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Abstract—Mobile Edge Computing can be used to realize the
low latency requirements of vehicular networks. However, by
compromising the road side units (RSUs), an adversary can
introduce an extra delay leading to various problems such as
the wastage of edge computing resources and disruption of
navigational and safety functions. The compromised RSU can
for instance deliberately corrupt the PHY layer payload of the
packets to be transmitted to the vehicles or drop the packets
received from the vehicles. With such simple strategies, the
adversary would increase latency and through that effect, create
serious disruptions. Such attacks can affect many critical delay
sensitive applications such as collision avoidance. To detect the
presence of such an adversary, we propose a trust based detection
system in this paper. Each vehicle transmits a feedback packet
about every RSU it has interacted with to a central trusted server.
Using the feedback obtained from multiple vehicles, at regular
intervals, an aggregated trust value for each RSU in the network
is obtained and is compared with a threshold to classify the RSU
as authentic or malicious. We also present a mechanism to detect
the presence of malicious vehicles reporting false feedback in the
network. Simulation results demonstrate the effectiveness of the
proposed detection mechanism and the impact of the choice of
adversary parameters on the detection system.

I. INTRODUCTION

Vehicular networks (VNETs) are mainly equipped with

two types of communication; vehicle-to-vehicle communica-

tion (V2V) and vehicle-to-road side unit (or infrastructure)

communication (V2I). It is necessary that communication

systems operate with latency less than 50 ms to ensure high

reliability [1]. With the aim of providing computing services

in close proximity to the devices that need them, Mobile Edge

Computing (MEC) is a potential solution to ensure reliability

and low latency [2], [3]. MEC allows an autonomous vehicle

to offload resource intensive operations and run applications

on multiple platforms. The mobile edge hosts are generally

installed on the road side units (RSUs) or can be located

physically close to the RSU.

VNET, like any other network, are vulnerable to different

types of attacks that compromise availability, confidentiality,

authenticity, and integrity. Researchers in the past have pro-

posed many methods to overcome such attacks [4], [5]. In

all these cases, a compromised vehicle is the source of attack.

However, RSUs are also vulnerable to cybersecurity attacks, or
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even physical damage due to their deployments along publicly

accessible roads. Certain edge data centers (i.e. the RSUs in

the case of VNETs) can be composed of microservers that

lack the hardware protection mechanisms or include legacy

edge devices with limited connectivity which restricts the

authentication protocols that can be deployed [6], making it

easier for an adversary to launch attacks. Possible attacks that

can be launched by the adversaries include physical damage,

service manipulation, privacy leakage, rogue data center, etc.

Few of these attacks are well investigated in the literature.

A protocol for mutual authentication between the consumer

and the provider (i.e. the mobile edge) to prevent the network

from attacks like eavesdropping and man in the middle was

presented in [7]. Rogue mobile edges can be detected using

detection technique similar to the one presented in [8]. The

detection scheme uses the round trip time between the user

and the DNS server to detect rogue nodes. Jamming is

another attack that could disrupt the wireless channel between

the IoT devices and edge servers. Two algorithms, SAVE-

S and SAVE-A, were presented in [9] to address stochastic

jamming (i.e. where the IoT devices are attacked with a fixed

probability) and adversarial jamming (i.e. where the attacker

intelligently blocks certain edge servers). A reputation based

trust management system to detect malicious cloudlets in LTE

networks was presented in [10]. The system also prevents

cloudlets from modifying the ratings from the mobile users

and also limits the effect of dishonest ratings.

