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Abstract— Recent outbreaks of virus and worm attacks tar-
geted at cell phones have bought to the forefront the seriousness
of the security threat to this increasingly popular means of
communication. In this paper, we develop an analytic framework
for modeling the dynamics of malware propagation in networks of
mobile smart phones. We then characterize the conditions under
which the network may reach a malware free equilibrium and
derive the necessary conditions for its global asymptotic stability.
The model accounts for malware transfers through a number of
communication paradigms including the Internet, the telephone
network, Bluetooth and WiFi in addition to accounting for the
mobility of cell phones and the impact of the heterogeneous
environments they pass through on the malware dynamics.

I. INTRODUCTION

While malware such as worms and viruses have been
prevalent in the Internet for more than a decade, such attacks
have recently been reported in cell phones. Proof-of-concept
worms for smart phones like cabir [4] as well as malicious
code such as the skulls [6] and mosquito [5] trojans
have recently been reported. In August 2005, mobile phones at
the world athletics championship held at Helsinki’s Olympic
stadium were compromised by a virus attack [12]. With the
growing popularity and prevalence of advanced cell phones
with a myriad of communicational capabilities, such threats are
extremely important and capable of causing extensive damage.

The communication capabilities of the new generation of
cell phones can be broadly grouped into three categories
(1) access to the telecom network through technologies like
(GSM) and code division multiple access (CDMA) (2) access
to the Internet which may occur either via accessing the
telecom network or by using Bluetooth or wireless local area
networking (WLAN) interfaces and (3) communication with
other smart phones in its physical vicinity through Bluetooth,
infra red interfaces etc. Consequently, the possible ways in
which malware may spread in these devices are (1) malware
downloads from the Internet and peer to peer networks (for
example the skulls and mosquito trojans [5], [6]), (2)
phone to phone spread which results when a compromised
phone sends the malware to other phones either by random
dialing or dialing the numbers in the address book (for
example using mechanisms similar to the timfonica virus
in Spain, 2000 and the commwarrior and mabir worms)
and (3) phone to phone or computer to phone spread through
Bluetooth or WLAN interface (for example the cabir worm
[4]). Node mobility and the resulting variations in the number
of other devices in the vicinity of a phone also affects

the propagation of the malware, specially those that spread
through the Bluetooth or WLAN interfaces.

New generation smart phones are largely vulnerable to, and
can act as the catalysts for the spread of mobile viruses and
thus are important from a practical perspective. There exists
a slew of modeling work characterizing numerous aspects
of worm spread, [10], [9], [11] to name a few, but seldom
has the setting been a wireless environment. Also, unlike our
model, existing work only considers static nodes. In this paper
we consider the combined effect of all the three spreading
mechanisms mentioned above and develop a model to char-
acterize the spread of malware in networks of smart phones.
The model also accounts for the mobility in cell phones and
accommodates the effect of heterogeneity in the locality on the
spreading dynamics. Compared to existing epidemic models
for malware propagation in computer networks which assume
static hosts, this is one of the key features of our model. The
model is then used to derive the necessary conditions for the
existence of a malware free equilibrium and conditions for its
global asymptotic stability.

The rest of the paper is organized as follows: Section II
presents the analytical framework and the model is further
analyzed in Section III. We present numerical results and sen-
sitivity analysis in Section IV and finally, Section V presents
the concluding remarks.

II. MODELING FRAMEWORK

The model developed in this section is based on a com-
partmental epidemic model with four classes. Unlike existing
literature on epidemic models for computer networks, our
model captures the effect of node mobility and its effect
on the rate of malware spread when nodes move through
heterogeneous environments with different conditions. At any
given point in time, a cell phone is in one of the following four
classes: susceptible, exposed, infected and recovered. Initially
all phones belong to the susceptible phase and stay there until
they come in contact with the malware. Once the malware
propagates into a susceptible cell phone, the phone moves to
the exposed state which corresponds to the latent period of
an infection. In our case this corresponds to the case when
a malware is sent to a phone which is currently turned off.
The phones then stay in the infected state until they are either
patched or quarantined upon which they move to the recovered
state and stay there.

