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Abstract—IoT can provide many new exciting services in
energy management, home and commercial automation, and
environmental monitoring etc. Data provenance establishes the
trust in the origin and location of data. This paper takes an
information theoretic approach to solve the problem of data
provenance in IoT systems. The proposed protocol uses Physically
Unclonable Functions to prove the origin of data and wireless
fingerprints derived from the received signal strength indicator
(RSSI) measurements to verify the location of the IoT device
producing the data. The security analysis of the proposed protocol
shows that it is robust against different types of attacks. Experi-
mental results show that the proposed technique can improve the
accuracy of detecting attacks by 100% as compared to existing
techniques.

Index Terms—Internet of Things, Physically Unclonable Func-
tions, RSSI, Data Provenance, Authentication.

I. INTRODUCTION

IoT devices are growing at an exponential rate will cross
50 million devices connected to the Internet by 2020 [1].
The simple nature and huge volumes of data that these
devices produce makes them vulnerable to cyber threats. The
security requirements of IoT systems include authentication,
data integrity, data provenance, and privacy, among others.

IoT devices may be installed in open and remote locations,
which exposes them to physical attacks. Therefore, it is impor-
tant that the IoT devices do not store any secret keys in their
memory. Secure authentication is crucial to the correct oper-
ation of IoT systems. This paper uses Physically Unclonable
Functions (PUFs) to verify the identity of an IoT device and
establish mutual authentication of the entities. PUFs exploit the
randomness in the (sub-) microscopic structure of integrated
circuits introduced due to manufacturing process and can be
used effectively for hardware obfuscation [2].

Trust in the fidelity of data is institutes data provenance
i.e., if a piece of data has been received from an IoT device
then it is indeed collected by the stated device at the stated
location. Trust in the data generated by IoT devices is crucial
to the success of IoT systems [3]. Consider the case when
a patient is developed some lung ailment. The insurance
provider may offer a discount on the patients premium given
he/she quits smoking. To keep track of the patient, the patient
is asked to put on a wearable IoT device with sensors to
monitor smoking. However, the patient may attempt to cover

up smoking episodes by hacking into the IoT device and
maliciously tampering the sensor readings.

The existing work on data provenance is mostly focused
on databases. However, the literature on data provenance for
IoT systems is limited and most of the existing techniques are
at unsafe against physical, cloning, impersonation, and DoS
attacks. Furthermore, this techniques employ computationally
expensive cryptographic operations not suitable for IoT de-
vices. To solve these issues, this paper takes an information
theoretic approach to data provenance and capitalizes on the
wireless channel characteristics between two communicating
parties. In particular, we utilize the received signal strength
indicator (RSSI) measurements to generate “wireless finger-
prints” between two entities.

The major contributions of this paper are as follows:
(i) Establishing data provenance (for location) using RSSI
measurements to distinguish between legitimate channels and
adversarial channels, (ii) a PUF based authentication protocol
which establishes the data provenance in terms of the source
of data, (iii) Experimental results validating the proposed tech-
nique for wireless fingerprint generation, and (iv) a security
analysis of the proposed protocol using formal security proofs.

The rest of the paper is organized as follows. Section
II discusses the related work and Section III provides an
introduction to PUFs. Section IV discusses our network model,
assumptions and security requirements. Section V describes
the proposed technique to generate wireless fingerprints along
with the experimental results and Section VI presents the
proposed data provenance protocol. The security analysis
is presented in Section VII. The experimental validation is
presented in Section VIII and we finally conclude the paper
in Section IX.

II. RELATED WORK

Some of the recently proposed protocols for authentication
using PUFs include [4], [5]. However, these techniques do
not provide any means of data provenance. The challenges of
implementing and integrating data provenance in IoT systems
is presented in [6], [7]. A provenance based trust management
systems is proposed in [8]. The use of hash chains to propagate
provenance data for IoT devices is proposed in [9]. Further-



more, the authors of [10] propose the use of non-interactive
zero-knowledge proofs (NI-ZKP) for data provenance in IoT.

We observe that the above techniques suffer from one or
more of the following issues:

1) Rely on specialized hardware not feasible for low cost
IoT devices.