In this paper, we consider an adversary strategy where

the adversary, after compromising the RSU, mimics a weak

transmission link between the RSU and the vehicles. Such an

attack is feasible once the attacker has obtained root access to

the RSU. By doing so, the computation and communication

latencies increase and create substantial additional delay in

the network. This also leads to the wastage of edge computing

resources. Hence there is need to design an Intrusion Detection

System (IDS) for such attacks. A trust based IDS is presented

in this paper to detect the presence of such an adversary. The

key novelty behind the IDS proposed in this paper is that it

is based on monitoring the downlink and uplink channels of

the network. The IDS relies on the ability of the vehicles to

measure the wireless channel quality, and the total number of

packets received and transmitted. We also present a mechanism

to detect the presence of any malicious vehicles reporting false

feedback about authentic RSUs.
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II. SYSTEM MODEL

A vehicular network is considered where the vehicles are

denoted using Vj , j ∈ {1, 2, · · · } and the road side units

by Ri, i ∈ {1, 2, · · · }. At a given instant, a vehicle Vj is

connected to only one RSU say Ri. A Mobile Edge Host

is installed on each RSU to enable MEC. All the RSUs are

further connected to a central secured cloud server. For a

given network in normal operation, due to various network

imperfections, there will be a non-zero probability of decoding

a packet in error. When a packet is not successfully received, a

re-transmission request is made. The reception of a corrupted

packet can be detected using the cyclic redundancy check

(CRC). Unlike the case of static networks where the packet

drop probability (PDP) can be assumed to be known, we

need to obtain an estimate for the PDP of each packet

separately in vehicular networks. We assume that a vehicle

has access to a signal quality indicator to estimate the packet

drop probability of every packet it receives. There are mainly

three metrics that impact PDP: Signal to Noise Ratio (SNR),

Link Quality Indicator (LQI) and Received Signal Strength

Indicator (RSSI). In this paper, SNR will be assumed to be

available and used to obtain the PDP.

We assume that the adversary has compromised RSUs and

is disrupting the communication channel between the RSUs

and the vehicles connected to them. A compromised RSU can

be used to launch many attacks that target message security,

quality of service etc. Attacks that focus on compromising

message security by stealing credentials, eavesdropping, etc.

can be handled using traditional algorithms based on cryptog-

raphy. Attacks that focus on service intereption i.e. selective

forwarding, black hole, jamming etc. have been thoroughly

explored in the past. All these attacks can be dealt, with high

reliability, using already proposed mechanisms in the literature

[7]–[10] and therefore are not addressed in this paper. The

adversary considered in this paper is implementing the Selec-

tive Modification Attack. The probability that a compromised

RSU Ri selectively modifies a packet to be transmitted to

the vehicle Vj is unknown and denoted by δdij . The adversary

deliberately corrupts the PHY layer payload of a packet that

needs to be forwarded to the vehicles. This can be achieved

by corrupting the channel pilots that are used for channel

estimation and/or flipping some of the bits of the physical

layer payload. When such a packet is received by the vehicle,

it will be dropped for failing error-control such as the CRC

and a re-transmission will be attempted. Due to an increase in

the number of redundant re-transmissions, the average delay

in receiving a successful packet increases. Thus, the latency of

the RSU-vehicle link is adversely affected and the safety of the

network compromised. Such an attack is difficult to detect due

to the dynamic nature of the wireless communication channel.

III. INTRUSION DETECTION SYSTEM – DOWNLINK

In this section, we present the details of the trust based intru-

sion detection system. The IDS performs a binary hypothesis

test on the RSUs independently:

• Hypothesis Hd
0,i: Ri is not malicious

• Hypothesis Hd
1,i: Ri is malicious

Under Hd
1,i, it appears that the wireless channel quality is poor

although the SNR does not indicate such poor performance.

Hence, the values of trust will be based on the SNR and the

observed wireless channel quality.

A. Probability Distributions under both Hypothesis

For every packet k, k ∈ {1, 2, · · · }, sent by RSU Ri and

received by vehicle Vj , using the SNR of the packet, we

estimate the probability αd
ij,k that the packet could be in error.

We first obtain the corresponding symbol error rate, denoted

by sdij,k, for the estimated SNR using standard models [11].

We then estimate the PDP as:

αd
ij,k = 1− (1− sdij,k)

m

where m is the number of symbols present in a packet.

