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Abstract—Vehicular ad-hoc network (VANET) se-
curity has been an active area of research over the past
decade. However, with the increasing adoption of the
Internet of Things (IoT) in VANETs, the number of
connected vehicles is set to grow exponentially over the
next few years, which translates to a higher number of
communication interfaces and a greater possibility of
cybersecurity attacks. Along with these cybersecurity
attacks, the instances of compromised vehicles sending
faulty information about their positions and speeds
also increase exponentially. Thus, there is a need to
augment the existing security schemes with anomaly
detection schemes which can differentiate normal
vehicle data from malicious and faulty data. Since,
the number of anomaly types can be many, deep
neural networks would work best in this scenario. In
this paper, we propose a deep neural network-based
vehicle anomaly detection scheme. We use a sequence
reconstruction approach to differentiate normal ve-
hicle data from anomalous data. Numerical results
show that we can correctly detect data corresponding
to several anomaly types.

Index Terms—Vehicular ad-hoc networks
(VANETs), Internet of Things (IoT), deep neural
networks, deep learning, reconstruction, security.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) are impor-
tant components of smart city environments due to
their ability to improve safety, quality of life, and
security of vehicle users. With the adoption of IoT,
they can cater to applications ranging from blind
spot warnings to traffic violation detection. Each
node in a VANET has an On-Board Unit (OBU),
with the nodes communicating among each other,
and with the Road Side Units (RSUs).

Any node exchanging malicious information
compromises the entire network. The sensor data
and shared messages transmitted by the vehicle
OBUs in VANETs must be trustworthy since any

data tampering could lead to major mishaps includ-
ing fatal accidents. Owing to their data reliance,
VANETs involve the generation and exchange of
large amounts of data shared through wireless
communication. This opens several pathways for
attackers to target the security of these networks
[1]. Several security schemes have been proposed
for vehicular networks that provide confidentiality
of the messages exchanged [2, 3]. However, attacks
such as data replay target the integrity of the
network, while attacks such as Denial of Service
(DoS) and disruptive attack target the availability
of the network. Due to the wide variety of attacks,
and the unavoidable loopholes in traditional security
methods, it is not possible to entirely prevent attacks
on VANETs. Therefore, it is imperative to have
counteractive measures in addition to preventive
measures to strengthen the security of the network.

The rise of artificial intelligence, machine learn-
ing, and deep learning has shown great potential
in securing different types of IoT networks by
meeting the security requirements of confidentiality,
integrity, and availability [4]. In VANETs, the data
collected from the vehicles such as vehicle kine-
matics (vehicle speed and position information),
vehicle identities, and several other types of data
may be used to train vehicle detection models to
identify anomalous behavior in the system. Due to
the lack of prior knowledge of the attack/fault type,
learning algorithms provide the flexibility to adapt
to situations by recognizing patterns and extracting
features. The availability of a large amount of data
further incentivizes the use of learning algorithms,
with special emphasis on deep learning due to
their significant increase in performance in such
scenarios [5, 6].
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In this paper, we propose an anomaly detection
scheme for securing IoT enabled VANETs using
deep neural networks. The major contributions of
this paper are highlighted below:

i. A deep neural network-based anomalous vehi-
cle detection scheme in VANETs deployed on
the RSUs.

ii. Classification of normal vehicle data and
anomalous vehicle data in the network.

iii. Identification of anomalous data pertaining to
various attacks/faults.

The rest of this paper is organized as follows.
Section II discusses the related works in secur-
ing vehicular networks using machine learning and
deep learning techniques. Section III presents the
network model, the dataset used in our paper,
and the dataset preprocessing involved. Section IV
presents our proposed deep neural network-based
anomaly detection scheme. We present the testing
results and discussion in Section V and conclude
the paper in Section VI.

II. RELATED WORK

In light of the flexibility that the learning algo-
rithms offer as compared to traditional methods [7],
we discuss the machine learning and deep learning
approaches existing in the literature for securing
VANETs.

Gao et al. [8] proposed an intrusion detection
scheme using a classification algorithm based on
Random Forests. Zhang et al. proposed a distributed
detection scheme that can run on individual vehicles
in the network and can collaborate for anomaly
information exchange [9]. Yet another work by
Garg et al. [10] proposed a machine learning-based
intrusion detection scheme incorporating Elliptic
Curve Cryptography and Fuzzy C-means clustering.
However, machine learning approaches may not be
sufficient with the growing amounts of data in IoT
enabled VANETs.