2) Use complex computations not feasible for constrained
IoT devices.

3) Depend on stored secret keys in the device’s memory
exposing them to physical and cloning attacks.

This paper solves these issues as follows:
1) The proposed protocol uses light weight symmetric cryp-

tography feasible for resource constrained IoT devices.
2) The IoT devices are protected against physical and

cloning attacks using PUFs. Note that PUFs can generate
secret keys when ever needed eliminating the need for
storing secret keys.

3) The source of the data is verified using PUFs while the
location of data is verified using wireless fingerprints. To
the best of our knowledge PUFs and wireless fingerprints
have not been used together in the existing literature.

III. INTRODUCTION TO PHYSICALLY UNCLONABLE
FUNCTIONS

PUFs provide a challenge response mechanism using the
randomness embedded in the complex physical system of an
integrated circuity. A PUF is characterized by a challenge
response pair (CRP), i.e., R = P (C), where R is the response
a PUF P produces when excited with a challenge C. PUFs can
support ultra high throughput with ultra low energy and silicon
area footprints making them attractive to use as hardware
security primitives in IoT devices [11].

If the same input is given a PUF multiple times, it will
produce the same output with high probability. However, if
the same challenge is given to a different PUF, it will produce
a different output with high probability. The PUF output is
sensitive to environmental factors. However, a stable PUF can
be obtained using fuzzy extractors [12]. Hence, PUFs can be
used to produce unique outputs. This paper assumes an ideal
PUF i.e., the output of the PUF is stable and does not change
with environmental factors.

IV. NETWORK MODEL, ASSUMPTIONS, AND THREAT
MODEL

A. Network Model

The network model consists of a set of IoT devices, 6LoW-
PAN boarder routers (wireless gateways), and the server as
shown in Figure 1. The IoT devices are connected to the
boarder routers through wireless link.

B. Notations

IDA, {M}k, Ci, and Ri represent the ID of IoT device
A, message M encrypted using key k, challenge to a PUF,
and the response of a PUF for Ci, respectively. Similarly, the
concatenation operator is denoted by ‖.

Fig. 1: Network model.

C. Assumptions

The following assumptions are made:
a. Every IoT device is equipped with a PUF. The PUF and

the device’s microcontroller forms a system-on-chip (SoC).
Any effort to meddle/separate the PUF from the device will
render the PUF useless [13], [14].

b. An adversary cannot eavesdrop on the communication
between the PUF and microcontroller given the SoC as-
sumption [13], [14].

c. The server is assumed to be trusted and secure.
d. IoT devices have limited resources such as energy, memory,

and processing capabilities. However, the server does not
have such limitations.

D. Threat Model

IoT devices authenticate with the server and send data to the
server on an insecure network. The objective of the adversary
is to launch an impersonation attack and authenticate itself
with the server and/or tamper with the data sent by IoT
devices. The adversary is able to eavesdrop, inject, replay,
modify, and drop packets sent on the in-secure network.

E. Security Requirements

we intend to design a protocol with the following security
requirements:

1) Mutual Authentication of the IoT device and server.
2) Establish data provenance in terms of the identity and

location of an IoT device.
3) Protection against physical and cloning attacks by ensur-

ing no secrets are stored in an IoT device’s memory.

V. EXTRACTING WIRELESS FINGERPRINTS

The theory behind using wireless channel characteristics
for security is as follows: The wireless channel between two
communicating parties is intrinsically symmetric. For example,
if two entities Alice and Bob transmit identical signals using
identical transceivers and antennas, they will receive identical
signals. Therefore, if Alice and Bob sample the wireless chan-
nel between them for parameters such as radio signal strength,
the measurements will be similar to a high degree. However, if



an adversary located at least one wavelength away from Alice
measures the radio signal strength of its wireless channel with
Bob, the measurements will be significantly different from
the ones between Alice and Bob [15]. This shows that the
wireless channel characteristics between two communicating
parties can be used to generate unique fingerprints.