We introduce the variable Bd
ij,k, defined as follows. If the

kth packet is received successfully by Vj , then Bd
ij,k = 0,

otherwise Bd
ij,k = 1. The probability distribution of Bd

ij,k in

the absence of attack (i.e. under Hd
0,i) is

P (Bd
ij,k = b|Hd

0,i) = (αd
ij,k)

b(1−αd
ij,k)

(1−b), b ∈ {0, 1}. (1)

In the presence of an attack (i.e. under H1), a packet is

dropped either due to the RSU’s misbehavior or due to poor

channel conditions. Therefore the PDP of the kth packet, in

the presence of an attack, increases to

βd
ij,k = δdij + (1− δdij)α

d
ij,k. (2)

The probability distribution of Bij,k in the presence of attack

(i.e. under Hd
1,i) is therefore

P (Bd
ij,k = b|Hd

1,i) = (βd
ij,k)

b(1−βd
ij,k)

(1−b), b ∈ {0, 1}. (3)

Since packet transmissions between Ri and Vj occur over

a highly mobile channel, it can be assumed that the event

of a packet being dropped is independent of another packet

being dropped. Hence, the joint probability distribution of

the variables Bij,k, k ∈ {1, 2, · · · , Nij}, in the presence of

attack, is given by the product of their individual probability

distributions, as shown below.

P (Bd
ij = bdij |Hd

1,i) =

Nd
ij∏

k=1

(βd
ij,k)

bdij,k(1− βd
ij,k)

(1−bdij,k) (4)

where Bd
ij = {Bd

ij,1, B
d
ij,2, · · · , Bd

ij,Nd
ij
}, bdij =

{bdij,1, bdij,2, · · · , bdij,Nd
ij
} and Nd

ij is the total number of

packets received by the vehicle Vj from RSU Ri.

B. Detection Algorithm for RSU

Trust and reputation management has been proposed in

recent years as an attractive method to deal with some security

threats in highly distributed and dynamic scenarios, where

there is no trusted central authority to directly monitor the

network. We adopt this methodology in the VNET scenario for

precisely that reason. Firstly, an individual vehicle’s trust level

towards the RSU would be calculated. This will be estimated

at the vehicle’s end. Secondly, at regular time intervals of

duration T1, the trust values obtained from all the vehicles
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about a given RSU would be combined (at the central server)

to obtain an aggregated trust value for the RSU. Vehicle Vj’s

individual trust value for RSU Ri is denoted by Θd
ij . The

aggregated trust value for RSU Ri is denoted by Θd
i . Once

the aggregated trust is available, our hypothesis test decides

in favour of Hd
1,i if

Θd
i < Γd

i (5)

where Γd
i is a preset threshold. The proposed threshold setting

method is discussed in the next few sections.

C. Individual Trust Evaluation

In this section, we compute Θd
ij , vehicle Vj’s individual trust

value for RSU Ri based only on downlink measurements. The

trust value must dynamically reflect the behavior of the RSU.

Trust, according to [12], is defined as the subjective proba-

bility by which an individual expects that another individual

performs a given action on which its welfare depends. The

key parameter which reflects the behavior of the RSU is the

attack probability δdij . Its estimated value is denoted by δ̂dij .

This is obtained using maximum likelihood estimation (MLE)

i.e. by maximizing the likelihood of P (Bd
ij = bdij |Hd

1,i) over

δdij between 0 and 1. It is difficult to obtain an analytical

solution since the derivative of (4), when set to zero, results

in the following equation:

Nd
ij∑

k=1

bdij,k
δdij + αd

ij,k − δdijα
d
ij,k

=

Nd
ij∑

k=1

1− bdij,k
(1− δdij)(1− αd

ij,k)
. (6)

Therefore, we solve the problem numerically i.e. by exhaustive

search between 0 and 1. Using this, we now define

Θd
ij = 1− δ̂dij . (7)

Since there is no analytical expressions for δ̂dij , obtaining the

distribution of δ̂dij is not possible. However, for sufficiently

large values of Nd
ij , we can assume that the estimated attack

probability i.e. δ̂dij can be approximated with its asymptotic

probability distribution [13]. The asymptotic PDF of δ̂dij is:

δ̂dij ∼ N (δdij , I
d
ij

−1
(δdij)) (8)

where Idij(δ
d
ij) is the Fischer information [13] evaluated at δdij .

