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Abstract— Prediction of rapidly time varying fading channel
conditions enables adaptive data transmissions in wireless sys-
tems, which in turn improves the quality of service for end users
and reduces the power consumption for data transmissions. Most
of the existing long range prediction methods for fast fading in
wireless networks use autoregressive (AR) models and make the
assumption that the input fading signal is stationary and wireless
channel parameters vary slowly [1]. In this paper, we provide a
method to predict the non-stationary received signal strength in
a more realistic and fast varying wireless environment, using
multiresolution wavelet analysis. We first use discrete wavelet
decomposition (DWT) to decompose the signal strength trace
into components at different scales, then use AR and linear
regression models to predict small, medium and large scale fading
components respectively, and finally synthesize the output signal
of our prediction algorithm. By properly choosing the wavelet
basis, we map the non-stationary signal strength trace into
stationary wavelet detail coefficients and use them as input to the
AR predictor at different scales. Longer prediction range is easily
achieved by choosing the appropriate maximum decomposition
scale, while still achieving low prediction error. Our experimental
results shows that our wavelet based algorithm outperforms
existing time-domain AR prediction methods in terms of both
prediction accuracy and computational complexity.

I. INTRODUCTION

In wireless networks, the fading wireless channel is a time-
varying (TV) system. This is not only because the channel is
susceptible to noise, interference, multipath fading and shadow
fading, but also because the impediments in the channel
change over time in unpredictable ways due to user movement
that cause path loss fading in the received signal strength. Mul-
tipath fading (also called small-scale fading) causes changes
in the signal strength within the order of one wavelength.
Shadow (medium-scale) fading is influenced by the spatial
movements in the order of tens of wavelengths and creates
random variations in the average power of the received signal.
Path loss (large-scale fading) is caused by spatial movements
in the order of hundreds of wavelengths making the average
power level vary in power-law fashion with path length. The
above three fading components are mutually independent of
each other. The received signal strength, which is the sum of
the above fading components in wireless networks is usually
a non-stationary process. Although small scale fading can be
assumed to be a stationary Rayleigh process in many wireless
propagation models, in some severe fading environments, it is
non-stationary and “worse than rayleigh” [3].

Prediction methods for fast fading channels as TV systems
have received considerable attention in literature and many

schemes exist that can predict small scale fading channel coef-
ficients, at a time horizon of several milliseconds. However, in
many scenarios and applications, predictions on a longer time
scale, such as that in the order of hundreds of milliseconds may
be desirable. For example, dynamic route selection methods
based on link quality in multi-hop wireless networks require
abundant time to explore and select new paths when the signal
to noise ratio on the previous route degrades. In such scenarios,
large scale fading needs to be predicted, in addition to small
scale fading. Further more, many popular methods to predict
fast fading employ adaptive algorithms, which assume that
the system parameters are slowly varying. If the parameters
vary too fast, adaptive algorithms are not able to track the
TV system’s time evolution [9]. To overcome this problem,
multiresolution wavelet analysis provides a natural way to
represent signal at different time and frequency resolutions.
By expansion of the signal into wavelet basis and analyzing
the signal in different scales, both local details (small scale
fading) as well as the global trend of the signal (medium and
large scale fading) can be captured.

Our aim is to provide an accurate, low-complexity, on-line
mechanism for long range prediction based on past signal
strength measurements. We first use DWT to decompose the
signal strength trace into different scales components. We
then apply an AR model on wavelet detail coefficients at
each scale, predict the approximation coefficients using a
linear regression model, then synthesize the predicted output
signal. Our proposed algorithm has the following advantages:
First, by appropriately choosing the wavelet basis, we can
map a non-stationary signal into stationary detail coefficients.
Although AR models may work poorly with non-stationary
data, our algorithm doesn’t need the assumption of stationarity,
making the proposed method robust in realistic mobile radio
environments. Second, since many of the wavelets coefficients
are zero, they can represent the TV system with fewer parame-
ters and make the prediction algorithm more computationally
efficient. Last but not the least, longer range prediction can
be easily achieved by choosing larger value for the maximum
decomposition scale, while still achieving low prediction error.
We demonstrate the above observation through experimental
results and compare the prediction error of our scheme with
existing time-domain AR based prediction methods.

The rest of the paper is organized as follows: Section II
presents the related work. Section III presents the experimental
setup. Section IV describes the proposed methodology for long



range signal strength prediction. In Section V we compare our
prediction results with predictions from existing AR models.
Finally, Section VI presents the concluding remarks.

