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Abstract—Vehicular Ad-Hoc Networks (VANETs) are a sig-
nificant part of Intelligent Transportation Systems (ITS), and
they are used to enhance the road safety and improve the
traffic efficiency through the communication between vehicles
and roadside units. However, some malicious adversaries can
use the periodically broadcast beacons in VANETs to track
vehicles. To mitigate this threat and protect privacy, existing
research primarily suggests the use of pseudonyms as variable
identities for each vehicle, and has explored different pseudonym
mix strategies. These mix strategies often introduce latent traffic
accident risks by requiring the vehicles to change their driving
behavior or stop broadcasting. In this paper, we present a flick-
ering context-based mix strategy, which can reduce such hidden
dangers and provide higher privacy level than traditional context-
based strategy. Besides, we employ a passive global adversary to
evaluate the proposed strategy and conduct simulations in both
virtual maps and real city maps to measure the protection level of
the proposed privacy scheme. Finally, the influences of different
parameters in our new method are explored.

Index Terms—privacy, pseudonym, VANETs

I. INTRODUCTION

With the rapid development of communication networks,
their new features of low latency and large bandwidth are
enabling new applications. As more and more intelligent
devices participate in the Internet of Things (IoT) [1], people’s
lives have become more convenient. The concept of Smart City
[2] has been proposed to allow city officials to manage and
monitor directly with both community and city infrastructure.
Vehicular Ad-Hoc Networks (VANETs) [3], which consists of
trusted authority (TA), on board unit (OBU), and roadside unit
(RSU), aim to improve road safety and efficiency by sharing
the state of vehicles. To do so, IEEE, ETSI, and SAE [4]
suggest vehicles to broadcast safety messages periodically.
These messages contain the position, speed, heading and
identity of each vehicle. However, these messages also expose
the vehicle’s trajectory and are thus a privacy risk.

Lim, et al. [5] classified three types of privacy to be
protected in VANETs: the vehicle’s identity, location, and the
data exchanged. Since the data can be protected by encryption
mechanisms, the primary issue is to protect the identity and
location. To cope with it, researchers [6]–[8] have suggested
the use of pre-generated pseudonyms by vehicles when they
broadcast their safety messages and deploy a pseudonym
changing strategy to protect vehicles from being tracked,
where a pseudonym is defined as a fictive identifier [9], and

only the trusted authority knows the mapping between the
real identifier of a vehicle and its pseudonyms. The related
previous pseudonym mix strategies may be divided into three
categories:

(1) Time-based mix strategy. In this strategy, vehicles change
their pseudonyms by following a periodic schedule. Vehicles
first stop broadcasting their safety messages at time t, and they
use a new pseudonym after ∆t. However, this method is easy
to attack, Wiedersheim et al. [10] claimed that the tracking
accuracy for a global adversary almost reaches 100% in some
cases. Huang et al. [11] proposed the concept of random silent
period, with the intuition that if ∆t was chosen randomly, it
would be harder for the adversary to track individual vehicles.
Further Sampigethaya et al. [12] adopted it into a group
protocol.

(2) Zone-based mix strategy [13]. In this strategy, vehicles
change their pseudonyms when they enter some predefined
road sections or social spots [14]. The RSU is the coordinator
[15] of such a process. These areas are also named mix-zones.
However, under the assumption that the attacker has informa-
tion of vehicles before they enter the mix zone, Buttyan et
al. [16] claimed that the success rate of tracking a vehicle
can reach up to 70%. Also, they suggested that a vehicle
could improve its privacy level by changing driving behavior
[17]. Boualouache, et al. [18], [19] proposed to set silent mix-
zones at some public areas such as signalized intersections.
In addition, some research works have explored the optimal
deployment [20]–[22] of mix-zones.

