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Abstract—WiFi-based sensing technology has gained signifi-
cant attention for its ability to enable pervasive human activity
recognition (HAR) in indoor spaces. One challenge is that current
WiFi HAR systems often experience performance degradation in
unseen scenarios (e.g., new environments, people, and weather
conditions). Some research has attempted to address this issue
by extracting scenario-invariant features using deep learning
(DL). However, discarding scenario-specific features brings about
insufficient representation of task-related information, resulting
in limited model adaptability. In this paper, we present GenFi, a
robust WiFi HAR system that enhances model generalization by
leveraging both scenario-invariant and scenario-specific features.
To achieve this, GenFi first disentangles the raw input into
these two types of features through adversarial learning and
correlation analysis. Subsequently, GenFi uses meta-learning
to self-optimize the fusion of these two features, leading to a
generalized cross-scenario WiFi HAR system. Compared to state-
of-the-art approaches, GenFi achieves the best trade-off between
high performance and low complexity in diverse unseen scenarios,
making it a promising solution for real-world deployment.

Index Terms—WiFi Sensing, Human Activity Recognition,
Domain Generalization, Feature Disentanglement, Meta-learning.

I. INTRODUCTION

With the rising popularity of WiFi technology and the broad
availability of WiFi infrastructure, WiFi sensing is drawing in-
creasing attention in emerging fields such as Internet of Things
(IoT) systems and healthcare services [1], [2]. Compared to
traditional vision-based sensing technologies, WiFi sensing is
device-free, low-maintenance, and privacy-preserving. Even in
challenging conditions such as dark environments and non-
line-of-sight (NLOS) situations, WiFi-based sensing systems
still operate effectively. These advantages enable WiFi sensing
technology to be a promising solution for human activity
recognition (HAR) in homes, offices, and other indoor spaces
[3], [4]. As deep learning (DL) shows significant success in
recognition tasks, DL-based WiFi HAR has attracted grow-
ing attention [5]. A major challenge is that DL-based HAR
systems often face performance degradation when applied to
new scenarios, as they depend heavily on training data [6].
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Considering that real-world application scenarios are dynamic
and diverse, solving this problem is crucial for the practical
deployment of DL-based WiFi HAR systems.

Recently, some methods have been proposed to adapt DL-
based WiFi HAR systems to unseen scenarios, using chan-
nel state information (CSI) as training data [7]–[11]. Given
that CSI contains multi-layered semantic information such as
weather, environment, person, and object motion [12], the core
idea of these methods is to extract scenario-invariant human-
motion features, which helps the model focus on generalizable
patterns rather than overfitting to scenario-specific information
[13], [14]. For example, [7]–[9] employ domain adaptation and
domain generalization techniques to learn scenario-invariant
features. In [7], [8], the pre-trained models need to be tailed
with at least one sample from new scenarios, which increases
the difficulty of their practical deployments. AirFi [9] ex-
tracts scenario-invariant features by minimizing the distribu-
tion differences among CSI from different previously seen
environments, without requiring new data. Nevertheless, It
focuses only on environmental dynamics and neglects factors
such as people and weather conditions, leading to limited
applicability. Approaches based on Doppler shift analysis [10],
[11] demonstrate strong robustness to diverse variations, with
no new data required. However, Doppler analysis involves
complex signal correction and iterative optimizations, making
it inefficient for real-time inference.

Furthermore, relying solely on scenario-invariant features
may be insufficient for scenario adaptation, as it may lead to
severe information loss, especially when there is a large distri-
bution gap between the source and target scenarios [15]. Prop-
erly incorporating scenario-specific information can be benefi-
cial for cross-scenario recognition, which has been explored in
the field of computer vision [16], [17]. Therefore, we believe
that WiFi-based HAR models can achieve better generalization
by leveraging scenario-specific information. The challenge lies
in balancing reliance on scenario-specific information: too
little results in insufficient representation, while too much
leads to overfitting. To address these problems, we propose
GenFi, a novel WiFi-based HAR system that can be easily
generalized to diverse unseen scenarios, by considering both



scenario-invariant and scenario-specific information. Specifi-
cally, GenFi first uses feature disentanglement techniques to
isolate the scenario-invariant and scenario-specific features
from raw CSI by encouraging the independence between
them [18]. Following this, GenFi adopts meta-learning [19] to
self-learn how to fuse scenario-specific and scenario-invariant
features for robust cross-scenario performance.