II. RELATED WORK

The deterministic channel model and an AR signal model
with its parameter estimation schemes for predicting the
mobile radio channel are compared in [1]. Based on realistic
simulation data and measurements, the authors show that the
AR model performs best. In [2], the authors present a mecha-
nism for reliable prediction of fast fading channel coefficients
several milliseconds in advance using an adaptive AR model.
They assume that the signal is stationary with slowly varying
parameters. In [4] authors show that the better performance of
the AR based prediction algorithms is achieved due to their
lower sampling rate. However, the prediction for more realistic
non-stationary data is not improved significantly by the lower
sampling rate. What’s more, the iterative AR models used
in their method have the problem of error propagation for
prediction steps larger than one. In [5] an adaptive channel
prediction algorithm using Kalman filtering is proposed. A
mechanism based on support vector machines and nonlinear
regression for long range prediction of fading channels is
proposed in [7]. However, the prediction range in all the
above methods is only about a wavelength and cannot be
used in applications such as dynamic route selection in multi-
hop networks where predictions of tens of wavelength ahead
are desirable. A prediction algorithm based on multi-layer
perception (MLP) is proposed in [6]. However, this requires
measured and pre-processed channel data consisting of upto
6072752 patterns to be first developed for a given site, making
it computationally complex for on-line deployments.

III. SIGNAL STRENGTH MEASUREMENT METHODOLOGY

In this section we outline the methodology applied to obtain
the traces of the signal strength. It is well known that the per-
formance of a wireless system depends on the environment in
which it operates. This dependence on the environment mainly
comes from the variation in radio channel behavior in different
sites. One of the main aims of this paper is to develop a non
site-specific prediction mechanism for wireless link quality
and validate its performance in different environments. For
this reason, measurements were carried out in multiple, diverse
locations. Both outdoor and indoor scenarios were considered
in our measurements and were conducted in various buildings
and locations in the RPI campus. The indoor measurements
were carried out in three different buildings. The first is
the Johnsson Engineering Center which primarily consists of
rooms for faculty and space for laboratories. In the floors
of this building where the measurements were conducted,
concrete walls were the main cause of signal obstruction and
attenuation. The second building was the campus library where
the large number of metallic bookshelves were the primary
source of attenuation and shadowing. The third indoor setting
was the Student Union dinning hall where there were lesser
obstructions. In addition to these, outdoor measurements were

also conducted at various locations in the campus. In addition
to the measurements carried out at the university campus, a
set of measurements was also carried in home settings, in
an apartment. In all these measurement scenarios, multiple
traces for the signal strength were collected as the user walked
around inside the building or outside. More than 40 signal
strength measurement traces were collected with the receiver
moving at walking speed at 13 different environments.

Signal strength measurements were done using a LINKSYS
Wireless-G Broadband Router as the access point (AP) and
IBM T42 laptop, running Linux Feroda core 5, with built in
PH12127-E IBM 802.11a/b/g Wireless LAN Mini PCI adapter
as receiver. The signal strength measurements were directly
provided from the card by the madwifi-0.9.2 driver used
for the card. The driver uses RSSI as the basic measure
for signal strength which is converted to dBm. The driver
assumes a constant noise level of -96dBm since this is the
thermal noise for 20MHz OFDM signals, plus an additional
5dBm noise from the amplifiers. The SNR levels are then
obtained by SNR(dBm)=Signal(dBm)-Noise(dBm). The actual
signal strength measurements were conducted while the laptop
received packets from the AP. The packets were from an
UDP video data stream transmitted at a data rate of 54Mbps
in 802.11g wireless network. We collected signal strength
measurement every 0.01 seconds.

IV. METHODOLOGY

A. Overview

In the proposed mechanism, a sliding window of size
M is defined that consists of the last M signal strength
measurements, y = [y1, · · · , yM ]. We predict future samples
based on y. Our prediction algorithm consists of three steps.
The first step is to obtain wavelet coefficients of y using DWT.
The wavelet basis is carefully chosen so that we can map
the non-stationary signal strength series into stationary detail
coefficients. The maximum decomposition scale is chosen
according to the desired prediction range. The second step
is prediction of wavelet coefficients. We apply an AR model
to predict the wavelet detail coefficients at each scale and
employ a linear regression model to predict approximation
coefficients. Both the AR and linear regression models are
chosen according to the nature of the wavelet detail and
approximation coefficients respectively. The third step is then
to synthesize the predicted output signal from the predicted
wavelet coefficients.