In the absence of attack, the value of δdij is equal to zero. Using

(8), the asymptotic PDF of Θd
ij under Hd

0,i can be defined as:

Θd
ij ∼ N (1, Idij

−1
(0)) (9)

where Idij(0) =
∑Nd

ij

k=1

1−αd
ij,k

αd
ij,k

.

D. Aggregated Trust Value and Threshold Design

When there are more than one vehicle reporting trust values

for an RSU, we require a way of combining the information.

This process is referred to as aggregation. Trust aggregation

helps in reducing the uncertainty of the detection algorithm.

The widely used aggregation operators are minimum, maxi-
mum, weighted sum, and average [14]. It is quite possible

that the trust values computed by some vehicles could be

high even in the presence of an attack. This is mainly due

to estimation errors in δ̂dij . Therefore, when the maximum
aggregation operator is used, there is a substantial probability

that the system would classify the RSU as authentic. Similarly,

it is possible that the erroneously obtained δ̂dij could be high

in the absence of an attack implying a low trust value. In such

cases, when the minimum aggregation operator is used, there

is a substantial probability that the detection algorithm would

classify the authentic RSU as malicious. Also, it is possible

that different vehicles receive different numbers of packets

from the RSU to which they are connected. Therefore, using

a weighted mean with different weights for different vehicles

would be more suitable to obtain the aggregated trust. Let Vi,

with |Vi| = M , be the set of vehicles whose trust values are

used for computing Θd
i , the aggregate trust value for Ri. Using

the downlink individual trust values reported by the vehicles

Vj , j ∈ Vi, the aggregated trust value Θd
i is defined as

Θd
i =

∑

j∈Vi

ωd
ijΘ

d
ij (10)

where ωd
ij is the weight of the vehicle Vj , j ∈ Vi. A higher

number of packets Nd
ij implies the attack probability can

be estimated with better accuracy. Therefore, we assign the

weights in proportion to the number of packets transmitted

from Ri to Vj .

ωd
ij =

Nd
ij∑M

j=1 N
d
ij

. (11)

Since the system is time varying, we propose to design

the threshold adaptively, i.e. obtain a different threshold for

different sets of trust values reported. To obtain the threshold,

we first obtain the values Γd
ij , j ∈ Vi such that the false alarm

probability P (Θd
ij < Γd

ij |Hd
0,i) = μd for j ∈ Vi where μ is a

design parameter. The expression for Γd
ij , using (9), is given

by

Γd
ij = max(min(Γ′d

ij , 1), 0) (12)

where Γ′d
ij = 1 + Q−1(1−μd)√

Id
ij(0)

. Q−1(x) is the inverse of the

tail distribution function of the standard normal distribution.

Using the obtained values of Γd
ij , j ∈ {1, 2, · · · ,M}, we set

the threshold as:

Γd
i =

∑

j∈Vi

ωd
ijΓ

d
ij . (13)

IV. INTRUSION DETECTION SYSTEM – UPLINK

In this section, we consider an attacker who is implementing

the selective dropping attack on uplink traffic. The compro-

mised Ri drops an uplink packet from vehicle Vj with proba-

bility δuij . The effect of implementing such an attack is similar

to the selective modification attack i.e. the latency is increased

and safety of the network is compromised. Similar to the

selective modification attack, the attacker startegy presented

in this section is difficult to detect due to the nature of the

wireless communication channel. Therefore to detect such an

attack, we perform a binary hypotheses test with the following

hypotheses:

• Hypothesis Hu
0,i: Ri is not malicious

• Hypothesis Hu
1,i: Ri is malicious
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A. Packet Drop Probability

It was possible to estimate the probability of dropping

downlink packets, at the vehicles, since they are received by

them. In the case of the attacker strategy presented in this

section, the uplink packets are affected. These packets are

received by the RSU and monitoring of uplink packets cannot

be done in the same manner as in the downlink. Assume that

each vehicle has knowledge of its own location and speed,

and the RSU’s location. Using these three parameters we can

estimate the quality (in terms of symbol error probability)

of the wireless link between the vehicle and the RSU using

standard channel models. We can then calculate the PDP of the

kth packet, transmitted by Vj and received by Ri, as follows:

αu
ij,k = 1− (1− suij,k)

m (14)

where suk,ij is the symbol error probability of the kth packet.