(3) Context-based mix strategy. The two methods intro-
duced above have various drawbacks. Time-based methods
waste pseudonyms if only one vehicle changes its pseudonym
while its neighbors stay unchanged. Zone-based methods have
hidden danger when silent mix-zones are set in intersections,
and the drivers must be highly cooperative when required to
speed up or slow down. Thus, context-based methods which
improve the shortcomings of previous methods have been
proposed. Gerlach and Guttler. [23] suggested a method where
a vehicle changes its pseudonym when it detects k neighboring
vehicles within a threshold range and moving in a similar
direction. Liao et al. [24] proposed to add the speed and
the road segment information into the context. Recent surveys
[25], [26] recommended this method because it can find high-
quality opportunities for pseudonym changing.



The structure of the remaining content is organized as
follows: In Section II, we discuss the traditional context-based
mix strategy and the metrics used to evaluate its performance.
In Section III, to overcome the shortcomings of existing
methods, we propose a new context-based strategy. The details
of the adversary model for privacy evaluation is presented
in Section IV. Finally, we present our simulation results in
Section V, and conclude the paper in Section VI.

II. TRADITIONAL CONTEXT-BASED MIX STRATEGY AND
METRICS

Context-based methods are user-centric, and vehicles inde-
pendently determine when and where to change pseudonyms.
Since they do not share any pseudonym changing records
with other parts in the VANETs, even if the communications
are intercepted, the adversary cannot find any direct record
of a pseudonym change. To do so, traditional context-based
methods [24] assume that vehicles monitor the traffic by
receiving safety messages from other vehicles. Once they find
there are k neighbors with similar running status, they can then
change their pseudonyms together, and there is a minimum
stable time for a new pseudonym.

As shown in Fig. 1, context-based mixing utilizes both
the concept of mix-zone and silent period ∆t together. A
vehicle creates an invisible mix-zone around itself and finds k
neighbors in it with similar states at time t. Then, all vehicles
in this zone stop broadcasting for a silent period ∆t. After
that, the vehicles change their pseudonyms. Since the traffic
environment and the vehicle states at the end are different from
those at the start of the process, the adversary would find it
difficult to track the vehicles. To evaluate the performance of
pseudonym changing approach, we choose the following four
objective metrics.

Fig. 1: Context-based mix strategy.

1) Entropy: Entropy refers to the uncertainty in informa-
tion, and a system with higher entropy usually has more
uncertainty. In a pseudonym changing process, let i be the
old pseudonym of a vehicle, i ∈ Vin, where Vin is the
set of pseudonyms of a group of vehicles that are ready to
change their pseudonyms. The new pseudonym of the vehicle
is denoted by j, j ∈ Vout, where Vout is the new set of
pseudonyms for the vehicles with pseudonyms in Vin. Pij is
the probability that an old pseudonym i and a new pseudonym
j belong to the same vehicle. The traditional method usually
has |Vin| = |Vout|, and assume w = |Vout|, Pij = 1/w. We
use Hi to represent the entropy for vehicle i, and Hold to
denote the total entropy of the entire process for the traditional
method. Then

Hi = −
∑
j

Pij logPij = log 1/w, (1)

Hold =
∑

Hi = −w log 1/w, (2)

2) Untraceable quantity: Entropy is an abstract concept,
and does not reflect the success of a real adversary. Thus we
also develop a new metric called “untraceable quantity” to
directly quantify how many vehicles cannot be tracked in a
scenario. We discuss this model in detail in Section IV.

3) The number of pseudonyms used: Pseudonym is a re-
source for vehicles. If they change pseudonyms with high
frequency, the pseudonym pool would run out in a short
time. Besides, the authentication process is also required after
each new pseudonym is applied. Thus we take the number of
pseudonyms used as a measure of the cost.

4) The number of silent slots: The silent period is used
to reduce the linkability between a new pseudonym and an
old pseudonym. However, it results in traffic information loss,
especially in intersections where a number of vehicles may
have stopped, which reduces the safety of the transportation
system [27]. Here, we use the number of silent slots as an
indicator of the road safety.