Wireless channel characteristics for security is a well studied
and established area. Secret key generation for different wire-
less technologies including Bluetooth [16], UWB [17], and
WiFi [18]. Other applications in security include proximity
based authentication [19], intrusion detection [20], secure
pairing [21], and detecting Sybil and spoofing attacks [22],
[23].

The existing work on using wireless channel characteristics
for data provenance is limited. The authors of [24] proposed
the use of RSSI measurements to extract wireless link fin-
gerprints. Their technique compares the Pearson correlation
coefficient for the wireless link fingerprints derived at the
transmitter and receiver individually with that of adversary.
However, this technique relies on long wireless fingerprints
(around 2000 bytes), complex public key encryption and the
authors do not provide a complete protocol for data prove-
nance.

In this paper we propose the use of mean squared error
(MSE) as the metric to detect attacks on data provenance i.e.,
wireless fingerprints derived from the RSSI measurements at
the transmitter and receiver are compared on the basis of MSE.
Thus, we calculate the MSE as follows:

MSE =
1

n

n∑
i=1

(Xi − Yi)
2 (1)

where Xi and Yi denote the RSSI values for the ith packet of
each entity and n is the wireless fingerprint size.

The wireless fingerprints between two entities Alice and
Bob are validated using the following procedure:

1) Alice and Bob concatenate the RSSI values for a specific
period of time (according to the wireless fingerprint size
used) to construct their respective wireless fingerprints
individually

2) Alice and Bob send their wireless fingerprints to a server
for verification.

3) The server calculates the MSE of the two wireless finger-
prints and compares the resulting MSE to a threshold
value.

4) If the MSE of the wireless fingerprints is below the
threshold the wireless link between Alice and Bob is
considered valid. Otherwise, the wireless fingerprints are
considered invalid indicating a possible attack by an
adversary.

The MSE threshold for detecting attacks is determined exper-
imentally in Section VIII.

VI. PROPOSED DATA PROVENANCE PROTOCOL

This section discusses the proposed protocol for data prove-
nance in IoT systems.

Fig. 2: Authentication Phase.

A. Device Registration

The server and the IoT device exchange the initial CRP
during this phase. This can be done using a time-based one-
time password algorithm (TOTP) [25]. When an IoT device
is first deployed the initial parameters are exchanged with the
help of an operator using a password and TOTP. As a result,
the server stores an initial CRP (Ci, Ri) for each IoT device.
Whereas, each IoT device stores the current challenge in its
memory. Note that the IoT device does not store any secrets
in its memory i.e., even if an adversary extracts Ci from an
IoT device, he/she can not obtain the secret response Ri. We
assume that the wireless gateway and the server have a pre-
established secure symmetric key kGS .

B. Authentication Phase

Let us consider a scenario where an IoT device IDA wants
to send some data to the server. The IoT device needs to
authenticate with the server before the data transfer as shown
in Figure 2. The steps of the authentication phase are as
follows:

1) The IoT device IDA uses its PUF and the stored Ci to
generate a response Ri. It then generates a random nonce
NA and sends message M0 = IDA, {Na}Ri and the
corresponding authentication parameter I0 to the server
through the wireless gateway i.e., message 1 in Figure 2.
Note that the authentication parameter is used to ensure
data integrity of the message M0. We use a similar
approach throughout this paper.



Fig. 3: Data Transfer Phase.

2) The wireless gateway forwards message 1 to the server.
However, it also samples the wireless link between itself
and IDA to generate the wireless fingerprint FAG.

3) The sever searches its memory for IDA and reads the
corresponding CRP (Ci, Ri). The server then verifies
I0. If the verification fails, the authentication request is
rejected. Otherwise, the server generates a random nonce
Nb and sends message M1 = {IDA, Na, Nb}Ri along
with the corresponding authentication parameter I1 to the
IoT device in message 2 in Figure 2.

4) The IoT device IDA samples the wireless link between
itself and the wireless gateway to generate the wireless
fingerprint at its end FGA. It then verifies the authenti-
cation parameter. If verification fails, the authentication
request is terminated. Otherwise, the IoT device generates
a session key using the secret nonces i.e., ki = Na ⊕Nb

and sends and acknowledgement in the form of the
authentication parameter I2 to the server.