In our model, phones may enter or leave the network over
time. However, the birth and death rates are the same and



the total population at any given instant is assumed to be a
constant. This assumption is based on the fact that the time
for a fast worm to spread can be considered to be quite small
compared to the rate at which the cell phone population in a
country or city changes. Also, we assume that the time taken
to download the malware is quite small and may be considered
instantaneous. This assumption may be justified by noting the
small size of most worms as well as the increasingly high data
rates achieved by the new generation of smart phones.

A. Model for Spatial Dynamics

Due to the inherent mobility associated with cell phone
users, over the course of a day, the phone may move through
many locations such as residential or office areas, each with
different phone densities and number of infected phones. We
classify each possible location that a cell phone may visit as
one of P patches or regions [3]. Each patch is characterized
by its own infection rate and visitation probabilities. Thus an
airport and a small stadium, with roughly the same number
of phones and where phone users stay for roughly equal
times are treated as belonging to the same patch. Similarly,
two residential areas in opposite sides of a city or in two
different cities may be classified into the same patch if they
have approximately the same population density. This reduces
the number of equations in our model to 4P . We denote the
rate of travel from patch q to patch p by mpq . The rate of
change in the susceptible (Sp), exposed (Ep), infectious (Ip)
and recovered (Rp) populations in patch p, 1 ≤ p ≤ P due to
only the movements between the patches is given by

dXp

dt
=

P
∑

q=1

mpqXq −

P
∑

q=1

mqpXp (1)

where Xp ∈ {Sp, Ep, Ip, Rp} and we actually have four sets
of equations. With this basic model for the movement of cell
phones between geographical regions, we now incorporate
the effect of the other factors on the malware propagation
dynamics.

B. Incorporating Infection Mechanisms

We first consider the spread of the malware due to down-
loads from the Internet. Given that a cell phone is on and in
patch p (which happens with probability pp

on and is derived in
Equation (8)), we denote the probability that an arbitrary cell
phone in patch p downloads the malware from the Internet at
time t by γp(t). Also, γp(t) is a decreasing function of time
since users are less likely to download a malware with time
because of factors like awareness and publicity etc.

Now, only the susceptible cell phone population may down-
load the malware from the Internet and the number of such
downloads per second is proportional to the susceptible popu-
lation in the patch. Also, since the downloads take a very small
amount of time, the susceptible cell phones move directly to
the infected phase. The rate of change in the populations of

the four classes due to downloads from the Internet is then

dSp

dt
= −pp

onγp(t)Sp

dEp

dt
= 0 (2)

dIp

dt
= pp

onγp(t)Sp

dRp

dt
= 0 (3)

Now consider the spread of the malware through Bluetooth,
infra red or WLAN interfaces when susceptible phones come
in the physical vicinity of infected phones. We denote by βp

the rate at which a cell phone in patch p tries to infect other
phones through these interfaces. Again, since only phones
currently turned on may be infected with this mechanism
and the malware transfer between two devices is considered
instantaneous, the susceptible population directly moves to the
infectious state. The contributions to the rate of change of
populations of the four classes in this case are given by

dSp

dt
= −pp

onβpSp

Ip

Np

dEp

dt
= 0 (4)

dIp

dt
= pp

onβpSp

Ip

Np

dRp

dt
= 0 (5)

Finally, we consider the case where the malware may spread
when a compromised phone randomly or selectively dials other
numbers and transfers the malware through MMS or SMS.
The dialed number may be in any of the P patches and thus
a phone in one patch may infect a phone in another patch.
The rate of such infections is proportional to the strength of
the infectious population in the patch and given by Ip/Np

for patch p. We denote the rate at which a compromised
phone tries to dial other numbers by α. Also, some of the
randomly dialed numbers or out-dated numbers in the address
book may be non-existent and thus all infection attempts will
not be successful. We denote by ρ the probability that a dialed
number is non-existent. Finally, some of the dialed cell phones
may be switched off and in these cases, we assume that the
malware gets queued up in the base station and is delivered
once the phone is switched on. For this spreading mechanism,
we thus have

dSp

dt
= −

P
∑

i=1

α(1 − ρ)Sp

Ii

Ni

dIp

dt
= 0 (6)

dEp

dt
=

P
∑

i=1

α(1 − ρ)Sp

Ii

Ni

dRp

dt
= 0 (7)

Note that in the equations above, all phones infected through
random or selected dialing pass through the exposed state,
even though the phones that are turned on get infected im-
mediately. This does not result in any inaccuracies because in
Section II-C, we evaluate and incorporate the estimated time
that a phone spends in the exposed state in patch p, 1/εp, based
on whether it was turned on or not when it was infected.