III. PROPOSED CONTEXT-BASED MIX STRATEGY.
Traditional context-based methods as shown in Fig. 1, have

two potential problems to be improved. First, vehicles usually
start changing pseudonyms when they find a sufficient number
of neighbors. If they all go into silent period, there is a
potential collision risk and other dangers due to the absence of
any messages. Second, the traffic environment at time t+ ∆t,
is different from that in time t, as these vehicles could meet
new neighbors during the silent period. These new vehicles
can be added to our new process to increase the size of the
anonymity set.

Based on the discussion above, we propose a flickering
context-based mix strategy. Its flowchart can be seen in Figs.
3 and 4, and the process is displayed in Fig. 2.

Fig. 2: The proposed strategy.

Step-1: In the beginning, at time t, k vehicles with free-state
(we define vehicles those are not in the pseudonym changing
process to have free-state) are ready to change pseudonyms.
Step-2: At time t+aT (a = 1, 2, . . . n−1), each vehicle inde-
pendently determines whether to broadcast with probability p,
and if they broadcast, they will use the new pseudonym. We
call this the flickering process.
Step-3: At time t + nT , all vehicles go into the hiding tail
process. They set HT (hiding tail) as 1, and send it to new
neighbors (yellow cars) who have free-state.



Step-4: All vehicles and their new neighbors who receive
HT=1, change their pseudonyms at time t+ (n+ 1)T .

Let the total number of silent slots in the traditional method
be denoted by Ns. In the proposed method, since vehicles
broadcast with probability of p, so the number of silent
slots becomes pNs (0 ≤ p ≤ 1), which is less than Ns.
As a result, the proposed method has less impact on traffic
information sharing. In the evaluation of entropy, assuming Vh
new neighbors added in steps 3 and 4 (hiding tail process),
we use the notation u = |Vh|, and let Nh be the number of
neighbors that have changed pseudonyms for vehicle h ∈ Vh,
(Nh ≥ 2). Then the entropy for the new method is:

Hh = − log 1/Nh, (3)

Hnew =
∑
i

Hi +
∑
h

Hh = −w log
1

w + u
−
∑
h

log
1

Nh
,

(4)
where Hh is the entropy for vehicle h and Hnew is the total
entropy for the new strategy. Comparing the right hand terms
of (2) and (4), we can see −w log 1

x+u ≥ −w log 1
w , since

u ≥ 0. Thus Hnew ≥ Hold, and we get higher privacy level.

IV. ADVERSARY MODEL

Safety messages which include the position, speed, and the
heading of each vehicle, are required to be broadcasted to
improve the traffic efficiency and safety. However, a passive
adversary can eavesdrop these messages, and get the com-
plete movement pattern of each vehicle. After a pseudonym
changing strategy is deployed, from the adversary’s view, the
complete trajectory is interrupted and it faces a typical multiple
target tracking (MTT) problem [28]. Researchers in [7], [29]
have proposed solutions and algorithms for this problem, and
one of the most commonly used model is Kalman filter. The
adversary model is given as:

xt = Axt−1 + b, (5)

zt = Hxt, (6)

where A is the transition matrix, b is the Gaussian-distributed
noise, xt = [pt, vt, at]

Tra, pt, vt, at are the position, velocity
and acceleration for vehicle at time t, with

A =

 1 T T 2/2
0 1 T
0 0 1

 , H =

(
1 0 0
0 1 0

)
, (7)

b =

[
T 2

2
, T, 1

]Tra

σ2
ap, (8)

Assuming that the interval length of the time slot is T , the
covariance matrices Q and R are defined as:

Q =

 T 4

4
T 3

2
T 2

2
T 3

2 T 2 T
T 2

2 T 1

σ4
ap, R =

 σ2
p 0 0

0 σ2
v 0

0 0 σ2
ap

 (9)

where σ2
ap, σ2

v , σ2
p are the acceleration, velocity and position

variances, respectively. The update is given by:
x̂−t = Ax̂−t−1, (10)