B. Wavelet Decomposition

Before we employ any prediction model, we first use DWT
to map the measured data y to its wavelet coefficients. Our
motivation is that using DWT we can decompose a signal
strength trace into its three independent components: mul-
tipath fading, shadow fading and path loss fading. Wavelet
transform provides the time-frequency representation of the
signal at different scales. A signal can be presented by its
approximation at any scale (octave) J where 1 ≤ J ≤ JMAX

(JMAX = log2(M) is the maximum decomposition scale and



Fig. 1. Wavelet decomposition at level 6: s = a6+d6+d5+d4+d3+d2+d1

is determined by the length, M , of the time series), plus
all the details at lower scales j, 1 ≤ j ≤ J . The wavelet
decomposition formula is given by

y = approxJ +
J∑

j=1

detailsj

=
∑

k

ax(J, k)φJ,k +
J∑

j=1

∑

k

dx(j, k)ϕj,k (1)

where ax(j, k) and dx(j, k) are the wavelet transform approx-
imation and detail coefficients, respectively, at scale j and
time k. φJ,k is the wavelet function transformed from the
mother wavelet function φ and ϕj,k is the scale function. As an
example, Figure 1 shows that our experimental fading signal
strength trace s may be decomposed into an approximation
at octave J = 6 (a6) plus all the details at octave j =
1, · · · , 6 (d1, · · · , d6). For our experimental data, there are 1524
samples in each trace, which covers about 50 meters walking
distance, so our sampling rate is 0.033m/sample. At 2.437GHz
frequency (channel 6 in IEEE 802.11g), the radio wavelength
is 0.1231m. At octave 5, the signal trace is represented by
only 32 samples (1.56m/sample), which means that the time
resolution of the signal approximation at octave 5 is of the
order of tens of the wavelength, which corresponds to the
shadow fading scale. For octaves 1-3, the time resolution of
the signal is of the order of a wavelength, and corresponds to
multipath fading. Octave 4 corresponds to the transition region
between medium and small scales. Large scales are octaves
larger than 6 and correspond to path loss fading.

C. Wavelet Basis and Maximum Decomposition Scale

Choosing the proper wavelet basis and the maximum de-
composition scale is essential in our algorithm design. Assume

that signal y is decomposed into nj wavelet coefficients,
d(j, k), k = 1, · · · , nj at each octave j. Authors of [8] show
that for each j, d(j, ·) is a stationary, short range dependent
process with zero mean, provided that

N ≥ (α− 1)/2 (2)

where N is the number of vanishing moments of wavelet
mother function φ and α is the estimated scale-invariance
parameter which can be obtained by a LRD estimator tool.
More details about the meaning of α and its estimation can
be found in [8]. In our experiments, N is carefully chosen so
that Equation 2 is always satisfied. For example, for the trace
s shown in Figure 1, estimated α is 0.85 and N is chosen to
be 4. In our design, orthogonal Daubechies wavelets that offer
a high number of vanishing moments from 4 to 20 are chosen.

Let M be the length of historical data sequence y, which
is the input to our prediction algorithm. We decompose y into
d(j, k), k = 1, · · · ,mj , where mj is the number of detail coef-
ficients at octave j. Then at octave j, mj = M/2j and mj+1 =
mj/2. If we do prediction for detail coefficients at each scale,
at octave j, d(j, mj +stepj) = F (d(j, 1), ...d(j, mj)) where F
is some prediction function and stepj is the prediction range at
octave j. Let the maximum decomposition scale be J . At least
one data should be predicted at scale J . i.e. stepJ ≥ 1. Since
mj+1 = mj/2, in order to synthesize the data from prediction
of wavelet coefficients, the number of wavelet coefficients that
need to be predicted at scale j is at least 2J−j . The prediction
range L of output prediction data is therefore

L ≥ 2J (3)

By increasing J , we can enhance the prediction range to a
desirable value. The maximum value J is determined by the
length of x since Jmax = blog2Mc, where function b·c rounds
the element toward zero. In our experiments, we choose L =
2, 4, 8, 16, 32, 64. L = 64 corresponds to a prediction range
in the order of tens of wavelength ahead and is desirable for
long range prediction applications.

D. Prediction Algorithm

After we obtain the wavelet coefficients, we then predict the
future coefficients based on historical ones. We use an iterative
AR model to predict the detail coefficients. Prediction step at
scale j is stepj = 2J−j . The Minimum Mean Square Error
(MMSE) prediction of the future one step sample d̂(j,mj +1)
based on previous samples d(j, 1), · · · , d(j, mj) is given by

d̂(j, mj + 1) =
p∑

k=1

akd(j, k) (4)

where 1 ≤ p ≤ mj is the AR order, and the optimal
coefficients ak are determined by orthogonal principle, which
leads to Yule-Walker equations and can be solved by the
Levinson-Durbin recursion [10].