B. Individual Trust Values

Similar to our previous work in [15], we use the packet

re-transmission rate to obtain the trust values. We introduce

the variable Bu
ij,k for the kth packet, transmitted by Vj , which

is defined as follows. If a request for re-transmission is made

(explicitly or implicitly) for the kth packet by Ri, then Bu
ij,k =

0, otherwise Bu
ij,k = 1. The probability distribution of Bu

ij,k

in the absence of attack is

P (Bu
ij,k = b|Hu

0,i) = (αu
ij,k)

b(1− αu
ij,k)

(1−b), b ∈ {0, 1}.
(15)

In the presence of an attack (i.e. under H1), a packet is dropped

either due to the RSU’s misbehavior or due to poor channel

conditions. Therefore the uplink PDP of the kth packet, in the

presence of an attack, increases to

βu
ij,k = δuij + (1− δuij)α

u
ij,k. (16)

The probability distribution of Bu
ij,k in the presence of attack

(i.e. under H1) is therefore

P (Bu
ij,k = b|Hu

1,i) = (βu
ij,k)

b(1− βu
ij,k)

(1−b), b ∈ {0, 1}.
(17)

Similar to the downlink case, the packet transmissions between

Ri and Vj occur over a highly mobile channel and can

be assumed to be independent. Hence, the joint probability

distribution of the variables Bu
ij,k, k ∈ {1, 2, · · · , Nu

ij}, in the

presence of attack, is given by the product of their individual

probability distributions, as shown below.

P (Bu
ij = buij |Hu

1,i) =

Nu
ij∏

k=1

(βu
ij,k)

buij,k(1− βu
ij,k)

(1−buij,k) (18)

where Bu
ij = {Bu

ij,1, B
u
ij,2, · · · , Bu

ij,Nu
ij
}, buij =

{buij,1, buij,2, · · · , buij,Nu
ij
} and Nu

ij is the total number of

packets transmitted by the vehicle Vj to RSU Ri. The vehicle

Vj’s uplink individual trust value, Θu
ij , can now be calculated

similar to Θd
ij since the probability distributions of Bu

ij under

both the hypotheses are similar to Bd
ij . Therefore, the trust

value is as follows

Θu
ij = δuij (19)

where δuij is the MLE obtained by maximizing the likelihood

of P (Bu
ij = buij |Hu

1,i) over δuij between 0 and 1. Also, the PDF

of Θu
ij under H0,i can be defined as:

Θu
ij ∼ N (1, Iuij

−1(0)) (20)

where Iuij(0) =
∑Nu

ij

k=1

1−αu
ij,k

αu
ij,k

.

C. Aggregated Trust Value and Detection Algorithm

Using the individual trust values reported by the vehicles

Vj , j ∈ Vi, the aggregated trust value Θu
i is defined as

Θu
i =

∑

j∈Vi

ωu
ijΘ

u
ij (21)

where ωu
ij is the weight of the vehicle Vj , j ∈ Vi. A higher

number of packets Nu
ij implies the attack probability can

be estimated with better accuracy. Therefore, we assign the

weights in proportion to the number of packets transmitted

from Vj to Ri.

ωu
ij =

Nu
ij∑M

j=1 N
u
ij

(22)

Once the aggregated trust is available, our hypothesis test

decides in favor of H1 if

Θu
i < Γu

i (23)

where Γu
i is a preset threshold. To obtain the threshold, we

first obtain the values Γu
ij , j ∈ Vi such that the false alarm

probability P (Θu
ij < Γu

ij |H0,i) = μu for j ∈ Vi where μ is a

design parameter. The expression for Γu
ij , using (9), is given

by

Γu
ij = max(min(Γ′u

ij , 1), 0) (24)

where Γ′u
ij = 1 + Q−1(1−μu)√

Iu
ij(0)

. Q−1(x) is the inverse of the

tail distribution function of the standard normal distribution.