C. Combined Model

We now combine the various contributions along with the
arrival and departures of cell phones to complete the model.
First, we note that while new phones may join only in the



susceptible phase, cell phone users may decide to quit the
network permanently while they are in any of the four states.
With the average phone lifetime in patch p denoted by 1/dp,
the rate of population change due to the joining of new phones
and departure of old ones is −dpEp, −dpIp and −dpRp for
the exposed, infected and recovered classes and dpNp − dpSp

for the susceptible state. Note that the birth term of dpNp is
devised to keep the total cell phone population constant.

The average time spent by an arbitrary cell phone in the
exposed phase in patch p is denoted by 1/εp. With 1/λp

on and
1/λp

off denoting the average on and off times of a cell phone
in patch p, we have

pp
on =

1/λp
on

1/λp
on + 1/λp

off

=
λp

off

λp
on + λp

off

(8)

(9)

and pp
off = 1 − pp

on. The expected duration of the ex-
posed state in patch p, 1/εp = E[latent period|on]pp

on +
E[latent period|off]pp

off , is then given by

1

εp

=
λp

on

λp
off (λp

on + λp
off )

(10)

Exposed cell phones in patch p leave the exposed state at a
rate of εpEp and thus enter the infected state at the same rate.
Finally, with 1/δp denoting the average time spent by a cell
phone in patch p in the infected state, infected phones leave
the infected state at a rate of δpIp and enter the recovered
phase at the same rate.

Combining the models of the previous two subsections with
the contributions to the population change rates described
above, we obtain the following equations which complete our
model for malware propagation in cell phones:

dSp

dt
= dp(Np − Sp) − pp

onγp(t)Sp − pp
onβpSp

Ip

Np

−

P
∑

i=1

α(1 − ρ)Sp

Ii

Ni

+

P
∑

q=1

mpqSq −

P
∑

q=1

mqpSp (11)

dEp

dt
=

P
∑

i=1

α(1−ρ)Sp

Ii

Ni

− (dp+εp)Ep +

P
∑

q=1

mpqEq

−

P
∑

q=1

mqpEp (12)

dIp

dt
= pp

onγp(t)Sp + pp
onβpSp

Ip

Np

− (dp + δp)Ip

+εpEp +

P
∑

q=1

mpqIq −

P
∑

q=1

mqpIp (13)

dRp

dt
= δpIp − dpRp +

P
∑

q=1

mpqRq −

P
∑

q=1

mqpRp (14)

where we have Np = Sp + Ep + Ip + Rp,
∑P

p=1
Np = C,

Np > 0 and Sp, Ep, Ip, Rp ≥ 0 at t = 0.

III. MODEL ANALYSIS

In this section we analyze the model presented in the
previous section to obtain the necessary conditions for the
global asymptotic stability of the malware free equilibrium.

A. Mobility Model

We start with with mobility model and in the following,
derive some properties governing the equilibrium. By adding
Equation (11), (12), (13) and (14) and noting that Np =
Sp + Ep + Ip + Rp we obtain the following equation for the
population of cell phones in patch p

dNp

dt
=

P
∑

q=1

mpqNq −

P
∑

q=1

mqpNp (15)

With the array N = [N1, · · · , Np]
t comprising of the cell

phone population in each patch, we have

dN

dt
= MN (16)

where the mobility matrix M is given by

M =













−
∑P

q=1
mq1 m12 · · · m1P

m21 −
∑P

q=1
mq2 · · · m2P

...
...

. . .
...

mP∞ mP · · · −
∑P

q=1
mqP













(17)
We then have the following claim about the propagation of
the endemic equilibrium from one patch to another:

Claim 1 If the system described by Equations (11)-(14) is at
an equilibrium and the malware is in endemic equilibrium in
patch p, then the malware is also at an endemic equilibrium
at all patches that have access to patch p. In particular, if M
is irreducible, the system is at an endemic equilibrium in all
patches.

