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Abstract—Solar powered cellular base stations are emerging as
a key solution in green cellular networks. A major challenge in
the design of such a base station (BS) is finding the optimal cost
configuration of the photo-voltaic (PV) panel size and number of
batteries which meets a tolerable outage probability with the least
cost. One of the fundamental steps in this process is to calculate
the outage probability associated with a particular PV panel size
and battery size configuration. To address this issue, this paper
proposes an analytic model to evaluate the outage probability of
a solar powered BS. The proposed model factors in the daily and
hourly variations in the harvested solar energy and the traffic
dependent BS load, and develops a discrete-time Markov process
to model the battery level and thus the outage probability of the
BS. Simulation results with empirical solar irradiance data for
three different locations are used to validate the proposed model
and demonstrate its accuracy.

I. INTRODUCTION

With the increasing number of cellular subscribers and
traffic handled by cellular base stations, the number of base
stations has been increasing at a rapid rate. This increase in
the number of BSs has contributed not only to the increased
energy consumption of the telecom industry (currently 3%
of worldwide energy consumption), but also to the indus-
try’s contribution to the global carbon footprint (2% of the
worldwide emissions) [1]. This has stimulated the interest of
researchers and telecom operators across the globe to explore
ways to reduce the power consumption in cellular networks,
and develop greener cellular networks.

Base stations consume a large fraction of the energy in a
cellular network, accounting for around 60-80% of the total
[2]. Thus one of the promising ways to make the operation
of cellular networks greener is to use renewable energy (e.g.
solar energy) to power the base stations [3]. Such an approach
not only cuts the cost of operating the base station, but also
has the advantage of being environment-friendly, since there
are no carbon emissions in the use of such energy.

In addition to the Base Transceiver system (BTS), a solar
powered base station also consists of Photovoltaic (PV) panels
and batteries, which are meant to harvest and store the solar
energy. A part of the harvested solar energy is used to meet
the instantaneous power requirements of the BS, and the
excess energy is stored in the batteries. One of the major
challenges in the design of such a base station is to determine
the cost optimal dimensions of the PV panel and number of
batteries. Choosing a large PV panel size/number of batteries
makes the system more reliable, but has the disadvantage of

very high capital cost. On the other hand, if the PV panel
size and number of batteries is too small, it can lead to
frequent outages when the BS runs out of energy, thereby
reducing its reliability. Thus PV panel size and number of
batteries have to be carefully chosen in order to ensure that
the performance is above a certain tolerable outage level.
Further, among the feasible configurations of PV panel size
and number of batteries meeting that meet a given outage
criteria, the configuration with the least cost is chosen as the
optimal configuration. Note that in this paper an outage event
refers to the situation when the BS does not have adequate
energy to operate.

The problem of evaluating the optimal PV panel size and
number of batteries has been addressed in [3], [4]. A key
step in this process is to evaluate the outage probability
associated with a particular configuration of PV panel size
and number of batteries. The traditional way to do so is
to conduct simulations using long-term solar irradiance data
(either real or synthetically generated) [4]. This process is
based on simulating the system for many years, so as to
obtain the outage probability associated with a given PV panel
and battery size configuration. Such an approach does not
provide any insights into the performance of the system, or the
relationships between the system parameters and the system
performance. To the best of our knowledge no analytic model
exists to evaluate the outage probability in solar powered base
stations. To address this issue, this paper proposes an analytic
framework to model the battery levels at the BS and use it
to determine the outage probability. In addition, the proposed
model can be used to quantify the relationship between the
system parameters such the PV panel size, battery size, har-
vested solar energy profile as well as the load profile on the
outage related performance. The proposed model is based on
developing a discrete time Markov chain for capturing the
battery level at the BS. The model accommodates the hourly
variations in harvested solar energy as well as the network
traffic (i.e. the load). The accuracy of the proposed model has
been verified by comparing it with results obtained using real
traces of solar irradiance data for three geographically diverse
locations.

The rest of the paper is organized as follows. Section
II presents the system model and the background material.
Section III present the proposed model for evaluating the
outage probability at the BS while Section IV presents the
simulation results. Finally, Section V concludes the paper.



II. BACKGROUND AND SYSTEM MODEL

This section presents the system model assumed in this
paper and an overview of the background material.