The contribution of this paper is as follows:
• We propose GenFi, a WiFi-based HAR system that can

be efficiently generalized to diverse unseen scenarios
including new environments, people, and weather condi-
tions, with no new data required. Compared to previous
approaches, GenFi has greater applicability, robust per-
formance, and lower implementation complexity.

• We consider both scenario-invariant and scenario-specific
features to enhance model generalization. To the best
of our knowledge, GenFi is the first work that fuses
scenario-specific features with scenario-invariant features
to achieve a robust cross-scenario WiFi HAR system.

• We explore an efficient training strategy for feature
fusion. By applying feature disentanglement, scenario-
invariant and scenario-specific features are separated from
raw CSI. Leveraging meta-learning strategy, GenFi self-
learns how to fuse these features effectively to enhance
the generalization capability of the system.

• We employ efficient preprocessing and augmentation
techniques to improve data representation. Static trends
and hardware errors in CSI are eliminated using first-
order differencing. Random erasing and channel shuffling
are applied to enhance data diversity.

II. TECHNICAL BACKGROUND

In this section, we are going to review feature disentangle-
ment and meta-learning, which are two typical techniques for
model generalization.

A. Feature Disentanglement for Model Generalization

Data often contains interwoven features, some of which are
stable across scenarios while others are sensitive to scenario
changes. Feature disentanglement refers to the process of
isolating these distinct types of features, allowing us to extract
scenario-invariant features, thereby enhancing model general-
ization. In recent years, Feature disentanglement has shown
significance in improving model robustness across various
fields. For instance, in the field of voice conversion, [20]
separates content-related and speaker-related features using a
pair of encoders, enabling the model to convert speech from
unseen speakers into a target voice. In the context of face
recognition, [21] introduces a deep adversarial disentangled
network to isolate scenario-specific features from identity
features, ensuring successful classification of face images
captured in different scenarios. In this paper, we use a dual-
encoder structure to learn scenario-invariant and scenario-
specific features, and disentangle them by minimizing their
overlap through adversarial training and correlation analysis.

Fig. 1: System overview.

B. Meta-Learning for Model Generalization

Meta-learning aims to provide models with the ability to
learn how to learn. It consists of two phases: meta-training
and meta-testing. During both phases, the model upgrades
its parameters as it learns. In meta-training phase, the model
is exposed to diverse data from various domains, allowing
it to identify common patterns and acquire generalizable
knowledge. During meta-testing, the model’s effectiveness is
evaluated on unseen data to simulate how it would perform
when faced with new scenarios. The testing loss will guide
the model’s further updates, ultimately facilitating effective
model generalization [22]. In this work, leveraging meta-
learning strategy, GenFi self-learns how to reasonably integrate
scenario-specific information with scenario-invariant features,
improving its robustness and reliability in unseen scenarios.

III. SYSTEM DESIGN

The overall architecture of GenFi is presented in Fig. 1. In
this section, we discuss each block of the system in detail,
including data preprocessing, augmentation, and model train-
ing. During the training process, basic-learning stage (Fig. 2)
is conducted first, followed by meta-learning stage (Fig. 3).

A. Data Preprocessing and Augmentation

In practical applications, the receiver continuously records
CSI. To create inference samples, we first utilize moving
windows to extract CSI slices. Given that the raw CSI data
often contains significant noise, Hampel filter is applied to
remove outliers. Following that, first-order differencing is
performed along time dimension to eliminate static trends and
along antenna dimension to alleviate inherent hardware errors.

To improve model robustness, we apply data augmentation
to increase the diversity of training samples. Considering
the recognition results are influenced by antenna ordering,
which depends on the relative positions of the device and
person within the room, we randomly shuffle the antenna
dimension sequence to mitigate this effect. Additionally, We
employ random erasing by masking a portion of the input,
promoting a sparser feature representation to avoid overfitting
on redundant information. The processed CSI from multiple
scenarios will be used for model training. When feeding each
sample into the DL model, instance normalization is employed
to help the model focus on individual samples from different
scenarios, mitigating the impact of distributional differences
across scenarios and improving generalization.