Using the obtained values of Γu
ij , j ∈ {1, 2, · · · ,M}, we set

the threshold as:

Γu
i =

∑

j∈Vi

ωu
ijΓ

u
ij . (25)

V. DETECTING MALICIOUS VEHICLES AND

FEEDBACK PACKET DESIGN

In this section we present a mechanism to detect the

presence of malicious vehicles reporting false (downlink)

feedback. The main objective of these vehicles is to influence

the IDS into classifying an authentic RSU as malicious. Say

a malicious vehicle Vj is trying to make it appear that the

attack probability of the RSU Ri (which is authentic), i.e. δij ,

is equal to δv . The feedback is generated as follows:

1) When the kth packet is received, irrespective of whether

it is in error or not, the packet drop probability is

calculated (say αd
ij,k). To generate the false feedback

for this packet, the PDP is reported as βd
ij,k � αd

ij,k +

δv − αd
ij,kδv .

2) Then, using a Bernoulli distribution with probability

βd
ij,k, the vehicle decides the value of Bd

ij,k. This is

required to compute the Fischer information.
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R1

Vehicle

RSU
… … … 20 slots300th slot600th slot

Fig. 1: Simulation model

There is a need to identify such malicious vehicles since

they can influence the IDS. The key observation used is that

the trust values of the RSUs in the absence of attack will

to be greater than the individual trust values reported by the

malicious vehicles, which implies that the distance between

Ld = {Θd
1, · · · ,Θd

K} and Ld
j = {Θd

1j , · · · ,Θd
Kj} will be

large if Vj is giving false feedback. Therefore, to detect such

vehicles, we need a metric which can calculate the similarity

between the Ld and Ld
j . One possible metric is the Gaussian

kernel similarity measure [16]. For Vj , it is calculated as:

ρdj = exp(− ∥∥Ld − Ld
j

∥∥2). (26)

We now use this value of ρdj and compare it with a preset

threshold γd
j to detect whether vehicle Vj is malicious or not,

i.e. we decide that the (downlink) feedback is false if and only

if

ρdj < γd
j . (27)

This will be evaluated at regular time intervals, denoted by T2.

Similarly, malicious vehicles reporting false (uplink) feedback

can be detected i.e. we decide the (uplink) feedback is false

if and only if

ρuj < γu
j (28)

where ρuj = exp(− ∥∥Lu − Lu
j

∥∥2), Lu = {Θu
1 , · · · ,Θu

K} and

Lu
j = {Θu

1j , · · · ,Θu
Kj}.

The feedback packet that needs to be reported by Vj for

RSU Ri needs to contain the following information. The

individual trust values, the total number of packets received

and transmitted are required for calculating the aggregated

trust values. The Fischer information Idij(0) and Iuij(0) also

need to be estimated and reported for calculating the threshold

value.

VI. RESULTS

It can be observed from (5) and (23) that the detection

algorithms for unicast uplink and downlink packets are similar.

Hence, in this case, we present the results for the unicast

case only. We used MATLAB to generate the results. The

model shown in Figure 1 is considered. The length of the

road considered is 300 meters and the RSU, denoted by R1,

is placed at its mid point. The road is divided into 600 slots.

If a vehicle is present in the U th slot, the distance between

the RSU and the vehicle is given by |U − 300|/2. In every

time slot, the vehicle moves one slot. A new vehicle arrives in

every 30 time slots. Hence, at any time there are 20 vehicles

on the road. A new packet is transmitted per time slot. Using

a uniform distribution, in MATLAB, we decide which vehicle

is transmitting. The path loss model in [17] is used where

L0 = 47dB and x = 3. Additive noise variance is −100dBm.

The transmit power is equal to 20dBm. Using the symbol error

10−4 10−3 10−2 10−1
10−4

10−2

(a)

PFA

P M
D

δ = 0.1
δ = 0.15
δ = 0.2

10−4 10−3 10−2 10−1

10−2

PFA

P M
D

(b)

M = 10
M = 15
M = 20

Fig. 2: Performance of the IDS when (a) M = 20 and the value

of δ is varied (b) δ = 0.15 and the value of M is varied.

rate expressions in [11] for 16 QAM transmission in Rayleigh

fading channels, the PDP is calculated.