Neural networks have also been experimented
with for achieving the security requirements of
VANETs. Van et al. exploited CNNs for detecting
anomalous sensor data being transmitted by vehi-
cles [11], however, only a few anomalous types
were considered in their approach. Nie et al. [12,
13] also proposed a couple of intrusion detection ap-
proaches in recent works. In [12], an unsupervised
approach using CNNs was explored which was ex-
tended further using a supervised technique in their
latest work [13]. Even in these works, only a limited
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Fig. 1: Network model.

number of anomaly types were considered. A cloud-
based intrusion detection scheme was proposed by
Loukas et. al. [14]. This work can be considered
as a solution for limited computation resources on
the vehicle OBUs. However, it is still inefficient to
offload deep learning tasks onto the remote cloud.
Hence, there is a requirement to locally run these
models closer to the vehicle nodes.

Addressing the above-discussed issues arising out
of the processing requirements of the available
vehicle data, and the need for running the deep
learning tasks locally, we propose our neural net-
work architecture in this paper. The models in this
architecture run on the nearby RSUs with which the
vehicles passing on the roads communicate. Further,
the architecture is designed considering the growing
number of anomalies in VANETs.

III. NETWORK MODEL

The network model in this paper considers a
vehicular network consisting of vehicle OBUs and
RSUs. This network model is presented in Fig. 1.
The communication between the vehicle OBUs and
the RSUs can happen either using cellular V2X
(CV2X) or Dedicated Short-Range Communication
(DSRC) wireless protocols. The data broadcast by
the vehicle OBUs is received by the RSUs. The
RSUs pass the input data through the proposed
anomaly detection scheme for possible anomaly
detection in the network.

In this network, the vehicles are vulnerable to
several different types of attacks such as DoS attack,
data replay attack, sybil attack, and disruptive attack
[15]. Along with these attack types, vehicles may
also transmit incorrect information in the network
(such as faulty position or speed coordinates) either
inadvertently or intentionally. Our proposed scheme
considers all these attacks and fault types. We
discuss the dataset used and its preprocessing steps
related to the proposed scheme below.
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A. Dataset

In our paper, we used the VeReMi Extension
dataset [16], which considers 19 different attack
and fault types and 1 normal vehicle data type.
Together we consider all 19 attack and fault types
as an anomaly class and the normal type as a
normal class. The dataset comprises the messages
broadcast by the vehicle OBUs and received by the
RSUs. Each such message/data point consists of the
sending timestamp, X and Y position coordinates,
and its differentials such as velocity, acceleration,
and heading. The two X, Y coordinate values each
of position and speed were used in our study.

Multiple time sequences each of these 20 data
points were created from the original vehicle data,
where each sequence corresponds to 20 vehicle
messages transmitted from a vehicle OBU. These
(20x4) sequences were generated with a slide length
of 10, i.e., the next sequence is 10 data points
after the start of the previous sequence, creating
an overlap of 10 data points between one sequence
and the next. This overlap leads to the repetition
of some data points and thus to more data. Such
sequences were created for each of the vehicle data
types considered, i.e. for all 20 types. However, only
the normal data types were used for training the
models, while the sequences created for the rest of
19 anomaly types were used as part of the testing
dataset.

IV. PROPOSED ANOMALY DETECTION SCHEME

We propose a sequence reconstruction based
anomaly detection scheme using deep neural net-
works with the capability of detecting anomalies
in the vehicular data. Any deviation from nor-
mal vehicle data is considered an anomaly in this
scheme. The architecture represents a function that
takes in time sequences generated from the position
and speed coordinates of the normal vehicle data
and reconstructs the position coordinates through a
complex network of nonlinear functions.

A. Thresholding algorithm

We employ an unsupervised setting to detect
the anomalous sequences. While the architecture
is trained only on the normal data, we apply an
algorithm to calculate the potential threshold to
classify the sequences as normal or anomalous.

Since the architecture is trained only on the
normal data, we expect that it has learned the
pattern and the value range of the normal sequences.