Fig. 2: Basic-learning stage of model training. The subscript i
and s denote scenario-invariant and scenario-specific, respec-
tively. Modules with the same color have the same structure.

B. Basic-Learning Stage of Model Training

Fig. 2 illustrates the basic-learning stage of model train-
ing. The model comprises a scenario-invariant encoder Ei, a
scenario-specific encoder Es, a scenario-invariant discrimina-
tor Di, a scenario-specific discriminator Ds, a decoder G, and
a classifier C. We will describe the calculation of loss terms
at each step in basic-learning stage in the following part.

1) Feature Extraction via Adversarial Learning: A dual-
encoder structure is used to extract scenario-invariant features
fi = Ei(x) and scenario-specific features fs = Es(x) in
parallel, where x denotes input sample. Each encoder consists
of three 2D convolutional layers. To ensure that these two
feature codes contain their aimed information with minimal
redundancy, we apply an adversarial training framework that
includes Di and Ds, each constructed of two fully connected
layers. Specifically, the goal of Di is to correctly identify the
scenario label from fi, while Ei tries to project the input
sample into the latent space in a way that makes it hard
for Di to tell which scenario the input belongs to. For fs,
a symmetrical structure is designed, where both Es and Ds

aim to maximize the prediction probability of scenario label
from fs. The adversarial loss terms Li

adv and Ls
adv are given

as below, where z denotes scenario label:

Li
adv = min

Ei

max
Di

−Ex,z[z logDi(fi)], (1)

Ls
adv = min

Es,Ds

−Ex,z[z logDs(fs)]. (2)

2) Feature Disentanglement by Correlation Analysis: To
reduce the overlap between fi and fs and encourage their
independence, we disentangle them by forcing their correlation
matrix to approach 0. Correlation matrix is a square matrix
describing the linear relationships between multi-dimensional
variables, of which each element is a Pearson correlation
coefficient calculated by:

Cor(a, b) =
Cov(a, b)
σaσb

=

∑
(ai − ā)(bi − b̄)√∑

(ai − ā)2
∑

(bi − b̄)2
, (3)

Fig. 3: Meta-learning stage of model training. In this stage,
only Es and C will be updated. Other modules are frozen.

where Cov(·) and σ represent covariance and standard devia-
tion, respectively. The optimization problem can be solved by
minimizing the correlation loss Lcor, given by:

Lcor = min
Ei,Es

Ex[∥Cor(fi, fs)∥22]. (4)

3) Fused Feature Representation Optimization: As dis-
cussed earlier, model generalization can be boosted by incor-
porating scenario-specific information. Therefore, fi and fs
are concatenated to obtain the fused features fis. The recon-
struction loss Lrec is used for unifying the content of feature
codes encoded from different training scenarios, calculated as:

Lrec = min
Ei,Es,G

Ex[∥G(fis)− x∥22]. (5)

Moreover, to emphasize the feature representation associated
with different activity labels, the contrastive loss Lct, which
encourages same-class samples to be closer and different-class
samples to be farther apart, is employed as follows:

Lct = min
Ei,Es

Ex,y

[
∥fy

is, f
y+

is ∥2 +max(0,m−∥fy
is, f

y−
is ∥2)

]
.

(6)
where y and m denote activity label and margin constraint,
respectively. ∥fy

is, f
y+

is ∥2 represents the Euclidean distance
between feature pairs of the same activity label; ∥fy

is, f
y−
is ∥2

denotes that between feature pairs of different activity labels.
4) Classifier Optimization: Finally, the optimized fused

features fis are fed into the classifier, consisting of a single
fully connected layer. The cross-entropy loss Lce is used to
measure the activity prediction errors as follows:

Lce = min
Ei,Es,C

−Ex,y[y logC(fi, fs)]. (7)

Overall, the loss function Lbasic for the basic-learning stage
of GenFi is identified as:

Lbasic = Li
adv + Ls

adv + λ1Lcor + λ2Lrec + λ3Lct + Lce, (8)

where λi denotes the weight parameter for the loss term.