5) The server verifies I2. If verification fails, the authentica-
tion request is rejected. Otherwise, the server generates
the session key ki and authentication is considered com-
plete.

C. Data Transfer Phase

The IoT device can start to transfer data to the server after
successfully completing the authentication phase as shown in
Figure 3. The steps of the data transfer phase are as follows:

1) The IoT device sends the data by encrypting it and its
wireless fingerprint using the session key in the message
DA = IDA, n1, {Data, FGA}ki

along with the corre-
sponding authentication parameter in message 4 in Figure
3.

2) The wireless gateway forwards message 4 to the server
along with its wireless fingerprint and the corresponding

Fig. 4: Protocol for CRP update.

authentication parameter as shown in message 5 in Figure
3.

3) The server obtains the data and the wireless fingerprints
using the corresponding secret keys for IoT device IDA

and the wireless gateway. It then verifies the authentica-
tion parameters. If verification fails, the data is rejected.
Otherwise, the server verifies the provenance of the data
using the wireless fingerprints and technique described in
Section V. If the wireless fingerprints fail the validation,
the data is rejected. Otherwise, the server accepts the data
and sends an acknowledgment to the IoT device IDA in
the form of the authentication parameter VS in message
6 of Figure 3.

4) The IoT device verifies VS and if verification fails it may
retry to send the same data. Otherwise, the IoT device
may send the next piece of data to the server using the
same steps above or conclude the session.

D. CRP Update

In the proposed data provenance protocol the server stores
one CRP for each IoT device. To maintain the freshness, the
server may need to update the CRP from time to time and
obtain a new CRP. This can be done using the CRP update
protocol shown in Figure 4. Let us assume the server wants
to update the CRP for an IoT device IDA. The steps for CRP
update are as follows:

1) The server commences the CRP update protocol as fol-
lows. It generates a random nonce N1 and reads the
CRP for the IoT device IDA. The server then sends
message M1 = IDA, {Ci+1, N1}Ri , to the IoT device



IDA, where Ci+1 is the new challenge. The server also
sends a message authentication code (MAC) along with
M1 to establish data integrity.

2) The IoT device uses the stored challenge Ci to generate
the secret PUF response Ri. It then verifies the MAC, if
verification fails, the CRP update is rejected. Otherwise,
the IoT device decrypts M1 to obtain the new challenge
Ci+1. The IoT device then uses this new challenge to
obtain the new response Ri+1. The IoT device IDA then
sends the new response in the encrypted message M2 =
{Ri+1, N1, N2}Ri along with the corresponding MAC to
the server in message 2 of Figure 4.

3) The server decrypts M2 to obtain Ri+1 and N2 using Ri.
It then verifies the MAC, if verification fails, the CRP
update is terminated. Otherwise, the server updates the
CRP for IoT device IDA in its memory with the new
CRP Ci+1, Ri+1).

VII. FORMAL PROOF OF SECURITY USING BAN LOGIC

A formal security analysis of the proposed protocol is pre-
sented using an extension of BAN logic i.e., the Mao and Boyd
logic [26]. Formal logical approaches for security analysis of
new protocols helps in ensuring that an adversary cannot reveal
or tamper vital information leading to a successfull attack. For
ease of notation we represent the server using S and the IoT
device IDA as A. We show that an adversary cannot launch
impersonation, man-in-the-middle, data tampering, and replay
attacks successfully against the proposed protocol by proving
the authentication properties and establishing the syntactic
secrecy of Na, Nb, and Ri+1.

The idealized messages for the authentication phase are as
follows:

1) A→ S : A, {Na}Ri .
2) S → A : A, {Na, Nb}Ri .
3) A→ S : {A,Na, Nb}Ri .
The initial beliefs/assumptions for the authentication phase

are as follows:
1) A A

Ri

↔ S and S A
Ri

↔ S.
2) A Sc/ ‖ Na and S A {S}c/‖Na.
3) A S {A}c/‖Nb and S Ac/‖Nb.
4) A #(Na) and S #(Nb).
5) A sup(S) and S sup(A).

6) A
Ri

/ Na R Nb.

7) S
Ri

/ Na R Nb.