For prediction steps more than one, an iterative AR model
is employed. The prediction d̂(j, mj + 1) obtained from the
previous step is used together with d(j, 1), · · · , d(j,mj) as



input of the AR model to predict d̂(j, mj + 2). Iteratively,
d̂(j,mj + n) where n = 2, · · · , stepj is estimated based on
previous samples d(j, 1), · · · , d(j, mj) and previous estimated
samples d̂(j, mj + 1), · · · , d̂(j, mj + n− 1).

Recall that signal y is decomposed into an approximation
at octave J , a(J, ·) plus all the details at octave j = 1, · · · , J
(d(1, ·), · · · , d(J, ·)). We also need to predict the approxima-
tion coefficients a(J, ·), which represents the trend of signal
and can not be simply assumed to be stationary. For J =
6, approximation a(J, ·) represents large scale fading which
makes the average power level of signal strength vary in
power-law fashion with path length. We use a linear regression
model to predict a(J, ·) in our algorithm.

Let the previous approximation coefficients for segment data
y be z = (a(J, 1), · · · , a(J, n)), where n = M/2J and M is
the length of y. A linear regression model, Ẑ=α+βW , is used
to fit the data z = a(J, 1), · · · , a(J, n) with w = [1, · · · , n].
The parameters of this regression model are given by

β =
Σwz − w · z
Σ2

w − nw2 (5)

α = z − bw (6)

where Σwz is the cross covariance of variable W and Z, w
and z are the means of W and Z respectively, and Σ2

w is the
variance of W . The predicted coefficient a(J, n+p) = z(n+p)
is then given by

ẑ(n + p) = α + β(n + p) (7)

where p is the prediction step and chosen to be one. p = 1 is
sufficient for prediction range of approximation coefficients,
since it leads to the final prediction range L = 2J desirably
long by choosing proper J . Besides, since the sample size of
approximation coefficients M/2J is small, it’s hard to achieve
high prediction accuracy and at the same time, achieve a
long prediction range based on very limited previous samples.
Our experimental results show that p > 1 here will lead to
significant decrease in prediction accuracy.

We then use reversed DWT to synthesize the signal from
predicted wavelet coefficients to obtain final prediction results.
For perfect reconstruction, the synthesis filters are identical to
the analysis filters except for a time reversal. Our prediction
algorithm is given in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section we design and report on a set of measurement
based experiments to validate our proposed prediction method-
ology. We also compare our methodology with one of the
most popular schemes that have been proposed in literature.
The performance metrics used are prediction accuracy and
computational complexity. We use the normalized mean square
error (NMSE), defined as

NMSE =
1
m

m∑

j=1

∑n
i=1(xi − x̂i)2∑n

i=1 x2
i

(8)

Algorithm 1 Prediction Algorithm
J : maximum wavelet decomposition scale;
nj : number of d(j, ·) at scale j;
nJ+1: number of a(J, ·);
L: prediction range;
x: signal strength trace;
xk: kth signal strength measurement;
x̂k+L: prediction of (k + L)th sample;
w: sliding window size;
k = w;{k is a loop control index};
PREDICTION
while (1) do

read new incoming measurement xk;
y = [xk−w+1, · · · , xk];
DWT decomposition of y = d1+, · · · , +dJ + aJ ;
j = 1;
repeat

m = 1;
repeat

use AR model to predict d(j, nj + m) based on
d(j, 1), · · · , d(nj + m− 1);
m + +;

until m > 2J−j

j + +;
until j > J
use linear regression model to predict a(j, nJ+1 + 1)
based on a(J, 1), · · · , a(J, nJ+1);
synthesis wavelet coefficients to get x̂k+L;
k + +;

end while

to measure the prediction accuracy. In Equation (8) n is the
sample size and xi and x̂i for i = 1 . . . n are the measured
and predicted data, respectively. m represents the number of
traces collected at a given location with the user following the
same path and m = 3 in our experiments.