C. Meta-Learning Stage of Model Training

To enable model to learn which scenario-specific features
should be focused on, we further adopt meta-learning strategy
after basic-learning stage to enhance model’s adaptability
to new scenarios. During this stage, only Es and C are
updated and the other modules are frozen, as shown in Fig 3.
To implement meta-learning, we divide all training data by
sequentially selecting data from one scenario as meta-testing
subset Smte, with data from the remaining scenarios forming
meta-training subset Smtr.
Smtr is utilized for meta-training. Ei is still employed to

obtain scenario-invariant features fi, consistently using the
parameters from the last basic optimization. Meanwhile, the
scenario-specific features are extracted by the continuously
updated Es. For clarity, we use f↑

s to denote the scenario-
specific features within the meta-learning stage. Ultimately, fi
and f↑

s are fused to form the final feature representation and
used for updating C. During meta-testing, Smte is utilized to
evaluate the model’s robustness on an unseen scenario. Es

and C will be further optimized, based on cross-entropy loss
in meta-testing phase. The joint update formula for Es and C
in meta-learning stage is:

Lmeta = min
Es,C

f(θEs,C −∇f(θEs,C , Smtr), Smte), (9)

where θEs,C denotes their joint parameters and

f(θ, S) = −Ex,y[y logC(fi, f
↑
s )]. (10)

For a batch of training data, the model first performs
basic-learning stage according to Eq. (8) across all modules,
followed by the meta-learning stage that further updates the
scenario-specific encoder and the classifier by Eq. (9).

IV. EVALUATION

In this section, we evaluate GenFi in diverse testing scenar-
ios, including performance comparisons, complexity & latency
analysis, and ablation study.

A. Experimental Settings

1) Dataset: We evaluate our proposed method with an
open dataset [23], which contains CSI-based HAR samples
for eight activity classes, involving thirteen participants across
seven environments over various days. The dataset is collected
over 242 WiFi OFDM sub-channels and includes measure-
ments from four antenna pairs, resulting in the original CSI

TABLE I: Characteristics of subsets used for experiments.

Subset Environment Person Time Path

A Bedroom P1 a LOS
B Bedroom P1 b LOS
C Bedroom P2 c LOS
D Bedroom P1 d NLOS
E Bedroom P2 e NLOS
F Living room P1 f LOS
G Laboratory P3 g LOS

sequence dimension of 4×242×N , where N denotes the
number of sampling points. Each CSI sequence corresponds
to a volunteer repeatedly performing a specific action over a
period of time. Diverse variations such as environments (e.g.,
room layout and device position), people (e.g., gender and
age), weather conditions (e.g., temperature and humidity), and
transmission paths (e.g., line-of-sight (LOS) and NLOS) are
considered, enabling simulation of diverse unseen conditions
that may arise in real-world WiFi sensing deployments. As
we are striving for model generalization, the diversity of the
training and testing subsets is taken into account. Accordingly,
seven subsets are selected from the dataset, as shown in
Table I. In experiments, through various pairs of training and
testing set combinations, we comprehensively evaluate the
model’s performance under different unseen factors.

2) Implementation Details: We conduct experiments using
PyTorch with one NVIDIA A100 80GB GPU. The size of each
CSI frame is 4×242×340, with a shifting window length set
to 340 (around two seconds, corresponding to typical period of
human motion). After two first-order differencing operations,
the shape of a CSI sample is 3×242×339. The loss-related
hyperparameters are set as λ1 = 2, λ2 = λ3 = 0.5, and m =
1, which aims to balance the magnitudes of multiple losses.
Adam optimizer is used. For GenFi, the learning rate for basic-
learning, meta-training, and meta-testing is 10−4, 10−4, and
10−5, respectively. For all baselines, the learning rate is 10−4.
For performance evaluation, accuracy is used as the metric.
For complexity analysis, we count floating point operations
(FLOPs) and record latency which is time for completing one
inference including data processing and model prediction.

B. Experimental Results and Analysis

1) Performance Comparisons: We compare the proposed
GenFi with recent related work [7], [9], [10], all of which
aim to enhance the generalization capability of WiFi sensing
systems. The training subsets are fixed as A, D, and G, as
they involve different environments (bedroom and laboratory),
people (P1 and P3), time periods (a, d, and g), and transmission
paths (LOS and NLOS). To test the ability of each method
to adapt to different types of unseen scenarios, we take B,
C, and F as testing subsets in turn, simulating situations
in which the model faces unseen time (b), unseen person
(P2), and unseen environment (living room), respectively. The
experiment results are shown in Table II, where we highlight
the best results (with ∗) and the second-best results (with bold).