Algorithm 1 Thresholding algorithm

1: N ← iterations corresponding to possible
thresholds

2: X ← test data sequences
3: Y ← Anomaly type labels (1-19), 0 for normal
4: X ′ ← Reconstructed data sequences
5: Accuracy[N ]← array of N elements
6: Threshold[N ]← array of N elements
7: st← possible starting threshold
8: pre← precision of the possible thresholds
9: for each i in range(N) do

10: Threshold[i]← st+ (i/pre)
11: for each j in range(len(X)) do
12: mae←MAE(X[j], X ′[j])
13: if (mae < Threshold[i] and Y[j]=0)

or (mae > Threshold[i] and Y[j]!=0) then
14: Accuracy[i] ← Accuracy[i] +

(1/len(X))
15: end if
16: end for
17: end for

Thus, it should be able to reconstruct the normal
position coordinates. If anomalous data (irrespective
of its type) is given as input to this architecture,
the combination of trained weights and nonlinear
functions would force the architecture to generate
the position coordinates whose pattern and values
should be similar to the pattern and values of normal
sequence data. Using the Mean Absolute Error
(MAE) of the input sequence and the reconstructed
sequence, we calculate the threshold above which
the sequence will be classified as anomalous as
shown in Algorithm 1. For calculating the potential
threshold, we plot a graph between threshold and
accuracy. The algorithm is repeatedly run by decid-
ing the new st and pre variables until we get a sharp
peak in the graph. The threshold corresponding to
the maximum accuracy shown by the sharp peak
would serve as a benchmark to classify normal and
anomalous data.

B. Reconstruction

We define the input sequence
of the architecture, Xj =
[(px1, py1, sx1, sy1), ..., (px20, py20, sx20, sx20)]
and the reconstructed output sequence,
X ′

j = [(p′x1, p
′
y1), .., (p

′
x20, p

′
y20)]. Here, Xj is

the jth sequence from the input data, (px, py)
are the position coordinates and (sx, sy) are the
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Fig. 2: Proposed CNN-LSTM architecture for anomaly detection.

speed coordinates, while X ′
j is the corresponding

reconstructed sequence, and (p′x, p
′
y) are the

reconstructed speed coordinates. Thus, the model
is taking a (20x4) input in the form of position
and speed coordinates with a sequence length of
20 and reproducing a (20x2) output in the form
of position coordinates which are supposed to be
reconstructed through the trained pipeline and are
similar to the pattern/values of the normal data
sequence.

C. Training and Testing
We considered two popular neural network archi-

tectures for the implementation of the deep neural
network models in this scheme. CNNs have the
advantage of not requiring manual engineering for
feature extraction in sequence classification. Hence,
they provide better prospects of learning the internal
representation of the time-series data. Long Short-
Term Memory (LSTM) offers the advantage of
being insensitivity to gap length and information
storage capability from the previous time intervals.

Using CNNs and LSTMs, we implemented two
deep neural network models: CNN-LSTM (a 1-
D layer Convolution with 4-layer LSTM) and a
stacked 4-layer LSTM. The CNN-LSTM model
uses a single-dimensional convolutional layer with
20 filters to process the input data sequence and
further passes the processed sequences into the
stacked LSTM model with 4 layers of 256 units

each to reconstruct the input sequence. CNN cap-
tures the spatio-temporal features that may be useful
for similar (normal) pattern reconstruction. Features
extracted by the CNN layer which are fed to LSTMs
in the form of time-series data could add to the
functionality of the LSTMs in detecting various
attacks/faults affecting the messages sent in the
form of position or speed distortions. We compare
the CNN-LSTM model with the 4-layer stacked
LSTM having 256 units. The proposed CNN-LSTM
architecture to be employed in the anomaly detec-
tion scheme is shown in Fig. 2.

Since this is an unsupervised setting, our models
are trained only on normal data sequences. 85% of
the normal data is used for training. The testing data
comprises of the normal and 1-19 anomalous data
(1-9: faults, 10-19: attacks) in the ratios identical
to the original data set distribution. MAE of the
input sequence and the output sequence is used as
a loss function to back-propagate the errors during
training. After training the models, we used the
thresholding algorithm to calculate the potential
threshold for each model. Using the thresholds,
we found the accuracy, precision, recall, and F1-
scores. For all the anomalies (1-19), we calculated
the recalls indicating how accurately our model
can detect a particular anomaly type as an actual
anomaly. We then compare our models based on
these results.
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TABLE I: Computed recalls of anomalies (1-19) for Model1: CNN-LSTM and Model2: Stacked LSTM

Model Rec
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Model1 0.978 0.892 1.0 1.0 1.0 1.0 1.0 1.0 0.519 0.995 0.995 0.636 0.887 1.0 0.995 0.998 1.0 1.0 1.0
Model2 0.914 0.011 1.0 1.0 0.994 1.0 1.0 1.0 0.055 0.984 1.0 0.625 0.753 1.0 0.990 0.984 0.989 1.0 0.997

Fig. 3: Reconstruction of normal (left), anomaly type 9 (middle) and anomaly type 16 (right).