A. Prediction Accuracy

The results from our prediction mechanism and its com-
parison with the time domain adaptive AR model method of
[2] for six different prediction ranges is shown in Table I.
L = 2, 4, 8 correspond to the small scale fading prediction
ranges, for which [2] is designed. To further increase the
prediction range, L = 16, 32 and 64 which correspond to
medium and large scale fading are tested in our experiments.
The NMSE for the two methods is tabulated for five different
locations, both indoors and outdoors, and the methodology
of this paper is labeled “wavelet”. Parameters including size
of sliding window and AR order for both methods were
optimized through empirical experimental tests. The time
domain AR model performs poorly if directly applied on our
data traces which can’t be assumed stationary. In order to make
the comparison fair, we removed the trend of the data before
it is input to the AR model by removing the average of the
segment data along the sliding window. This average value



TABLE I
PREDICTION PERFORMANCE COMPARED WITH TIME-SERIES AR MODEL

NMSE (×10−4) for trace 1
L 2 4 8 16 32 64

AR 1.1057 2.0427 3.6634 6.6236 13 31
wavelet 0.8042 1.1754 2.2129 3.9321 8.1151 26

NMSE (×10−4) for trace 2
L 2 4 8 16 32 64

AR 1.2329 2.0217 3.2789 5.5334 10 19
wavelet 0.9985 1.7394 3.2419 5.3969 9.7372 13

NMSE (×10−4) for trace 3
L 2 4 8 16 32 64

AR 0.9897 1.6612 2.5317 3.9662 6.5691 9.5515
wavelet 0.7318 1.4207 1.9759 3.9363 6.3219 8.9550

NMSE (×10−4) for trace 4
L 2 4 8 16 32 64

AR 1.3761 2.2657 3.5118 5.9372 8.5892 14
wavelet 1.0153 1.6222 3.1375 5.4979 8.1081 8.4497

NMSE (×10−4) for trace 5
L 2 4 8 16 32 64

AR 0.9571 1.5136 2.2123 3.8785 7.4831 11
wavelet 0.8308 1.4156 2.2917 3.3489 5.9077 8.4882

is then added to the prediction result obtained from the AR
model. We show that the proposed method has good prediction
accuracy and outperforms the time domain AR based model
for small, medium as well as large scale fading prediction.

To further analyze the prediction errors, we note that abrupt
changes in signal strength are the main reasons of prediction
errors. Multipath fading, shadow fading and path loss all lead
to abrupt changes in signal strength in different scales. One
advantage of the wavelet based prediction method is that the
prediction error can be easily interpreted at different time
resolution. Figure 2 shows the final prediction error introduced
by the prediction error at each scale. The distance between aJ

and dJ at a given prediction range is the error introduced
by the prediction error of approximation coefficients aJ . The
distance between dj and dj−1 for 1 ≤ j ≤ J at some
prediction range is the error introduced by the prediction
of detail coefficients dj . Figure 2 illustrates that the error
prediction of approximation coefficients aJ contributes most
compared the the small prediction errors of detail coefficients
dj . Sharp increase of error introduced by aJ occurs when
J > 3. The prediction error of aJ for J > 3 can be explained
by the abrupt changes in the trend of signal strength which is
caused by encountering a showing object or a sudden change
in the path loss due to unpredictable user movement.

B. Computational Complexity

One advantage of our approach is its lower computational
complexity. The traditional AR model is operated on the finest
scale while our approach can operate on low-pass filtered and
sub-sampled data. Given a data of length M , at scale j the
data points to be processed are of length M/2j , implying a 2j

to 1 complexity reduction. What’s more, when d(j, k) = 0 for
1 ≤ k ≤ M/2j , estimation of AR parameters becomes trivial.
Our experimental results show that as the sliding window
moves, the DWT decomposition of segment signal strength
measurement y results in d(j, k) = 0 for many k, 1 ≤ k ≤ nj ,
at scales j = 1, 2, 3. In our experiments, 40.04%, 15.65%,
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7.03% of d(1, ·), d(2, ·) and d(3, ·) are zero respectively.
Therefore there are much fewer AR parameters to be estimated
and this makes the prediction algorithm more computationally
efficient. The time domain AR model based prediction method,
on the contrary, does not have this advantage.

VI. CONCLUSIONS

We provide an accurate, low-complexity, on-line predic-
tion mechanism for long range prediction of non-stationary
signal strength traces, using wavelet based signal analysis
tools. Our method can predict at long ranges (several tens of
wavelength ahead) and outperforms time domain AR based
channel prediction models in terms of both the accuracy
and the computational complexity. Our predictor can be used
in adaptive transmission applications such as dynamic route
selection in multi-hop networks, where predictions are needed
many hundreds of milliseconds in advance.
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