According to Table II, the average prediction accuracy of
GenFi exceeds 90% in all testing scenarios. In terms of the
accuracy of individual activities, GenFi consistently achieves
the best or second-best results in most classes. Such results
show the strong reliability and adaptability of GenFi across
diverse unseen situations. SHARP achieves excellent perfor-
mance by estimating human movement velocity from Doppler
shift information, which is independent of scenario variation.
Even so, we will demonstrate later in IV-B2 that the computing
complexity and inference latency of SHARP are significantly
higher than those of GenFi, making it inefficient for online



TABLE II: Classification accuracy (%) comparisons of all models under diverse unseen scenarios.

Model Empty Sitting Standing Sit down
stand up Walking Running Jumping Arm gym Macro

average
Weighted
average

Testing
scenario

DAFi [7] 58.55 99.71 82.38 91.89 78.39 88.89 94.36 76.92 83.88 83.79
ADG-B

(unseen time)
AirFi [9] 30.57 92.02 77.72 87.03 51.26 85.35 83.08 74.36 72.67 72.51
SHARP [10] 100∗ 100∗ 94.56∗ 100∗ 100∗ 99.84∗ 100∗ 100∗ 99.30∗ 99.30∗

GenFi 84.97 100∗ 90.67 100∗ 84.42 87.88 100∗ 84.10 91.51 91.40
DAFi [7] 77.00 93.17 82.05 40.22 85.43 75.62 98.43 89.80∗ 80.21 80.69

ADG-C
(unseen person)

AirFi [9] 47.50 88.29 86.67 33.52 58.79 59.20 97.95 76.02 68.49 68.85
SHARP [10] 96.07∗ 100∗ 93.91∗ 98.56∗ 100∗ 84.43 98.72∗ 87.58 94.91∗ 94.79∗

GenFi 86.00 88.78 91.79 93.30 98.49 84.58∗ 98.46 84.18 90.90 90.64
DAFi [7] 96.43 98.48 83.16 80.65 69.34 83.00 39.29 73.60 78.00 77.95

ADG-F
(unseen environment)

AirFi [9] 72.45 93.72 56.12 86.56 67.88 75.50 60.20 72.59 73.13 72.99
SHARP [10] 100∗ 100∗ 90.32 99.82∗ 100∗ 73.16 100∗ 100∗ 95.40∗ 95.32∗

GenFi 98.98 98.95 95.92∗ 99.46 82.90 85.00∗ 90.82 79.19 91.40 91.32

real-time applications. DAFi achieves an average accuracy of
around 80% in each round of testing, with approximately 10%
lower than that of GenFi. This is because, in the original im-
plementation, DAFi requires samples from the target scenario
to effectively reduce the distribution gap between source and
target scenarios. However, such data are not provided in our
experiments to simulate real-world deployment; instead, we
replace that with data from the training set, which prevents
DAFi from attaining satisfactory performance. AirFi shows
poor generalization performance in our experiments, as it
focuses solely on environmental variables while ignoring other
factors. When more different variable factors are involved,
the effectiveness of the domain alignment method used in
AirFi is diminished. As shown in Table II, AirFi achieves its
best performance in the unseen environment testing scenario,
with performance degradation in other unseen scenarios, which
demonstrates its limitations in adapting to diverse scenarios.

TABLE III: Classification accuracy (%) comparisons of all
models under the most challenging scenario.

Model Macro
average

Weighted
average

Testing
scenario

DAFi [7] 70.72 70.48
CEG-F

(all)
AirFi [9] 67.53 67.33
SHARP [10] 88.70∗ 88.62∗

GenFi 83.81 83.73

In real-world applications, a more common situation is that
the model will operate in a new environment, for a new person,
at a future time, i.e., all factors are entirely unseen to the
model. To test models under this most challenging scenario,
we further select C, E, and G as training subsets, which
are across different environments (bedroom and laboratory),
people (P2 and P3), types of path (LOS and NLOS), and time
periods (c, e, and g), and take F as testing subset (living
room, P1, f) where all factors are unseen to models. The
testing results are shown in Table III. It can be observed
that GenFi achieves above 83% classification accuracy on
testing data, with about 13% and 16% performance gains over
DAFi and AirFi, respectively. SHARP still shows the best

performance, achieving 5% improvement over GenFi. Despite
this, the computational cost of SHARP is extremely high (see
IV-B2), resulting in a worse trade-off between performance
and computational efficiency compared to GenFi.