P−
t = APt−1A

Tra +Q, (11)

S = HP−
t H

Tra +R, (12)

K = P−
t H

TraS−1, (13)

z̃t = zt −Hx̂−t , (14)

x̂t = x̂−t +Kz̃t, (15)

Pt = (I −KH)P−
t , (16)

where I is the identity matrix, and the details about the
derivation can be found in [30]. With Kalman filtering, we
can predict the state of vehicle in future, and the error for the
prediction d2ij in assigning j to i is calculated as:

d2ij = z̃TraS−1z̃, (17)

As the new pseudonym j only belongs to one vehicle in Vin,
data association techniques are used to avoid an incorrect or
sub-optimal solution for the assignment. In this paper we apply
the nearest neighbor probabilistic data association (NNPDA)
technique [31], as it allows real-time calculations even when
there are a large number of vehicles [32]:

Gij =
e−d2

ij/2

(2π)Nm/2
√
|Si|

, (18)

Pij =
Gij

Ti +Mj −Gij
, (19)

where the Gaussian likelihood function Gij is associated with
the assignment of a new pseudonym j ∈ Vout to the old
one i ∈ Vin. Ti is the sum of likelihood functions Gij of
vehicle i, Mj is the sum of Gij for new pseudonym j, and
|Si| indicates the determinant of the residual covariance matrix
which is obtained from (12). Nm refers to the dimension of
the observed vector zt. Pij is the final probability of mapping
a new pseudonym j to old pseudonym i. If the arg maxjPij is
not the true pseudonym i, then i is regarded as untraceable. We
count all the untraceable vehicles and denote it as the metric
“untraceable quantity”.

The adversary model above is applied to a traditional
context-based method, which is under the assumption that all
vehicles go into silent period together and once the adversary
knows the length of silent period, then he or she can get the
tracking results (17) by using a Kalman multi-step predictor
[33], [34].

As vehicles broadcast safety messages with a probability
of p at each internal time slot in the proposed method, the
adversary model needs to be refined. As shown in Fig. 5,
assuming that the process length is n = 1, there are m (m =
3 in F ig. 5) vehicles broadcasting safety messages in the
middle time slot M . To let the adversary make full use of the
traffic information, the new expression for Gij is:

Gij = Ĝij +

m∑
a=1

GiMa
GMaj , (20)

Now, Gij is the combination of direct prediction and step-
by-step hypothesis, where Ĝij is obtained from (18) by setting
the filter step size as 2, GiMa and GMaj are calculated by



Fig. 3: Flowchart of new method. Fig. 4: Flowchart of mix process.

Fig. 5: Adversary model for proposed method.

setting the step size as 1. The remaining part of the adversary
model is consistent with that for the traditional method. We
apply this model to evaluate the untraceable quantity in the
next simulation section.

V. SIMULATIONS

To make a direct comparison and evaluate the new strategy,
we conduct simulations using “Simulation of Urban MObility”
(SUMO) [35], [36], which is an open source, highly portable,
microscopic traffic simulation package designed to handle
large networks. It can not only customize the map we want,
but also import the scenario from realistic city maps.

Virtual map: We created a Manhattan mobility model [37]
in SUMO, as shown in Fig. 6, with a topography of 1km ×
1km with four lanes in each edge. The arrival of vehicles
are assumed to follow a Poisson process. A probabilistic
approach is employed in the selection of vehicle’s route. At
each intersection, the vehicle goes straight with probability
0.5 and takes a left or right turn with probability 0.25 each.

Fig. 6: Manhattan mobility model.

