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Abstract— Measurements have shown that network path fail-
ures occur frequently in the Internet and physical link failures
can cause network instability in large scale and severity. Inter
domain routing protocols like Border Gateway Protocol (BGP)
can take up to 15 minutes to converge after such failures and
during the convergence period, packets may encounter transient
loops, delays and losses [1]. Thus early anomaly detection
mechanisms are of great importance. In this paper, we propose a
Bayesian approach for time efficient link failure detection using
BGP update message traces. The detection is done using an
automated mechanism to label, train and classify the network
status based on features extracted from BGP traces. In addition
to detecting temporal changes in these features, our scheme
augments its accuracy by including information on the spatial
correlation of the route updates in the decision process. We
validate our approach by testing the proposed mechanism on
real BGP traces collected during three typical network outage
events caused by link failures.

I. INTRODUCTION

End users expect the Internet to provide a reliable packet
delivery service. In practice, however, the Internet is a large
scale loosely-coupled complex distributed system, made of
many components which are not fully resilient against errors
and failures. A key component gluing together this collection
of domains and autonomous systems forming the Internet is
the BGP routing protocol. With BGP being the default inter
domain routing protocol in the Internet today, its stability and
resilience to faults plays an important role in the end user’s
perception of network performance. Measurements show that
various faults occur frequently almost everywhere in the
Internet which affect BGP. Among these faults, physical link
failures can cause large scale and severe network instability.
Below are three cases of physical link failures in the Internet:

• Single link failure: During such events, BGP traffic is
rerouted along alternate paths and may result in routing
anomalies while BGP converges. If the single failed
link happens to be the main cable connecting a big
autonomous system or domain, such failures can be
serious. For example, a submarine fiber cable in Pakistan
was cut on June 27, 2005, which was Pakistan’s main
link with the Internet. The system took 12 days to repair
and networks in Pakistan were unreachable from the rest
of the world for two weeks.

• Simultaneous link failures: Usually physical failures hap-
pen independently in different geographical locations.
However, in rare cases, failures do occur simultaneously.
One such case was on June 21, 2005, when a rat chewed

through one of the North Island, New Zealand’s main
communications cables while at the same time, a Telecom
New Zealand workman accidentally damaged a second
main cable in another part of the country. Telecom
networks in New Zealand were paralyzed for five hours,
knocking out mobile and Internet communications.
Besides, power outages can cause large scale simultane-
ous failures of networking equipment. One case is when
on May 25, 2005 in Moscow, Russia, the whole Moscow
city was cut off electricity and Internet.

• Cascading failures: In a cascading network failure, a
single failure (such as a fiber cut) results in widespread
outage of the network. To the best of our knowledge, such
collapses have not been seen in the Internet and general
opinion is divided on the likelihood of their occurrence.

Link failures as above can result in network instabilities
of various scale. They can cause routing loops in both link
state and distance vector routing protocols. In distance vector
routing protocols such as RIP, link failures may lead to
counting-to-infinity looping. Unlike link state and distance
vector routing protocols, BGP is a path vector protocol and
a router sends an update message to its neighbors only when
topology changes. When a destination becomes unreachable,
BGP sends an explicit or implicit withdrawl message to its
neighbors. BGP then converges only after the link failure
information has been propagated over the entire network.
Although a BGP node can eliminate routing loops, it suffers
from slow convergence following a change in the network
topology. Previous works have shown that network connec-
tivity, failure location, and routing message queuing delay
all effect BGP’s convergence time [3] after link failures.
During the convergence period, various anomalies may appear
including abrupt increase in BGP traffic, routing oscillations,
etc. and cause BGP instabilities.

To maintain the stability and efficiency of Internet in spite
of link failures, network managers wish to detect failures
as soon as they occur, as actions may then be required to
resolve the problems. The goal of this paper is to provide a
general technique for real time detection of the failures. How
to improve BGP convergence performance during and after a
failure is beyond the scope of this paper.