8) S
Ri

|∼ Nb and A
Ri

|∼ Na.
Figure 5 shows the tableau to establish the authentication
properties of the proposed protocol. The set of inference rules
to establish our security claims can be found at [26]. For
example, to prove the authentication of A to S, we need to

show that the following claim is true: S A
Ri

|∼ Na i.e., S
believes that A sent Na using Ri as the encryption key. To
prove this the authentication rule from [26] is applied i.e., we

need to prove A A
Ri

↔ S i.e., Ri is a good shared secret

S A
Ri

|∼Na

A A
Ri
↔S

∧
S

Ri

/ Na

(a) “S believes A sent Na using Ri as the encryption key”.
This proves authentication of A to S.

A S
Ri

|∼Nb

A A
Ri
↔S

∧
A

Ri

/ Nb

(b) “A believes S sent Nb using Ri as the encryption key”.
This proves authentication of S to A.

Fig. 5: Security proofs for authentication.

between A and S and that S
Ri

/ Na i.e., S decrypted Na

using Ri as the key. Both of these statements can be found
in the initial assumptions/beliefs. Therefore, we can infer the
authentication of the IoT device IDA to the server from Figure
5(a). Similarly, to prove that the session key ki between A and
S is secure we need to establish the secrecy of Na and Nb.
This is done in the tableaux in Figure 6. Thus, these proofs
show that the proposed protocol is safe against various types
of attacks.

In a similar fashion, the security of the CRP update protocol
can be established using the tableaux in Figure 7.

VIII. EXPERIMENTAL VALIDATION

To validate the proposed technique for data provenance
using wireless fingerprints we conducted experiments us-
ing MICA-Z motes running TinyOS. These motes have the
CC2420 tranceiver on board which operates in the 2.4 GHz
band with the IEEE 802.15/zigbee wireless communication
protocol.

We also compare the proposed technique’s accuracy in terms
of detecting attacks with the state of the art technique proposed
by [24]. The technique proposed by [24] uses the pearson
correlation coefficient of the wireless fingerprints between two
entities to establish data provenance as follows:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ√∑n

i=1(Xi − X̄)2 ·
√∑n

i=1(Yi − Ȳ )2
(2)

where Xi and Yi denote the RSSI values for the ith packet of
each entity, respectively. X̄ and Ȳ are respective mean RSSI
values of a sequence of n packets. [24] use a threshold of 0.9
to differentiate between adversarial channels and legitimate
channels i.e., if the value of r is greater than 0.9 we conclude
a legitimate channel and vice versa.

We carried out the experiments in an indoor laboratory
environment with typical furniture and WiFi equipment as
shown in the layout in Figure 8. The setup includes a legitimate
IoT device, a base stations, and two adversaries A1 and A2.
The adversaries are located at least one wavelength away from
the legitimate IoT device. We considered the scenario when
the IoT device moves around the lab to different locations



S A
Na↔S

S {A,S}c/‖Na

S A {A,S}c/‖Na

S A A
Ri
↔S

S #(Nb)
∧

S A
Ri

|∼Nb

S A
Ri
↔S

∧
S

Ri

/ Nb

∧
S A {S}c/‖Na

∧
S A

Ri

|∼Na

S A
Ri
↔S

∧
S

Ri

/ Na

∧
S sup(A) ∧

S #(Na)

S #(Nb)
∧

S/Na R Nb

S
Ri

/ Na R Nb

(a) Proof of “S believes Na is a good shared key of A and S”.

A A
Na↔S

A {A,S}c/‖Na

A A
Ri
↔S

∧
A Sc/‖Na

∧
A

Ri

|∼Na ∧
A #(Na)

(b) Proof of “A believes Na is a good
shared key of A and S”.

A A
Nb↔S

A {A,S}c/‖Nb

A S {A,S}c/‖Nb

A S A
Ri
↔S

A #(Na)
∧

A S
Ri

|∼Na

A A
Ri
↔S

∧
A

Ri

/ Na

∧
A S {A}c/‖Na

∧
A S

Ri

|∼Na

A A
Ri
↔S

∧
A

Ri

/ Na

∧
A sup(S) ∧

A sup(S)
∧

A #(Na)

A #(Na)
∧

A/Na R Nb

A
Ri

/ Na R Nb

(c) Proof of “A believes Nb is a good shared key of A and S”.