TABLE II: Overall evaluation metrics for Model1:
CNN-LSTM and Model2: Stacked LSTM

Model Class Prec Rec F1 Acc

Model1 Normal 0.970 0.997 0.983 0.980Anomaly 0.996 0.956 0.976

Model2 Normal 0.930 0.996 0.962 0.954Anomaly 0.995 0.894 0.942

V. RESULTS AND DISCUSSION

In Table I, we show the recalls calculated for each
of the 19 anomaly types. The evaluation metrics
precision (Prec), recall (Rec), F1 score (F1), and ac-
curacy (Acc) for both the models on the test dataset
are presented in Table II. From both the tables,
we can infer that the proposed CNN-LSTM model
(accuracy: 0.98) outperforms the stacked-LSTM
model (accuracy: 0.954). Moreover, the computed
precision, recall, and F1-scores of both the classes
indicate the superiority of the CNN-LSTM model
over the LSTM model.

A. Analysing the various anomalies

Anomaly type 2 is the constant offset added
to the position coordinates. While normal stacked
LSTM is poorly detecting this fault type (recall of

0.11), CNN-LSTM can detect it with a recall of
0.892. This anomaly type becomes difficult to detect
since the pattern of the sequence remains the same
as normal vehicle data, but all the values of the
coordinates are increased/decreased with an offset.
CNN layers capture the spatio-temporal features
from the sequences which might contribute to the
recognition of this anomaly. Anomaly type 9 is the
eventual stop that freezes the position coordinates
and sets the speeds to null values. This is poorly
detected by both the models, with a recall of 0.55
in stacked LSTM and 0.519 in the CNN-LSTM
model, since some sequences may have a similar
trend as the normal data. Anomaly type 12 is the
delayed messages attack in which higher overload
might cause a delay in sending messages. Both the
models perform moderately with the recall of 0.636
(CNN-LSTMs) and 0.625 (LSTMs). Anomaly type
13 (DoS attack) is detected with a recall of 0.887
in CNN-LSTM and 0.753 in stacked LSTM. For all
the other anomaly types, both the models performed
well with recalls of above 0.90. In every scenario,
CNN-LSTM outperformed stacked LSTM with the
overall recall of 0.956 against the 0.894 recall
of stacked LSTM for 1-19 anomalies. Moreover,
CNN-LSTM detected 14 out of 19 anomalies with
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more than 0.99 recall. This shows the enhanced
capability brought by the CNN layer pre-processing
in the model. This also shows the importance of
the thresholding algorithm which enables the model
that is simply trained on normal data to detect
various faults and attacks effectively.

B. Reconstruction visualizations

Fig. 3 shows the reconstruction of the normal
data sequences, anomaly type 9, and anomaly type
16 by the proposed CNN-LSTM model. Normal
data sequences are perfectly reconstructed with
significantly less MAE, while the model is not
able to reconstruct anomaly type 16 (data replay)
data sequence because of the deviation of the in-
put sequence pattern from normal data sequences
resulting in higher MAE and thus making it easier
to classify the sequences as anomalous. However,
for attack type 9 as discussed in the analysis above,
our model can reconstruct the anomalous sequences
partially, resulting in a low recall of 0.519. From
the reconstruction graphs, it is evident that the
greater the deviation, the greater is the detection
performance. Our proposed model is thus capable
of reconstructing only the normal data sequence.
Any deviation from the pattern/values would result
in larger MAE with respect to the threshold, thus,
correctly classifying the sequence as anomalous.

VI. CONCLUSION

In this paper, we proposed a deep neural network
architecture for securing IoT enabled VANETs.
Deep learning models were trained on time se-
quences generated from normal vehicle data in the
network. The time sequences in the test data were
passed through the trained models to reconstruct
the original sequences. Based on the reconstruction
error obtained by using the thresholding algorithm,
we were able to classify sequences into normal data
and anomalies. Further, by calculating the recalls
for each anomalous class, we were able to perfectly
classify most of the attack/fault types as anomalous.
Based on the performance metrics evaluated, the
proposed CNN-LSTM model is shown to give a
higher performance compared to a stacked LSTM
model.
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