Since network outages are reflected in the departure of BGP
update message traces (which include announcement and with-
drawl messages) from their normal pattern in both volume and
content, we detect abnormal behavior by observing targeted



BGP trace features and their correlations at monitoring nodes.
We first extract features from BGP update traces to identify
abrupt changes in time series BGP sequences. To complement
the detection mechanisms for temporal changes in the BGP
update messages, we incorporate information on the spatial
correlations and patterns in the propagation of route updates
in the decision process. These new features of the detection
process are based on the fact that coherent departures from
normal update patterns over a connectivity neighborhood (i.e.
topology graph) are evidences of unusual events occurring
in that neighborhood. Our work develops measures of the
spatial correlation by treating measurements from each BGP
peer as one feature and combining features from all peers.
Alarms are then generated by classifying anomalies using
pattern classification techniques. We validated the proposed
mechanism by testing it on real BGP traces collected during
three typical network outage events caused by physical link
failures. Our detection results show that the approach achieves
a low false alarm rate and a low miss rate when working on
real test data.

The contributions of this paper are: (i) it provides a general
approach to diagnose link failures from BGP message traces
by separating data from a high-dimensional space into normal
and abnormal subspaces, (ii) it provides tools for processing
BGP traces that are fast enough to detect anomalies in real
time and (iii) the proposed method is validated using real life
data collected for three different link failure events.

The rest of the paper is organized as follows: Section II
presents the related work. Section III describes the proposed
methodology. In Section V we validate our approach by
diagnosing three physical link outage events using real BGP
data. Finally, Section VI presents the concluding remarks.

II. RELATED WORK

Early work in anomaly detection was based on expert sys-
tems [13]. In expert systems an exhaustive database containing
the rules of behavior of the faulty system is used to determine
if an anomaly or fault occurred. Rule-based systems are too
slow for real-time applications and are dependent on prior
knowledge about anomalous conditions on the network. These
rule-based systems rely heavily on the expertise of the network
manager and do not adapt well to the evolving network
environment. In some cases Fuzzy Cognitive Maps (FCM) are
used to overcome this limitation [14]. Anomaly detection using
finite state machines [15] model alarm sequences that occur
during and prior to fault events. The difficulty encountered in
using the finite state machine method is that not all anomalies
or all instances of the same anomaly can be captured by a
finite sequence of alarms of reasonable length. This may cause
the number of states required to explode as a function of the
number and complexity of the anomalies modeled.

A new approach proposed and implemented in [12] de-
scribes anomalies as deviations from normal behavior. In this
approach online-learning is used to build a traffic profile for
a given network. When newly acquired data fails to fit within
some confidence interval of the developed profiles then an

anomaly is declared. In the face of evolving network topolo-
gies and traffic conditions, this method may perform poorly
and may not scale gracefully. A recent work on diagnosing
traffic volume anomalies uses Principal Component Analysis
(PCA) techniques [10]. The method is based on a separation
of the high-dimensional space occupied by a set of network
traffic measurements into disjoint subspaces corresponding to
normal and anomalous network conditions by using Principal
Component Analysis. However, PCA requires the use of SVD
computation procedures which could become a bottleneck if
applied to data with a large set of sources and destinations.
In [11] the authors use a change point detection algorithm to
detect several types of network anomalies. Here the sequential
change detection is done using Auto Regressive (AR) models
for the time series data. It shows that rigorous statistical
analysis can lead to better characterization of evolving net-
work behavior and eventually lead to more efficient methods
for both failure and intrusion detection. Our work provides
similar insight into the separation of high-dimensional data
into normal and abnormal subspaces as [10]. But we use a
simpler stochastic hypothesis test method for detection. We
also provide tools for processing measurements that are fast
enough to detect anomalies in real time.

III. METHODOLOGY

A. Feature extraction

The aim of our mechanism is to recognize periods of
abnormal behavior corresponding to link failures using BGP
data. As the first step, we need to extract features from the
BGP traces which will facilitate the distinguishing of normal
and anomalous periods.