2) Complexity and Latency Analysis: In practical applica-
tions, WiFi sensing models are typically deployed on mobile
devices, which requires the complexity to be kept at a reason-
able level. Meanwhile, low processing latency is crucial for
ensuring real-time responsiveness. Based on these considera-
tions, we compared the complexity and latency of different
models, as illustrated in Fig. 4, where the units of complexity
and latency are FLOPs and seconds, respectively. To simulate
the operation of models on lightweight mobile devices, results
in this part are obtained based on CPU implementations. Fig. 4
shows that the computing complexity of SHARP is two orders
of magnitude, nearly 255 times, higher than that of GenFi,
incurring significantly greater computational costs. This is
because SHARP involves extensive iterative optimization and
regression analysis to estimate Doppler information. In terms
of latency, SHARP spends over 120 seconds for a single
inference, almost 65 times slower than GenFi, which makes it
hard to deploy in real-world applications. In contrast, GenFi
can not only significantly outperform DAFi and AirFi, but also
maintain comparable complexity and inference latency with
them. This indicates that GenFi is well-suited for deployment
on lightweight devices for real-time inference.

Fig. 4: Complexity and latency comparisons.



TABLE IV: Ablation study on accuracy(%).

Model Macro
average

Weighted
average

Testing
scenario

GenFi w/o aug 81.35 81.11
ADG-B

(unseen time)
GenFi w/o fusion 83.28 83.05
GenFi w/o meta 90.08 90.04
GenFi 91.51∗ 91.40∗

GenFi w/o aug 78.11 78.60
ADG-C

(unseen person)
GenFi w/o fusion 89.25 89.30
GenFi w/o meta 84.87 84.84
GenFi 90.90∗ 90.64∗

GenFi w/o aug 84.21 84.12
ADG-F

(unseen environment)
GenFi w/o fusion 87.67 87.65
GenFi w/o meta 90.59 90.55
GenFi 91.40∗ 91.32∗

GenFi w/o aug 76.81 76.66
CEG-F

(all)
GenFi w/o fusion 82.33 82.25
GenFi w/o meta 79.05 78.91
GenFi 83.81∗ 83.73∗

3) Ablation Study: To study how each module contributes
to the generalization capability of GenFi, we further con-
duct the ablation study, as shown in Table IV, where we
highlight the best results (with ∗). In this table, GenFi w/o
aug represents GenFi without data augmentation; GenFi w/o
fusion denotes that we only feed the scenario-invariant feature
into the classifier without feature fusion; GenFi w/o meta
indicates that we directly use concatenated features as the
input of the classifier, without the optimization from meta-
learning. It can be observed that the performance of GenFi
declines when any single module is absent, highlighting the
effectiveness of all these techniques employed. Specifically,
the missing data augmentation, which includes erasing (to
simulate packet loss) and antenna shuffling (to simulate an-
tenna ordering effects), results in the greatest performance
degradation. When feature fusion and meta-learning are not
utilized, the model’s performance becomes unstable across
various scenarios, leading to performance drops of up to
8% and 6% in different testing scenarios, respectively. These
findings highlight the importance of all modules employed in
GenFi for stably adapting the model to diverse scenarios.

CONCLUSION

In this paper, we have presented GenFi, a generalized and
easily adaptive channel state information (CSI)-based human
activity recognition (HAR) system. By utilizing adversar-
ial learning and correlation analysis, GenFi disentangles the
scenario-invariant and scenario-specific features from the raw
CSI data. Leveraging meta-learning, GenFi self-learns how
to effectively fuse these two types of features to enhance
its robustness in diverse unseen scenarios. Our experiments
demonstrate that GenFi can achieve excellent performance
with low complexity and latency. Compared to existing meth-
ods, GenFi achieves up to 16% performance gain in the most
challenging testing scenario. Moreover, our analysis reveals
that GenFi reduces complexity by 99.6% and latency by 98.5%
compared to the best-performing system, with only a 5%

performance gap. In conclusion, GenFi effectively balances
strong generalization performance with lightweight computa-
tional demands and low inference latency, making it highly
efficient for real-world deployment.
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