generates the normalized load
on a given day and for a given hour of the day which is used
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Fig. 5. Batteries required with 11 kW PV panel for given tolerable worst
month outage : comparison between empiric, TMY and SWM
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Miami: nb = 12
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Fig. 6. Worst month outage in years 2000-2009 for the three cities for PV
panel of 11 KW (nb: number of batteries)

in Eqn. (1) to determine the BS power consumption at that
given time. To validate our proposed approach, we consider
three cities: Miami (USA), San Diego (USA) and Las Vegas
(USA). For each of these locations we considered the ten year
period from 2000-2009 for this study. Table I shows the worst
months for the different years for these locations.

A. PV-Battery Requirement for Given Outage Requirement

For three different values of the tolerable worst month
outage probability: 0.5%, 1% and 2%, the number of batteries
required for a given PV panel dimension as predicted by the
TMY data, SWM data and the empirical data are shown in
Figures 2, 3 and 4 for the three locations. We see that while
the number of batteries predicted using TMY data are much
lower for a given PV wattage as compared to that predicted
by empirical data, the prediction made by using the SWM
approach is quite close.



TABLE II
OPTIMAL CONFIGURATION FOR VARIOUS OUTAGE PROBABILITIES

Location Empirical SWM TMY
PV nb PV nb PV nb

β = .5%
Miami 13 27 13 27 10.5 25

San Diego 11.5 44 11 45 9.5 22
Las Vegas 7.5 43 7.5 43 8 25

β = 1%
Miami 12.5 23 12.5 23 10.5 23

San Diego 9.5 42 9.5 41 9 21
Las Vegas 7.5 37 7.5 37 8 23

β = 2%
Miami 11.5 22 11 22 10 23

San Diego 11 27 11.5 25 9 17
Las Vegas 9 25 9.5 25 7.5 21

B. Battery Dimensioning

For different values of tolerable outages, the number of
batteries required for a PV panel with dimension 11 kW as
predicted by the empirical, SWM and TMY data is shown in
Figure 5 for the three locations. We note that that while the
required battery size predicted using TMY data for a given
PV Wattage (here 11 kW) as compared to empirical data is
much lower (leading to an optimistic design), the prediction
made using SWM approach comes much closer.

C. Cost Optimization

For the results of the cost optimal PV panel and battery
dimensioning, we assume that the the cost optimization is to
be done over a period of Trun = 20 years. Based on market
statistics, the unit cost of lead acid batteries, CB , is assumed to
be US$ 280 and the unit cost of PV panels, CPV , is assumed to
be US$ 1000 [17]. For the three different approaches (i.e. the
Empirical, SWM and TMY), the cost optimal configurations
are shown in Table II and we observe that the proposed SWM
based method is more accurate that those based on TMY.

D. Data Complexity

The proposed SWM based approach achieves accuracy
closer to that obtained from the use of empirical data, but
at an order of magnitude lower data requirement. In the
results presented in this section, the SWM based approach uses
only 10 months’ data while the empirical approach uses 120
months. Note that while the TMY approach uses 12 months
data and thus has a data complexity closer to SWM data, its
accuracy is significantly worse.

E. Outage Behavior Over the Observed Period

This section illustrates the importance of the requirement for
10 years meteorological data (or more years if available) for
dimensioning purposes. Figure 6 shows the outage observed
in the worst months for each of the ten years for the three
locations. We observe that there are significant variations in

the worst month outage in different years, thereby indicating
that by in increasing the number of years under consideration,
the reliability can be increased.

V. CONCLUSION

In this paper we proposed a new approach for PV panel
and battery dimensioning for stand-alone, solar powered cellu-
lar base stations using series-of-worst-months meteorological
data. The proposed methodology is more accurate as compared
to approaches like using TMY data, and requires lower com-
putational time as compared to numerical simulations using
empirical data. The proposed methodology has been verified
using extensive simulations for multiple locations.
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