To extract features that will be used in our detection
mechanism, we first take a look at the nature of the messages
exchanged by BGP peers during a period where a physical
failure occurs. BGP messages exchanged during such periods
involve withdrawl messages regarding the network prefixes
that have lost connectivity and all the paths that have changed.
In both cases, a router will receive announcement messages
with increasing number of different ASPaths to the same set of
prefixes (the prefixes of the affected networks) from all or most
of its peers in a small interval of time. Figure 1 and Figure
2 respectively show the volume of BGP withdrawl messages
and the number of different ASPaths for a given prefix in
Pakistan during June 22, 2005 and July 11, 2005 from 32 BGP
monitoring peers. The BGP update messages were collected
by University of Oregon [8]. The link failure occurred on June
27 and its effect is reflected in the abrupt volume changes in
both the figures in the period around June 27.

Based on the observations above, detecting patterns corre-
sponding to messages with a large number of announcements
of routes for a common set of prefixes from most of the peers
with increasing number of ASPaths, followed by large number
of withdrawl messages with routes that appear to be invalid,
can thus be used as features to detect the presence of a physical
failure. Also, all these messages will have the same AS number
at the end of the ASPaths in the route, indicating within



Fig. 1. Number of withdraw messages

Fig. 2. Number of ASPaths

which AS the link failure occurred. Our selected features are
described as follows:

1) The number of different ASPaths appearing in BGP
Announcements for a targeted prefix during 15 minute
time intervals.

2) The number of withdrawl messages appearing for a
targeted prefix during 15 minute time intervals.

We now describe of proposed mechanism for feature ex-
traction. In general, a BGP router has multiple peers and
exchanges update messages with each of these peers. In our
proposed methodology, we extract the above two features from
each BGP monitoring peer. Let the number of peers of the
BGP router be denoted by N . For each of the above two
features, we obtain a feature vector, x = [x1, x2, · · · , xN ], by
combining the corresponding feature from all the peers, with
each vector component representing a feature from one peer.
In Algorithm 1 we present the pseudo-code for extracting the
proposed features.

Although our selected features are effective in separating
abnormal BGP data from normal ones, the features are usually
corrupted by statistical noise, which may lead to errors in
the detection process. To keep the fault detection process
unaffected by this noise, we next develop a classifier which
is insensitive to the noise. This classifier is then used to label
the incoming data.

B. Data Labeling

We first train our classification model with a small set of
typical data, which we refer to as the training data. Many

Algorithm 1 Feature Extraction Algorithm
N : number of BGP peers;
i: index of ith peer;
t: time of new BGP messages arrival;
xi: feature for peer i;
f : AS where the message is from, in
’ASxxx’ format;
p: the prefix BGP message is announced
for, in IP.IP.IP.IP/ format;
P : monitored target destination prefix,
in IP.IP.IP.IP/ format;
repeat

obtain new collections of BGP messages from all peers
every 15 minutes;
convert binary BGP trace into txt file;
for all i such that 0 ≤ i ≤ N do

if p matches P then
xi++;

end if
store xi(t) in file;

end for
until monitoring process terminated

pattern classifiers such as the Bayesian framework assume
that the training samples used to design a classifier were
labeled by their category membership. In practice, however,
such information may not be available and in this paper we
first apply an unsupervised learning procedure to label the
training data using a clustering algorithm. Since in our case the
data can have only two states, normal and abnormal, we group
the incoming data into one of these two states by minimizing
the sum of squares of distances between features of the training
data (obtained using Algorithm 1 in the previous section) and
the corresponding cluster centroid. This labeled data is then
used as training data to train our classification model. The
trained classifier is then used to detect link failures in the
actual BGP data that we are interested in.

In a typical scenario, a BGP router may be connected to
a number of peers and our scheme extracts features from the
messages advertised by each of them. As a result, the dimen-
sionality of the feature data used as input to the classifier,
denoted by N in feature vector x = [x1, x2, · · · , xN ], can
be quite high. The classical Bayesian approach for hypothesis
testing requires knowledge of the probability density function
(PDF) of the data or knowledge of the sufficient statistic
under class hypotheses. In the case of the relatively high-
dimensional feature set we are dealing with, the performance
of such an approach is severely limited by the ability to
estimate the PDF on a high-dimensional space. The complexity
of the high-dimensional space quickly overwhelms the ability
to accurately estimate the distribution (also called the curse
of dimensionality [16]). To circumvent this problem, before
classification, we project the high-dimensional feature vector
into a low-dimensional space. In the next section we show that



this projection obtains low-dimensional sufficient statistics for
class hypotheses.