S A
Nb↔S

S {A,S}c/‖Nb

S A
Ri
↔S

∧
S Ac/‖Nb

∧
S

Ri

|∼Nb ∧
S #(Nb)

(d) Proof of “S believes Nb is a good
shared key of A and S”.

Fig. 6: Security proofs for secrecy.

S A
Ri+1
↔ S

S {A,S}c/‖Ri+1

S A {A,S}c/‖Ri+1

S A A
Ri
↔S

S #(N1)
∧

S A
Ri

|∼N1

S A
Ri
↔S

∧
S

Ri

/ N1

∧
S A {S}c/‖Ri+1 ∧

S A
Ri

|∼Ri+1

S A
Ri
↔S

∧
S

Ri

/ Ri+1

∧
S sup(A) ∧

S #(Ri+1)

S #(N1)
∧

S/N1 R Ri+1

S
Ri

/ N1 R Ri+1

(a) Proof of “S believes Ri+1 is a good shared key of A and S”.

A A
Ri+1
↔ S

A {A,S}c/‖Ri+1

A A
Ri
↔S

∧
A Sc/‖Ri+1 ∧

A
Ri

|∼Ri+1 ∧
A #(Ri+1)

(b) Proof of “A believes Ri+1 is a good
shared key of A and S”.

Fig. 7: Security proofs for CRP update protocol

Fig. 8: Experiment Layout.

within our lab. Traces were gathered for RSSI values between
the IoT device and base station; and the adversaries and base
station for a period of one hour at a packet rate of 1 packet per

2 seconds. Matlab was used to analyze the resulting traces.
Figure 9 shows the MSE values for the legitimate channel

and adversarial channels. We observe that the MSE values
for adversarial channels are orders of magnitude larger than
those for the legitimate channel. Note that to fit in the large
MSE values into the plot in Figure 9, we plot MSE on
the log scale. From Figure 9 we can determine the MSE
threshold for detecting attacks. We observe that the MSE
values for adversarial channel are always greater than 15
(log1015 = 1.1761). Therefore, we use 15 as the threshold
for MSE.

To evaluate the performance of the proposed technique and
compare with [24] we use the following metrics:

1) Probability of False Alarm: the probability that a legit-
imate channel is classified as an adversarial channel.

2) Probability of Missed Detection: The probability that an
adversarial channel is classified as a legitimate channel.

We evaluate the performance for three different sizes for the
wireless fingerprints i.e., 16, 32, and 64 bytes. The results are
shown in Table I, where PFA denotes the probability of false
alarm between the IoT device and base station, while, PMD1



Fig. 9: Comparison of MSE for adversarial channels and
legitimate channel

and PMD2 represent the probability of missed detection for
the channel between A1 and base station, and A2 and base
station, respectively. Table I shows that the proposed technique
can effectively detect attacks on data provenance and clearly
outperforms the technique proposed by [24].

TABLE I: Miss classification rates for proposed protocol and
reference [24] - high mobility

Finger
Print
Size

PFA (%) PMD1
(%) PMD2

(%)

Proposed [24]
%

Impro-
vement

Proposed [24]
%

Impro-
vement

Proposed [24]
%

Impro-
vement

16 3.8 34.6 89 3.7 7.7 52 0 33.3 100
32 0 20 100 0 0 0 0 25 100
64 0 8.3 100 0 0 0 0 0 0

IX. CONCLUSIONS

This paper present a protocol for establish data provenance
in IoT systems using PUFs and wireless channel charac-
teristics. Wireless fingerprints are derived from the wireless
channel between two entities using RSSI measurements. The
wireless fingerprints are used with a thresholding mechanism
using mean squared error to detect attacks. A formal security
analysis of the proposed protocol shows that it is robust
against different types of attacks. An experimental validation
on MICA-Z motes showed that the proposed wireless fin-
gerprinting technique can improved the accuracy of detecting
attacks by 100% as compared to existing techniques.
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