Proof: Without loss of generality, assume p = 1 and
since this patch is in endemic equilibrium, E1 + I1 > 0. For
any other patch q, q 6= 1, adding Equations (12) and (13) we
have

d

dt
(Eq + Iq) =

P
∑

i=1

α(1 − ρ)Sq

Ii

Ni

− dq(Ep + Iq) − δqIq

+pq
onγqSq + pq

onβqSq

Iq

Nq

+
P

∑

r=1

mqr(Er + Ir) −
P

∑

r=1

mrq(Eq + Rq)

We prove the claim based on contradiction. Assume that Eq =
Iq = 0 and mq1 > 0 i.e. patch q is malware free even though it
has direct access to patch p. Then, the equation above reduces
to

0 =

P
∑

i=1

α(1− ρ)Sq

Ii

Ni

+ pq
onγqSq +

P
∑

r=1

mqr(Er + Ir) (18)



Since all quantities in the equation above are non-negative, we
have

0 =

P
∑

r=1

mqr(Er + Ir) (19)

which in turn implies E1+I1 = 0 meaning patch 1 is malware-
free leading to a contradiction. Thus the malware in patch q
is at an endemic equilibrium.

Above, we proved that any node with direct access to patch
p will also be in an endemic equilibrium. Using the same set of
arguments above, we can show that all patches that are directly
connected to patch q will also be in endemic equilibrium. Thus
patches not directly connected to p but at a distance of 2 are
also in endemic equilibrium. By induction, all patches belong-
ing to the same strongly connected component of the digraph
as patch p will be at an endemic equilibrium. A sufficient
condition for all patches to be in endemic equilibrium is then
for M to be irreducible since then the entire digraph is strongly
connected.

B. Malware Free Equilibrium

We now derive the conditions for the global stability of the
malware free equilibrium. In [2] it has been proved that if M
is irreducible then the mobility equation described in Equation
(16) has a positive equilibrium which is asymptotically stable.
The solution for this equilibrium given by

Np = N̂p =
C

1 + ItP−1
(M(p))−1mp

> 0 (20)

where M(p) denotes the matrix M with its pth row and
column deleted, ItP−1

= [1, · · · , 1] a vector with P − 1

columns and mp is a vector formed from the pth column of M

by deleting its pth entry. The malware free equilibrium then
exists in patch p with Ŝp = N̂p and Êp = Îp = R̂p = 0.

The local stability of the system depends on the basic
reproduction number R0, which in turn depends on the system
model. In [1] “next generation matrices” have been proposed
to derive the basic reproduction numbers and we follow
this approach for our model. In this method, the flow of
individuals (cell phones in our case) between the states are
written in the form of two vectors F and V which describe
the inflow of new infected individuals and all other flows in the
system, respectively. These vectors are then differentiated with
respect to the state variables, evaluated at the malware free
equilibrium, and only the part corresponding to the infected
classes are then kept to form the matrices F and V , i.e.,

F =

[

∂Fi

∂xj

(x0)

]

and V =

[

∂Vj

∂xj

(x0)

]

with 1 ≤ i, j ≤ m

(21)
where Fi and Vi are the ith entries of F and V , xi is the
ith system state variable with ẋi = Fi(x) − Vi(x), x0 is the
malware free equilibrium and m is the number of infectious
states.

In our model, we have m = 2P corresponding to the
E and I states in each patch. Ordering the infectious states

according to the patches, i.e., E1, E2, · · · , EP , I1, I2, · · · , IP ,
from Equations (11)-(14) we have

Fp =











0
∑P

i=1
α(1 − ρ)Sp

Ii

Ni

pp
onγp(t)Sp + pp

onβpSp
Ip

Np

0











(22)

and

Vp =























(

− dp(Np−Sp) + pp
onγp(t)Sp + pp

onβpSp
Ip

Np
+

∑P
i=1

α(1−ρ)Sp
Ii

Ni
−

∑P
q=1

mpqSq+
∑P

q=1
mqpSp

)

(dp + εp)Ep −
∑P

q=1
mpqEq +

∑P
q=1

mqpEp

(dp + δp)Ip − εpEp −
∑P

q=1
mpqIq +

∑P
q=1

mqpIp

δpIp − dpRp +
∑P

q=1
mpqRq −

∑P
q=1

mqpRp























(23)
Differentiating F and V with respect to
E1, E2, · · · , EP , I1, I2, · · · , IP and evaluating at the malware
free equilibrium {Ŝp, 0, 0, 0} we have

F =

[

0 G
0 H

]

and V =

[

A 0

−C B

]

(24)

with 0 representing a P × P zero matrix and

G = α(1 − ρ)











S1

N1

S1

N2

· · · S1

NP
S2

N1

S2

N2

· · · S2

NP
...