C. Reducing Feature Dimensionality

In our proposed method for feature extraction, two feature
vectors with dimension equal to the number of BGP peers is
extracted at the monitoring point. To reduce the dimensionality
of these feature vectors, we use a projection technique to trans-
form them into a single dimension. The first step in our scheme
is to obtain the projection direction w for transforming the
high-dimensional feature data x = [x1, x2, · · · , xN ] into lower
dimensional data. As a BGP router continuously monitors the
update messages from each of its peers, it generates a feature
vector based on the observations of the last T time units
(T = 15 minutes in our measurements). Applying Algorithm
1, we then obtain a time series of the feature vectors with
xi denoting the i-th feature vector and i denoting the discrete
time index. During an observation time interval, say we obtain
a data set [x1, x2, · · · , xn] of n samples which we use as
the training data. This training data is then labeled using the
technique described in the previous section. Let D1 represent
the subset of the training data which belongs to the abnormal
class (i.e. contains a link failure event) and D2 be the subset
comprising the normal data. D1 is labeled w1 and D2 is
labeled w2, where w1 and w2 represent the class of normal and
abnormal data, respectively. If we form a linear combination
of the components of x, we obtain the scalar dot product

y = wtx (1)

and a corresponding set of n samples y1, · · · , yn divided
into the subsets Y1 and Y2, which belong to w1 and w2,
respectively. Each yi is the projection of the corresponding
xi onto a line in the direction of w. The direction of w is
selected to separate the projections of each classes as well as
possible. It is proved in [9] that

w = S−1
w (µ1 − µ2) (2)

where µi is the N-dimensional sample mean given by

µi =
1

ni

∑

x∈Di

x (3)

and

Sw = S1 + S2 (4)

Si =
∑

x∈Di

(x − µi)(x − µi)
t i = 1, 2 (5)

Using Eqn. (1) we can then project the high-dimensional
features into one-dimensional data and use it as input to a
Bayesian hypothesis test.

D. Hypothesis Test

In the last step of our scheme, we conduct a hypothesis
test on the feature traces to detect the transition of the
network from the normal to abnormal state. This test is based
on the assumption that the one dimensional data obtained
after the projection has a Gaussian distribution. Let the data
corresponding to normal periods of the network’s operation
has pdf p0 = η0(µ0,Σ0), while during periods of abnormal
behavior (i.e. link failure) the feature data has distribution
of p1 = η1(µ1,Σ1). Since the data is Gaussian, its mean
and variance (µ0,Σ0) and (µ1,Σ1) respectively, are sufficient
statistics for two class hypothesis testing. The unknown change
points from normal to abnormal operation of the network are
estimated by comparing the posterior probabilities computed
using Bayes theorem. The hypotheses to be tested are:

• H0[null] : Y ∼ η0(µ0,Σ0)
• H1[alternative] : Y ∼ η1(µ1,Σ1)

We assume that there exists an a priori probability associated
with the hypothesis: P (H0) = π and P (H1) = 1 − π. For
simplicity, we assume that cij , the cost incurred by choosing
hypothesis Hi when hypothesis Hj is true, has uniform cost.
The likelihood ratio test between H0 and H1 is L(y) = p1(y)

p0(y) .
Thus the corresponding Bayesian decision rule is:

δB(y) =

{

1, if L(y) ≥ τ
0, if L(y) < τ

(6)

For a given τ ′, the rule above can be proved to have a form
as follows

δB(y) =

{

1, if y ≥ τ ′

0, if y < τ ′ (7)

The next step of our proposed method is to obtain the decision
boundary τ ′ using the training data set. Once the decision
boundary is obtained, for the new incoming test data, all we
then need to do is to project the high-dimensional data onto
low dimensional ones with w, then compare its value to the
decision boundary to make a decision.