A. Base Station Power Consumption
This paper considers a Long Term Evolution (LTE) base

station. The power consumed by a base station consists of two
parts [5]: the fixed part (e.g. due to air conditioners, losses in
cable feeders etc.), and the variable part, which depends of
the instantaneous traffic at a given point in time. In this paper,
we consider a macro base station. The power consumption of
such a base station can be modeled as [5]

PBS = NTRX(P0 + ∆ρPmaxρ), 0 ≤ ρ ≤ 1 (1)

where NTRX is the number of transceivers, P0 is the power
consumption at no load (zero traffic), ∆ρ is the slope of
the load dependent power consumption, Pmax is the output
of the power amplifier at the maximum traffic, and ρ is the
normalized traffic at the given time. The typical values of P0,
Pmax and ∆ρ for a macro base station are 118.7 W, 40 W
and 2.66, respectively [5].

For modeling the traffic, we use call based models as pro-
posed in [6]. The call arrivals are modeled as a Poisson process
and the call duration has been taken to be exponentially
distributed. This model is used to generate calls on minutely
basis, with rate depending on the hour of the day. Each call is
assigned a call duration which is exponentially distributed and
has a mean value of two minutes [7]. The normalized traffic
denoted by ρ is then obtained by normalizing the number of
users at a given instant of time by the maximum number of
calls the base station can support at any point of time. This
can thus be used in Eqn. (1) to calculate the instantaneous
power consumption of the BS.

B. Solar Energy Resource and Batteries
This paper uses statistical weather data provided by National

Renewable Energy Laboratory (NREL), USA [8]. The data
consists of hourly traces of solar irradiance data for a given
location. In particular, we use 10 years of solar data for three
locations: San Diego (USA), Las Vegas (USA) and Jaipur
(India). This data is further fed to the System Advisor Model
(SAM) [9] developed by NREL, to yield the hourly energy
generated by a PV panel of a given rating. The paper assumes
a PV panel with a DC-AC loss factor of 0.77 and tilt of the
PC panel as the latitude of the location, which are the default
values [10].

This paper assumes that the base station uses lead acid
batteries to store the excess energy harvested by the PV panels.
Lead acid batteries are a popular choice in storage applications
because they are a time tested option, and are also much
cheaper than other storage options.

III. A MODEL FOR EVALUATING BS OUTAGE
PROBABILITY

This section presents the proposed analytic framework for
evaluating the outage probability of a solar powered cellular
base station.
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Fig. 1. Average hourly values of the solar energy harvested for the 3 day
types for the Month of February for San Diego (PV panel rating = 1 kW)

A. System Resources

Let nPV denote the number of PV panels used by the BS.
We denote the DC rating of each of the PV panels by Epanel.
Thus the overall DC rating, PVw, is given by

PVw = nPV Epanel. (2)

Similarly, we denote the number of batteries used in the BS
by nb. We denote the storage capacity of each battery as Ebat.
The overall battery storage capacity, Kcap, is then given by

Kcap = nbEbat. (3)

Next we consider the problem of obtaining the outage prob-
ability associated with a given choice of PVw and Kcap. An
outage is defined as the event that the charge level of the
batteries supporting the BS falls below a predefined depth of
discharge. In such a scenario, the batteries are disconnected
from the BS and there is an outage event. To facilitate the
calculation of the outage probability, we characterize the solar
energy, the load, and the battery state as a discrete time Markov
process (with time granularity as one day). These models are
now described in detail.

B. Model for Harvested Solar Energy

It has been shown in previous work that the solar energy
profile of any location may be modeled as a Markov process
[11]. In the proposed model, we classify any given day being
in one of the three categories which we denote by S1, S2 and
S3. As a benchmark, we take the solar energy harvested by a
PV panel with DC rating 1 kW to classify a given day among
one of the day types. The bad weather days strongly influence
the PV panel and battery size configuration requirement, since
they are the ones which lead to outages. Thus in our model
we use two of the solar types, S1 and S2, for the bad weather
days. Among them, days in category S1 correspond to days
with very low solar energy harvested. The days with daily
harvested energy below a threshold α1 are classified into the
state S1. Next, days with harvested solar energy greater than
α1 but below another threshold α2 are classified as type S2.
Days in category S2 correspond to days which have a little
higher solar irradiance than S1, but still not enough to power



the base station (with a considerable PV panel size) for an
entire day. The remaining days are classified as S3.