...
. . .

...
SP
N1

SP
N2

· · · SP
NP











(25)

H = pon











β1
S1

N1

0 · · · 0

0 β2
S2

N2

· · · 0
...

...
. . .

...
0 0 · · · βP

SP
NP











(26)

M̃ =











−
∑

q 6=1
mq1 m12 · · · m1p

m21 −
∑

q 6=2
mq2 · · · m2p

...
...

. . .
...

mP1 mP2 · · ·
∑

q 6=P mqP











(27)

A =











d1 + ε1 0 · · · 0
0 d2 + ε2 · · · 0
...

...
. . .

...
0 0 · · · dP + εP











− M̃ (28)

B =











d1 + δ1 0 · · · 0
0 d2 + δ2 · · · 0
...

...
. . .

...
0 0 · · · dP + δP











− M̃ (29)

C =











ε1 0 · · · 0
0 ε2 · · · 0
...

...
. . .

...
0 0 · · · εP











(30)



We then have the following result for the global asymptotic
stability of the malware free equilibrium:

Claim 2 For the network of smart cell phones described in
Equations (11)-(14), with R0 = ρ(FV −1), the malware free
equilibrium is globally asymptotically stable if R0 < 1 and
equilibrium is unstable if R0 > 1. Here ρ() denotes the
spectral radius.

Proof: The results of Theorem 2 of [1] are directly
applicable here for showing the local stability (i.e. stable if
R0 < 1 and unstable if R0 > 1). To prove the global
stability, consider the non-autonomous system consisting of
Equations (12), (13) and (14) with the substitution Sp =
Np − Ep − Ip − Rp. We then have

dEp

dt
=

P
∑

i=1

α(1 − ρ)(Np − Ep − Ip − Rp)
Ii

Ni

−(dp + εp)Ep +

P
∑

q=1

mpqEq −

P
∑

q=1

mqpEp (31)

dIp

dt
=

[

pp
onγp(t) + pp

onβp

Ip

Np

]

(Np − Ep − Ip − Rp)

−(dp + δp)Ip + εpEp +
P

∑

q=1

mpqIq −
P

∑

q=1

mqpIp (32)

dRp

dt
= δpIp − dpRp +

P
∑

q=1

mpqRq −
P

∑

q=1

mqpRp (33)

The system of equations above can be written as

x′ = f(t, x) (34)

where x is a 3P vector consisting of Ep, Ip and Rp. Now,
the malware free equilibrium of the cell phone network de-
scribed in Equations (11)-(14) is given by {Ŝp, 0, 0, 0} which
corresponds to the equilibrium x = {0, 0, 0} in Equation (34).
From Equation (20) we have Np(t) → N̂p as t → ∞ and
substituting this value in Equations (31)-(33) we have

dEp

dt
=

P
∑

i=1

α(1 − ρ)(N̂p − Ep − Ip − Rp)
Ii

N̂i

−(dp + εp)Ep +

P
∑

q=1

mpqEq −

P
∑

q=1

mqpEp (35)

dIp

dt
=

[

pp
onγp(t) + pp

onβp

Ip

N̂p

]

(N̂p − Ep − Ip − Rp)

−(dp + δp)Ip + εpEp +

P
∑

q=1

mpqIq −

P
∑

q=1

mqpIp (36)

dRp

dt
= δpIp − dpRp +

P
∑

q=1

mpqRq −

P
∑

q=1

mqpRp (37)

which is a set of three equations and three unknowns. Thus the
systems of Equations (11)-(14) is asymptotically autonomous

with limit equation

x′ = g(x) (38)

We now show that x = 0 is a globally asymptotically stable
solution for the limit system above. Consider the linear system

x′ = Lx (39)

where x is a 3P dimensional vector consisting of Ep, Ip and
Rp. Substituting N̂p/N̂i for Sp/Ni in L we obtain

dEp

dt
=

P
∑

i=1

α(1 − ρ)Ii

N̂p

N̂i

− (dp + εp)Ep +

P
∑

q=1

mpqEq

−

P
∑

q=1

mqpEp (40)

dIp

dt
=

[

pp
onγp(t) + pp

onβp

Ip

N̂p

]