Let gi(y), i = 1, 2, · · · denote the discriminant function for
data in class i. Then we have

gi(y) = −
1

2
(y − µi)

tΣ−1
i (y − µi) −

1

2
ln |Σi| + ln P (wi)

For every observation y, Bayes decision rule is to assign a
data y to class wi if

gi(y) > gj(y) ∀ j 6= i (8)

We can now calculate the Bayesian decision boundary y0 using
gi(y) and y0 is the decision boundary τ ′. In Algorithm 2 we
present the overall pseudo-code for detection the link failure
and alarm generation.

E. Computational Complexity

The computational complexity of the proposed mechanism
is of considerable practical importance in order to evaluate
the feasibility of its deployment. In general, we care about
how the algorithm scales as the feature dimension increases.



Algorithm 2 Process for Anomaly Detection and Alarm Raise
xN×1: N-dimensional feature vector;
XN×n: feature vector sequence of n
samples;
w: projection direction;
Y1×n: feature vector sequence after
projection;
τ ′: Bayes decision boundary;
A(k): alarm from feature k;
A: final alarm indicating a link failure;
for all features do

DATA TRAINING
use clustering to classify n samples into normal and
abnormal classes;
obtain w;
for all i such that 0 ≤ i ≤ n do

Y (i) = wtX(i);
end for
use Bayes discriminant function test to obtain τ ′;
DATA TESTING
get new test data x;
y = wtx;
if y > τ ′ then

A(k) = 1;
else

A(k) = 0;
end if

end for
A = 1;
for all feature A(k) do

A = A AND A(k);
end for

Moreover, we are typically less concerned with the complexity
of learning process which only needs to be done only, at the
beginning of the detection process. We are more concerned
with the complexity of making a decision, which needs to be
done online as new update messages and the corresponding
measurements are received.

In our mechanism, we used a clustering algorithm to classify
and label the training data. Although this algorithm is compu-
tationally intensive, it needs to be done only once. Then we
converted the high dimensional feature vectors into a single
dimension. In the next step, the decision boundary τ ′ under
a Bayesian framework was obtained using the training data
set. For the new incoming testing data, all we then need to do
is to project the high-dimensional data onto one-dimensional
ones with w, then compare its value to τ ′ to make a decision,
which takes little computational effort. If the incoming data is
classified as abnormal, an alarm is raised. This computational
ease of our mechanism allows it to work efficiently and makes
it suitable for the online detection of link failures using BGP
data.

IV. GENERALIZATION OF DETECTION METHOD

A BGP router typically deals with more than one hundred
thousand different address prefixes. These prefixes need to be
simultaneously treated by the detection mechanism and all
these treatments should be used together to detect and identify
a given link failure. One could detect link failures by collecting
BGP message traces for all prefixes, and applying temporal
statistical detection methods to each prefix. In general, this is
impractical given the large number of prefixes to deal with
since monitoring all prefixes is extremely resource intensive.
Instead, we develop a simpler and more practical technique
for diagnosing link failures. Given that a volume anomaly
propagates through the network, we make use of the fact that
we should be able to observe the anomaly on most prefixes
located in the same geographic area or same AS number when
a link outage occurs. What’s more, the same parameters in the
Bayesian hypothesis test can be used for all prefixes in the
same geographic area within the same AS. These parameters
need to be updated to reflect current network status for each
new link failure event detection. To complete the detection
algorithm described in the previous section, our generalized
algorithm 3 is given in Algorithm 3.