We also add buses to ensure that the traffic is similar to
real scenarios. Buses have fixed routes and take a 30 s break
at a predefined bus station which is located in the south-east
sector of the second ring road. The parameters of vehicles are
set as:

Type Acceleration Deceleration Length MaxSpeed
Car 3m/s2 7m/s2 3m 17m/s
Bus 2.5m/s2 4.5m/s2 10m 14m/s

TABLE I: Vehicle settings.

Real map: CBD (central business district) in southern Sin-
gapore: Singapore is large city with diverse traffic networks.
As shown in Fig. 7, we select a part of CBD in southern
Singapore, which is 7 km in length and 3.5 km in width. Cars
and buses are added from each segment of the road, and we
define the number of vehicles generated per hour and lane-
kilometer, to be 14 and 1, respectively. All vehicles randomly
choose their routes.

Fig. 7: CBD in southern Singapore.

The following results show the influence of different pa-
rameters on system performance. The parameters are the
threshold: k, the probability of broadcasting: p, the length of
process: n, and the noise in position data: e. To optimize the
performance of different methods, we remove the stable time
for a pseudonym.

A. Threshold: k
Vehicles start changing their pseudonyms when they find

at least k neighbors. As shown in Fig. 8, the dashed lines
indicate the simulation results in the virtual map, solid lines
are for the real map, lines with plus sign are for the proposed
context-based method, and lines with star sign are for the
traditional method. We run the simulation for 100 s. When k is



small, vehicles change their pseudonyms more frequently. As k
becomes larger, fewer pseudonyms and silent slots are needed,
and the level of privacy protection declines. We can see our
proposed method always has higher entropy and untraceable
quantity.
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Fig. 8: Influence of k (p=0.5, n=4, e=3).

B. The probability of broadcasting: p
In the traditional pseudonym changing process, all vehicles

are in silent period, and thus, p = 0. In the proposed
strategy, p is variable. As shown in Fig. 9, p does not have
obvious influence on entropy, and when p increases, there
are fewer silent slots, which means the system is safer. Even
though the adversary can use more messages for tracking and
the untraceable quantity has a slightly decrease, the privacy
protection level is still higher than that in the traditional
method.
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Fig. 9: Influence of p (k=5, n=4, e=3).

C. The length of process: n
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Fig. 10: Influence of n (k=5, p=0, e=3).

n is the number of time slots in the pseudonym changing
process. As n increases, it is reasonable to see the increase
in silent slots and the decrease in entropy and pseudonyms,
because the number of repetitions for pseudonym changing
process is reduced. In Fig. 10, we observe that the untraceable
quantity first increases and then decreases. A longer interval
brings less correlation between pseudonyms, and as a result,
the untraceable quantity increases. However, as n increases,
since we fix our simulation duration, the number of repetitions
takes the main influence. The turning point for the traditional
method is n = 2, and for the proposed method it is n = 4
or n = 5. This implies that the proposed method has higher
resistance to the decrease of repeat times, and the quality of
each pseudonym change is higher.

D. The noise in position data: e
In real life, vehicles always have some errors about their

locations because of the noise in the environment and sensors.
We define the variance of noise as e. Figure. 11 shows that
there is an increasing trend in the untraceable quantity as e
increases, which is because the noise reduces the accuracy of
adversary model.
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Fig. 11: Influence of e (k=5, p=0, n=4).

VI. CONCLUSION AND FUTURE WORK

In this paper, we review the traditional pseudonym changing
methods for privacy protection in VANETs, and propose a



flickering context-based strategy, which takes advantage of
the variability of real-time traffic and provided a new per-
spective for privacy protection. Further, we compare it with
the traditional method, and model a global passive adversary
to evaluate its performance. The analysis of experimental
results show that the proposed strategy performs better than
the current context-based method in the terms of entropy and
untraceable quantity.

The work presented in this paper leaves some space for
further work. For instance, a comparison between different
types of strategy, time-based and zone-based has not been
conducted, a uniform method or metric is needed to make
fair comparison, and the influence of traffic density has not
been explored.
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