N̂p − (dp + δp)Ip

+εpEp +

P
∑

q=1

mpqIq −

P
∑

q=1

mqpIp (41)

dRp

dt
= δpIp − dpRp +

P
∑

q=1

mpqRq −

P
∑

q=1

mqpRp (42)

While Equations (37) and (42) are the same, comparing
Equations (35) and (40) and Equations (36) and (41) we note
that g(x) ≤ Lx for all x ∈ R

3P
+ . We also note that Rp does

not appear in the Equations for Ep and Ip. Let x̃ be the part
of the vector corresponding to the variables Ep and Ip and let
L̃ be the corresponding sub-matrix of L. Now, the method of
[1] for proving the local stability of the equilibrium can also
be used to show the stability of the equilibrium point x̃ = 0
for the subsystem x̃′ = L̃x̃, with L̃ = F −V . This implies that
if R0 < 1, then the equilibrium point x̃ = 0 of the subsystem
x̃′ = L̃x̃ is stable. When x̃ = 0, Equation (14) becomes

dR

dt
= (M − D)R (43)

where M is the mobility matrix given in Equation (17),
R = (R1, · · · , RP)t and D is a diagonal matrix with the pth

diagonal entry equal to dp. Now, it can be easily shown that
(−M) is a singular M-matrix. Using the result A3 on page
179 of [13] it then follows that −M + D is a non-singular
M-matrix. Thus the equilibrium point R = 0 of this linear
system in R is stable. This implies that the equilibrium point
x = 0 of the system x′ = Lx described in Equation (39) is
stable when R0 < 1. From a standard comparison theorem,
such as Theorem 1.5.4 of [14], it then follows that x = 0
is a globally asymptotically stable equilibrium of the system
x′ = g(x) in Equation (38). Now for R0 < 1, the linear
system in Equation (40) and (41) has an unique malware free
equilibrium since its coefficient matrix F −V is non-singular.
To complete the proof of global stability, one then only has
to look at the result of Theorem 4.1 of [15] on asymptotically
autonomous equations.
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Fig. 1. Impact of various parameters on R0

IV. SENSITIVITY ANALYSIS

In this section we evaluate the model presented in the
previous two sections in order to explore the impact of various
parameters on the dynamics of malware propagation. To easily
isolate the effects of various parameters, we consider a simple
scenario where the mobility of the cell phones is limited to
two patches.

In Fig. 1 we show the impact of the various parameters
on the basic reproduction number, R0. The basic parameters
used for our results case are: d1 = d2 = 0.25, β1 = 0.51,
β2 = 0.48, ε1 = ε2 = 0.25, δ1 = δ2 = 0.25, N = 20000,
p1

on = p2
on = 0.8, µ = 0.8, λ = 50, ρ = 0.8, α = 0.4,

δ = 0.01, r1 = r2 = 0.5, m12 = 0.1 and m21 = 1. In each
figure, the parameters listed above are used except for two
parameters, indicated in the caption of each figure, which are
varied to observe their effect on R0. We observe that α is more
dominant as compared to pon and ρ in terms of its effects
on R0. This is evident from Figures 1(a) and 1(b), where
the graph shows a faster increase in R0 for high α values
even when the other corresponding parameter is numerically
insignificant. This is intuitive too since a higher dialing rate
increases the likelihood of contacting a susceptible cell phone.
We also note from Fig. 1(c) that for our 2 patch wireless model
parameters, the rate of travel from patch 1 to patch 2, m21,
has a bigger impact as compared to the rate of travel from
patch 2 to patch 1, m12. This is because in the parameters
chosen here, the rate of infections from Bluetooth or WLAN
interfaces is smaller in patch 1 than in patch 2 (β1 < β2).

V. CONCLUSION

In this paper we presented a model for the dynamics of mal-
ware propagation in networks of smart cell phones. Analysis
for the impact of various spreading mechanisms and malware
transfer though a number of communication interfaces as well
as the impact of node mobility was presented. We then derived
the necessary conditions for a malware free wireless network
state as well as the conditions for the global asymptotic
stability of the malware free equilibrium of the network.
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