Algorithm 3 Generalized Anomaly Detection Process
repeat

Monitor the count of different ASPaths on BGP routers;
if abrupt volume change detected then

Extract target problem AS number from ASPath;
for targeted AS(i) do

choose a small subset of prefix in AS(i);
for all prefix in subset do

use BGP trace for the target prefix as both training
and testing data;
if alarms raised then

update parameters in Bayesian hypothesis test-
ing;
break;

end if
end for
for all the remaining prefixes in AS(i) do

apply Bayesian hypothesis test to detect anomaly;
end for

end for
end if

until monitoring process terminated

V. VALIDATION

Three network outage events that occurred over the past
year are used to test our detection algorithm. The first event
is that of a submarine fiber cable cut in Pakistan on June
27, 2005. The cable was Pakistan’s main link to the Internet
and the system took 12 days to repair and was finally fixed
on July 8, 2005. During this period, networks in Pakistan
were unreachable from the rest of the world. The second



outage incident on which we tested our mechanism occurred
on May 25, 2005 in Moscow, Russia. The whole Moscow
city was cut off electricity and Internet on that day. Parts of
the Moscow region and the Tula region were also affected.
The third event that we consider is that of June 21, 2005,
when a rat chewed through one of the North Island, New
Zealand’s main communications cables while at the same time,
a Telecom New Zealand workman accidentally damaged a
second main cable in another part of the country. The resulting
outage lasted for five hours and affected both mobile and
wired communications. The BGP updates message that were
used as inputs to our detection mechanism were obtained
from www.routeviews.org, collected by the University
of Oregon. The BGP messages were collected from 32 BGP
peers, which involve several locations around the Internet.
Note that while the data traces available from the University
of Oregon are updated after noticeable delays and might not
capture the present picture of a network but reflect a past
image, our proposed method is designed to run in actual BGP
routers which obtain update messages from its peers in real
time. Thus in actual deployments of our scheme, the update
message traces would be available at the routers without any
delay, facilitating the real time detection of link failures.

A. Training Data

The training data that we used for initially labeling the data
using the clustering algorithm described in Section III-B and
then for obtaining the projection direction w and the Bayesian
decision boundary τ ′ corresponds to 21 days of BGP traces
for the period between June 22, 2005 and July 11, 2005.
This period includes the outage in Pakistan and the training
data set we use is BGP update messages with destination
prefix 202.163.120.0/24, which is the Cyber Internet Services
(Pvt) Ltd. network in Karachi, Pakistan. The traces from
each of the 32 BGP monitoring peers was processed every
15 minutes to obtain the time series of the feature vectors.
We first extracted the feature corresponding to the number of
different ASPaths for the given prefix, from each peer and
considered it as one component of the feature vector x. Thus
x is a 1×32 dimensional data. We then obtained a time series
of the feature vector x1, · · · , xn for the 21 days observation
time period to obtain the projection direction w using the
methodology outlined in Section III-C. After assuming that the
apriori probabilities are P (w1) = P (w2) = 1/2, the Bayesian
decision boundary τ ′ was then calculated by comparing g1(y)
and g2(y). This τ ′ as a linear boundary divides the sample
space into two subspaces: normal and abnormal, and will be
used as decision boundary for the test data. This procedure
was then repeated for the feature vector corresponding to the
number of withdrawl messages for the given prefix.

B. Test Results

We now present the results obtained after applying our
mechanism to detect the three link failure incidents mentioned
previously, starting first with the Pakistan event. For testing the
performance of the proposed mechanism, we used a different

network prefix, namely 202.165.232.0/24, which is Apollo
Telecom (Pvt.) Ltd. in Islamabad, Pakistan. The detection
results are shown in Figure 3. The area between the two ver-
tical lines shows the period during which the link was down.
Figure 3 (a) shows the alarms generated when feature vectors
corresponding to the ASPath count is used for detection. As
can be seen, a number of alarms are generated within the
anomaly period with zero false alarms, validating the proposed
detection mechanism.