To model the daily transitions in the day types, for any given
location, we use ten year’s statistical data of solar irradiation
to calculate the transition probability from a given day type
to another. The transition probability matrix for the Markov
process corresponding to the daily variations in the solar
irradiance is given by

TS =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 (4)

where p11 is the probability of a day of type S1 remaining
in the same state on the next day, whereas p12 (resp. p13) is
the probability of transition from a day type S1 to day type
S2 (resp. S3) on the next day. The other variables are defined
similarly.

In addition, the average profile of solar energy for each of
these day types can be evaluated using the historical solar
irradiance data. The solar energy profile for each day type
consists of the average solar energy harvested in each hour of
the day by a PV panel with rating 1 kW. The solar energy
profile is then given given by a vector S as

S = (s1, s2, ..., s24).

where s1 is the average solar energy harvested in the first hour
and so on. As there are three solar day types, we have three
possible values of the vector S which can be expressed as

S : S ∈ {SS1, SS2, SS3}, (5)

where SS1, SS2 and SS3 are the average harvested energy
profiles for day type S1,S2 and S3 respectively. Figure 1
shows the harvested energy profile for these three day types for
San Diego for the month of March (using data from 2000 to
2009). The procedure of estimating the transition probabilities
and the average solar profile has been described in the section
III-F. For a given PV panel size, the profile of harvested solar
energy can then be represented as

E(t) = PVwS. (6)

C. Model for BS Load

The load of a base station is usually dependent on the day of
the week and is typically lower on the weekends as compared
to the weekdays [12]. Thus we consider two load types: low
(L1) and high (L2) depending on the day of the week. We
approximate the base station load as a Markov process where
the daily changes in the load type are assumed to occur as a
two-state Markov process. The transition probability matrix of
this Markov process is given by

TL =

[
q11 q12
q21 q22

]
(7)

where q11 (resp. q22) is the probability of transition from a
low load (high load) day to a low load (high load) day, and
q12 = 1 − q11 (resp. q21 = 1 − q22) is the probability of
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Fig. 2. Average hourly values of BS power consumption.
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Fig. 3. States of the system

transition from low load day to a high load day. Note that the
transition probabilities may be chosen such that on an average,
five weekdays are followed by two weekend days.

As with the harvested solar energy, we define the load
profile for high and low load days as the average load during
each hour of the day. The load profile is given by

L = (l1, l2, ..., l24).

where l1 is the average BS load for the first hour and so on.
As there are two load types, we have two possible values of
the vector L which can be expressed as

L : L ∈ {LL1, LL2}, (8)

where LL1 and LL2 are the average load profile vectors
for a low load day and a high load day, respectively. The
methodology for obtaining these vectors is given in Section
III-F. Figure 2 shows the average load profile for a low load
and a high load day.

D. Model for Battery Level

To develop a tractable model for the battery level, we
discretize the possible battery levels into blocks of 1 kW. First,
we round the battery bank capacity, Kcap, to the closest integer
value above it. This gives us the number of levels in our battery
model and we denote this value by N with

N = dKcape. (9)

At any given point of time, the battery can be in either of the
N possible battery levels. Though the accuracy of the model
may be increased by making the granularity even finer, our
experiments show that by doing so, there is only marginal
improvement and thus the inclusion of the additional states
and the associated complexity is not justified.



E. BS Outage Probability

To model the outage probability at the BS, we first define
the state of the system. The state of the BS on a given day is
characterized by three factors: the solar day type, the load type
and the battery level. For simplicity of notation, we denote the
state of the system by i where i is given by

i = 2(k − 1) + y + 2N(x− 1)

k ∈ {1, 2, ..., N}, x ∈ {1, 2, 3}, y ∈ {1, 2} (10)

where k is the battery level, x is the solar day type (x = 1 for
S1, x = 2 for S2 and x = 3 for S3) and y is the load type
(y = 1 for low load and y = 2 for high load).

As we have three possible choices for the solar day type,
two choices for load type and N choices for battery level,
there are 6N possible states. These states are shown in Figure
3. Based on our notation, the first row corresponds to day type
S1 (x = 1), and the second and third rows correspond to day
type S2 and S3, respectively. Further the odd positions in each
row (shown by empty circles) denote low load and the even
positions (shown by dark circles) denote high load.

We model the transitions in the system state at the beginning
of each day (or every 24 hour period). Note that the state on
a given day only depends on the battery level of the previous
day, the energy harvested in the previous day (i.e. the day type)
and the energy consumed in the previous day (i.e. the load
type). Thus the system state constitutes a discrete time Markov
chain and its transition probability matrix may be written as

TB =

 b(1,1) · · · b(1,6N)

...
. . .