The performance of our detection system is characterized

using false alarm and missed detection probabilities, denoted

by PFA and PMD respectively. The probability that the detection

system decides on H1 in the absence of an attack is defined as

the false alarm probability. The probability that the detection

system decides on H0 in the presence of an attack is defined

as the missed detection probability. To obtain PFA, we setup

the network using Hypothesis H0 i.e. δd1j = 0 ∀j. In every

iteration, using simulation, we obtain the trust values estimated

by the M vehicles and then calculate the aggregated trust

value. We then compared the aggregated trust to the threshold

to decide which hypothesis is true. The simulated PFA values

are obtained by averaging over 104 Monte Carlo simulations.

To obtain the simulated PMD values, we setup the network

using hypothesis H1 and follow the above approach. We

further set δd1j = δ ∀j. The results obtained for different

values of μ are plotted in Figure 2. From Figure 2(a), it can

be seen that as the value of δ increases, the performance of

our detection system improves. We also see from Figure 2(b)

that the performance improves as M increases.

Consider a situation where twenty vehicles reported trust

values for an authentic RSU R1. Out of them, suppose, M ′

vehicles are reporting malicious feedback. To evaluate the

performance of the detection system in this situation, we have

measured the false alarm probability for different values of

M ′. The false alarm probability is obtained similar to as

described before. The only difference is that the malicious

M ′ vehicles report false feedback as mentioned in Section V.

The results for different values of μd are plotted in Figure 3.

It can be seen from Figure 3 that the false alarm probability

increases with increasing number of devices and/or increasing

δv . However, the false alarm probability still remains close

to zero unless the number of malicious vehicles exceeds the

number of authentic vehicles and/or the value of δv is large.

Consider a situation where twenty vehicles reported trust

values for ten authentic RSUs. Out of the twenty vehicles

M ′ of them have transmitted malicious feedback, i.e. reported
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Fig. 3: Performance in the presence of malicious vehicles when

(a) M ′ = 2 (b) M ′ = 4.
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Fig. 4: Malicious vehicle identification when (a) M ′ = 2 (b)

M ′ = 4.

false trust values about the ten RSUs. We use the false

alarm and missed detection probabilities to characterize the

performance of the Gaussian Kernel (GK) based similarity

metric. To obtain the PFA, in every iteration using simulations,

we obtain the trust values estimated by the twenty vehicles

and then calculate the aggregate trust value. The malicious

M ′ vehicles generate feedback as mentioned in Section V.

We then calculate the similarity of an authentic vehicle using

(27) and then compare it with a pre-defined threshold to

decide if the vehicle is authentic or malicious. The simulated

PFA values are obtained by averaging over 105 Monte Carlo

simulations. The simulated PMD values are obtained using

a similar approach with the only difference being that the

similarity of a malicious vehicle is obtained. It can be seen

from Figure 4 that the similarity measure obtained in (27)

achieves detection probability almost equal to one.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a trust based IDS to detect

the presence of a malicious RSU in vehicular networks. The

detection uses the packet drop probability of the packets

received as a means to obtain the trust value. To classify

the RSU as malicious or authentic, the calculated trust value

is compared against a threshold. In addition, we considered

a situation where there could be vehicles that report false

trust values about the RSUs. To identify such vehicles, we

proposed to use a Gaussian kernel based similarity metric and

then compared it against a threshold. The results demonstrate

that the malicious RSUs and the malicious vehicles can be

identified with high reliability.
An interesting future work is to detect an adversary (who

has compromised an RSU) deliberately manipulating the

higher layer payloads of the packets. Since such attacks cannot

be correlated with the wireless channel quality, the detection

system presented in this paper cannot be used to detect the

attacker. Another interesting future work is to detect malicious

vehicles transmitting false feedback about malicious RSUs,

i.e. these vehicles try to influence the IDS into classifying the

malicious RSU as authentic.
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