Detection result for the case where the number of withdrawl
messages from each peer is used as the feature vector is
shown in Figure 3 (b). We observe that while we still obtain
alarms in the period when the link was down, there is one
false alarm. The probability of such errors can be reduced
and the detection mechanism can be made more robust if
the detection results from the two features are combined to
give the final alarm. This is achieved by clustering the alarms
from the two features. For each instant when the detection
process is invoked, we now also consider the past results of
the detection process in an interval of length τ . If there is any
alarm raised in this interval τ , we set Di(τ) = 1, or else we
set Di(τ) = 0 where i ∈ {0, 1} represents which feature was
used for the detection process. The final alarm is generated if
and only if detection using both the features gives an alarm
i.e., the final detection rule is D(τ) = D0(τ) AND D1(τ)
where D0 represents detection using ASPath count and D1 is
detection using withdrawl count. This clustering mechanism
achieves accurate detection results and a low false alarm rate.
Figure 3 (c) shows the results obtained using our clustering
mechanism with τ = 4. We note that our final detection
mechanism accurately detected the anomalies during June 27,
2005 and July 8, 2005, without any false alarms.

To further analyze the performance of our algorithm, we
also applied it on two other outage events: May 25, 2005
Moscow outage and June 21, 2005 New Zealand fiber cut.
For the Moscow outage, the prefix used for training data is
194.220.204.0/23 located in Moscow, Russia and the Testing
data is for prefix 194.85.113.0/24, which is in Khabarovsk,
Russia. Figure 4 (a), (b) and (c) show detection results when
the ASPath count, the withdrawl message count and the
clustering of the alarms from the two traces, respectively, are
used for detection. Again we observe that the false alarm
arising while using the withdrawl message count feature is
eliminated by using the clustering mechanism to generate the
final alarm.

For the June 21, 2005 New Zealand outage, our train-
ing prefix is 210.54.10.0/23 while the testing prefix is
210.54.134.0/24, both of Telecom New Zealand Ltd, Auck-
land, New Zealand, with detection result shown in figure 5 (a),
(b) and (c) using the ASPath count, withdrawl count and the
final detection result using the clustering mechanism. Again
we note that the final result has no false alarms.

C. Probability of Error

In the Bayesian framework used in this paper, there are
two ways in which a classification error can occur: either an
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Fig. 3. Detection results for the Pakistan cable cut.
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Fig. 4. Detection results for the Moscow outage.
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Fig. 5. Detection results for the New Zealand outage.

observation y falls in w2’s region and the true state of nature
is w1, or y falls in w1 and the true state is w2. Since these
events are mutually exclusive, the probability of error is

P [e] = P (y ∈ w2, w1) + P (y ∈ w1, w2)

= P (y ∈ w2|w1)P (w1) + P (y ∈ w1|w2)P (w2)

=

∫

y∈w2

p(x|w1)p(w1)dy +

∫

y∈w1

p(x|w2)p(w2)dy (9)

Bayesian optimal decision boundary gives the lowest proba-
bility of error by choosing the decision boundary which make
the P [e] un-reducible. If we assume P (y|w1) and P (y|w2)
to be Gaussian, the probability of error can then be calculated
using the distribution function of Gaussian variables. However,
since this is difficult to calculate, we use the Bhattacharyya

Bound to estimate the error probability:

khalf =
1

8
(µ2 − µ1)

′

(

Σ1 + Σ2

2

)−1

(µ2 − µ1)

+
1

2
log

(

(

Σ1 + Σ2

2

)−1

/
√

|Σ1||Σ2|

)

(10)

and

Perror =
1

2
exp(−khalf ) (11)

In our detection for the Pakistan outage using number of
ASPaths as features, we obtained the sample means µ1 = -
1.3658 and µ2 = -354.3504; and sample covariance Σ1 =
327.8203 and Σ2 = 25.1643. Using Eqns. (9) and (10) the
theoretical probability of error is 1.6978 × 10−39, which
is rather small. We also calculated the probability of error



by comparing K-Means classification results with Bayesian
classification results. Perror = 0.032 in our tests for the
Pakistan event. Probability of errors in other two tests for
Moscow and New Zealand outage is also small, which are
0.001 and 0.0012, respectively, using number of ASPaths as
features.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a pattern classification based
mechanism for detecting network link failures using BGP
traces. Our data set covers more than 40 days of data, collected
from 32 BGP monitoring nodes from various locations in the
world. Three typical network link failure events are used to
test our detection algorithm. Our detection results show that
the proposed mechanism is very effective and has a low error
probability and low computational complexity.
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