...
b(6N,1) · · · b(6N,6N)

 (11)

where b(i,j) is the probability of transition from state i to j.
To avoid battery degradation which happens due to the

battery level going to very low values, we disconnect the
batteries from the load when the charge level goes below a
specified depth of discharge. For a depth of discharge threshold
ν, the batteries are disconnected when the battery charge level
goes below νKcap. Since the battery level never goes below
this value at any point in time, the system states with battery
level below this level are redundant and never used. This
boundary battery level is denoted by N ′ and is given by

N ′ = dνKcape. (12)

Thus the feasible states which the system can take at any point
of time can be expressed as

i : i ∈ {(2N ′ − 1, 2N) ∪ (2N ′ − 1 + 2N, 4N)

∪ (2N ′ − 1 + 4N, 6N)} (13)

Figure 3 depicts this battery level N ′.
Given that we begin a day with a certain battery level,

solar day type and load type, the battery level at the next day
depends on the solar energy profile and load profile over the
day. In addition, the outage experienced by the BS depends on
the battery level during each hour of the day. To determine the

Algorithm 1 Calculation of Battery Level
1: function F (i)
2: if 1 ≤ i ≤ 2N then
3: S = S1;
4: k = di/2e;
5: else if 2N + 1 ≤ i ≤ 4N then
6: S = S2;
7: k = d(i− 2N)/2e;
8: else
9: S = S3;

10: k = d(i− 4N)/2e;
11: end if
12: if i%2 == 1 then
13: L = L1;
14: else
15: L = L2;
16: end if
17: initialize: k′ = k , O(i) = 0
18: for t = 1 : 24 do
19: k′ = k′ + E(t)− L(t);
20: if k′ > Kcap then
21: k′ = Kcap;
22: else if k′ < νKcap then
23: k′ = νKcap;
24: O(i) = 1;
25: end if
26: end for
27: return: round(k′)
28: end function

next battery level as well as the outage probability, we define a
function F (i) as shown in Algorithm 1. The function accepts
the state of the system i at the beginning of the day as an
argument. Based on the value of i, it first extracts the harvested
solar energy profile, load profile, and battery level k for that
particular state. The variable k′ meant to track the battery
level is initialized to k. Next, the battery level is updated
for each hour during a 24 hour period using the variables
representing the solar energy and load profiles. During this
calculation, the battery level is not allowed to go above Kcap

or to go below νKcap. The function returns k′ rounded off to
the closest integer, as we allow only discrete battery levels for
a state. Also, in case of an outage event, the outage status for
the particular state is recorded using the variable O which is
stored to be used later for outage calculation. Thus the next
battery level for any state i can be written as

k′ = F (i) (14)

Since the next battery level just depends on the state i, the
next state can only be one amongst one of six states (based
on the solar day type and load type of the next day). Let
the system be in state i and let x and y denote the solar
day type and load type for that particular state. The transition
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probability from state i to and state j can be given as

P (i, j) =



px1qy1 j = 2F (i)− 1

px1qy2 j = 2F (i)

px2qy1 j = 2F (i) + 2N − 1

px2qy2 j = 2F (i) + 2N

px3qy1 j = 2F (i) + 4N − 1

px3qy2 j = 2F (i) + 4N

0 otherwise

. (15)

Figure 4 shows the different possible state transitions from
any state i. For each feasible state i, Eqn. (15) is then used
to evaluate the transition probabilities for the transition matrix
given in Eqn. (11). Then, the limiting steady state probabilities
of being in a given state, π, can be obtained by solving

π = πTB (16)

for π.
Note that the function F (i) computes and stores the outage

status (1 for outage and 0 for no outage) for each of the states
in the vector O. The dot product of the vectors O and π gives
the outage probability, Ω. This can be expressed as

Ω = O · π. (17)

For each value of PVw and nb, the above analysis can be
done so as to evaluate the outage probability associated with
the configuration. Assume that the tolerable outage constraint
given by the telecom operator is given by β. Thus the feasible
dimensioning solutions are all configurations of PVw and nb
satisfying the constraint

Ω ≤ β. (18)

F. Parameter Estimation

To obtain the parameters for the solar model described in
III-B, we use ten years’ historical data of solar irradiance
levels from NREL. This data is used as an input to the SAM
tool to generate the solar energy harvested by a PV panel of
rating 1kW . We parse the data on a monthly basis and for a
given month, we use ten months data (one from each year)
to characterize the solar energy harvested in that month. First,
from the ten months data for the given month, we calculate the
daily solar radiation for each of the days. The days with daily
solar energy harvested below α1 are considered as type S1.
We use the average value of solar energy harvested in each

of the hours for the days of type S1 to obtain the harvested
energy profile in state S1 for this month. Days with daily
solar energy between α1 and α2 are characterized as S2 and
the average solar energy harvested (on hourly basis) for these
days is used to compute the harvested energy profile for S2.
Days with solar energy more than α2 are classified as S3
and their harvested energy profile are obtained similarly. Also,
the data is used to calculate the transition probability from a
given solar day type to another in order to populate the state
transition matrix in Eqn. (4).

To generate the load profiles, we first generate traces of call
arrivals and their holding times as per the model described in
Section II-A. These call volumes are then normalized and used
in Eqn. (1) to determine the load at the BS. These traces for
the load are then used to calculate the average hourly load
profiles for the high and low load days. Also the transition
probability associated with transitions among low load and
high load days are computed so as to populate the load state
transition matrix in Eqn. (7).

IV. RESULTS

In this section we verify the outage probability estimation
and solar powered BS dimensioning framework developed in
this paper.

A. Simulation Setup

To validate the proposed model, we consider a LTE base
station with 10 MHz Bandwidth and 2× 2 Multi Input Multi
Output configuration. Three sectors have been assumed for the
BS, each with two transceivers, thus giving us NTRX = 6. The
traffic is modeled using the methodology described in Section
II and the hourly normalized traffic rates are used to determine
the hourly base station power consumption using Eqn. (1).
We assume that 12 V, 205 Ah flooded lead acid batteries are
used by the base station. For deployment, we consider three
locations: San Diego (USA), Las Vegas (USA) and Jaipur
(India). For each of these locations we use ten years solar data
from NREL database to obtain the various parameters required
to characterize our model for the harvested solar energy, as
described in Section III-B. We used α1 = 1 kW and α2 =
2 kW for all the three locations. To validate the proposed
framework, we compare our results against those obtained
from simulations based on the empirical solar energy data.

B. Outage Statistics

We first evaluate how the outage probability varies with the
number of batteries. Figure 5(a) shows the outage for different
battery sizes for three different locations for a PV wattage of
12 kW. We observe that the outage probabilities predicted by
our model match closely with that obtained from simulations
using empirical data. It can also be seen that below a particular
battery size, the outage increases very rapidly. This is because
in this case the batteries are too small to hold adequate charge,
even when there is sufficient solar energy. Thus any occurrence
of bad solar days leads to outages. Also for very low outage
probabilities (less than 0.25), we observe that the number of
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Fig. 5. (a) Outage vs number of batteries required for a PV wattage of 12 kW (b) Outage vs batteries required for various PV panel sizes: San Diego (c)
Number of batteries vs PV wattage required for different outage probabilities (β): San Diego.

batteries required becomes very large. This is because for any
location, one may occasionally have consecutive bad weather
days. To sustain the BS’s operation during these periods, we
need very large battery storage.

C. Outage Variation with PV Panel Size

Next we analyze the performance of the model for different
PV dimensions. We consider three different PV panel sizes:
10 kW, 13 kW and 16 kW and consider how the outage
probability varies with the number of batteries. Figure 5(b)
shows the number of batteries required to achieve a particular
outage as a function of the PV panel value for San Diego.
We can see that as the PV dimension increases, the number of
batteries required to achieve a tolerable outage becomes lower.
The results for Las Vegas and Jaipur are similar.

D. PV Battery Configuration for a Given Outage Constraint

In this section we evaluate the minimum number of batteries
required to meet a tolerable outage constraint for different
values of PV wattage. Figure 5(c) shows the number of
batteries required to achieve two different tolerable outage
values (β = 0.5 and 1) for San Diego. The results for Las
Vegas and Jaipur have been tabulated in Table I. With these
configurations available, for a given desired tolerable outage
constraint, a telecom operator can compute the cost associated
with each of the configurations and the one with the lowest
cost can be chosen as the cost optimal configuration.

V. CONCLUSION

In this paper we proposed a model for estimating the outage
probability of a solar powered base station. In the proposed
methodology we model the solar energy, BS load and the
battery state as Markov processes which are then used to
evaluate the outage probability for a given configuration of
PV panel size and number of batteries. The results from the
proposed model have been verified with results obtained from
empirical data for three different locations.
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