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Abstract— Active queue management policies and in particular
Random Early Drop (RED) are being pushed as additional mech-
anisms in Internet routers to control congestion and keep network
utilization high. RED’s performance is highly dependent on the set-
tings of its control parameters. However, no firm guidelines exist on
configuring RED parameters and the current suggestions fail to pro-
vide the desired performance scalability. In this paper, we propose
a mechanism to configure RED parameters based on evaluating the
expected instantaneous length of aMx=M=1=K queue. We show
that by setting the RED parametersminth andmaxth to lie on ei-
ther side of this expected queue length, we can ensure that the queue
is not underutilized and flows cut their rates before the onset of con-
gestion. This setting also allows the operating point to perform sat-
isfactorily over a wide range of flow counts thereby allowing for a
higher degree of scalability. We also show that our proposed mech-
anism increases the queue goodput, reduces losses and timeouts and
increases the fairness when compared to existing guidelines. Our
proposals have been verified using extensive simulations.

I. I NTRODUCTION

Traditional buffering techniques in routers are classi-
fied as “passive” and include TailDrop queues which ac-
cept packets till the maximum queue length is reached
and then drop all subsequent packets. In a recent RFC [1]
by the IETF, “active” queue management schemes at the
routers were recommended withrandom early detection
or RED queues [4] as the suggested buffering scheme.
RED queues probabilistically drop incoming packets even
though the queue is not full causing the TCP connec-
tions sharing the queue to reduce their transmission rates
thereby ensuring that the queue does not overflow.

Though RED is being pushed forward for deployment
across the Internet, guidelines for configuring RED pa-
rameters remains an open issue. Recent studies have
shown that careful tuning of RED parameters is required
to extract the benefits promised by RED and for RED
queues to yield performance superior to TailDrop queues
[2], [7]. The dependence of the queue performance on
the operating point also leads to the problem of scala-
bility. The original guidelines for tuning RED queues
was presented in [4]. More recent recommendations on
setting RED parameters are reported in [5] and [10].
These guidelines for setting RED parameters are based
on heuristics which fail to provide desired performance
over a wide range of traffic scenarios.

In this paper we propose a mechanism to configure
RED queues which can also be used to dynamically tune
RED parameters based on the current load. Our mecha-
nism is based on setting parameters based on the expected
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length of aMx=M=1=K queue without early detection,
fed with an arrival process which closely approximates
TCP traffic. Using this expected length to set RED pa-
rametersminth andmaxth ensures that the queue and
the output link is not underutilized. Setting theminth
andmaxth on the either side of the expected queue length
not only addresses the problem of scalability but also pre-
vents the flows from ramping up their rates, by operating
in the RED’s drop region. Since our derivations account
for the incoming traffic on a per flow level rather that the
aggregate traffic, our methodology can also be used to dy-
namically configure RED parameters. The proposed con-
figuration mechanism performs better than existing guide-
lines in terms of the queue goodput, loss rates, number of
timeouts and the fairness amongst flows.

The rest of the paper is organized as follows. In Section
II we present the existing guidelines for configuring RED
queues. We then present our scheme for configuring RED
in Section III. Section IV presents the simulation results
while Section V presents the concluding remarks.

II. BACKGROUND AND RELATED WORK

RED probabilistically drops packets even before the
queue is full based on a weighted average of the total
queue length. By using a weighted average queue as the
decision variable, RED tries to avoid over-reactions to
bursts and instead reacts to long term trends. The reader
is referred to [4] for the detailed RED algorithm. RED of-
fers five control parameters,qlen, maxp, minth, maxth
andwq to tune RED’s dynamics according to require-
ments. However, the impact of the choice of values of in-
dividual parameter on the queue’s performance is depen-
dent on the the values of the other too. Thus a judicious
choice of parameter values is complicated and it is clear
that simple heuristics are not sufficient. We now describe
the RED configuration schemes proposed in literature.

Rough guidelines for configuring RED were presented
in the original RED paper by Floyd and Jacobson [4]. It
was suggested thatwq should be set greater than or equal
to 0.002 andminth �maxth should be sufficiently large
to avoid global synchronization. Also,minth should be
set sufficiently large to avoid underutilization of the out-
put link. A more recent set of guidelines are presented in
[5] which recommends thatmaxth should be three times
minth, maxp should be set to 0.1 andwq should be set
to 0.002. The proposal notes that the optimal setting for
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minth depends on the tradeoff between low average de-
lay and high link utilization and suggest setting it to 5.
But various experiments have shown that these parame-
ters setting can still fail, specially when the queue is hit
with many flows [11], as would be the case in practice.

In [10], Morris provides a RED configuration mecha-
nism based on the number of flows traversing the queue.
He first notes that to avoid excess timeouts, an ideal router
for TCP should buffer more than four packets per flow. If
a TCP keepsw packets in flight, with a round trip timer,
the average packets in flight can be calculated as:

pif(l; r) = (1�O(l; r; w(l)))w(l) (1)

where,O(l; r; w) is the fraction of time spent in timeout
andw(l) is the window size. Then given there aren active
flows and using the average packets in flight, the maxth

can be chosen as

maxth =
3

2
� n � pif(l; r): (2)

At this point the the choice of maxp is limited tomaxp =
3
4 l which keeps the queue somewhat less full. The details
of the derivation are given in [10].

III. RED PARAMETER CONFIGURATION

Recent studies have shown that the buffering should be
proportional to the number of active flows [11]. Further
it has been shown that a per-flow buffering of 5-6 packets
greatly reduces the timeouts by ensuring that losses are
recovered through fast-recovery and fast-retransmit algo-
rithms [11]. Thus the two parameters which determine
the performance of RED are maxp and maxth since they
control the amount of buffering available per flow and the
rate at which packets are dropped. Note that there is a
tradeoff between a conservative/aggressive marking prob-
ability and fairness. While a conservative marking proba-
bility can be unfair, an aggressive marking policy, though
fairer, increases the link loss rate thereby decreasing the
link utilization. However, ifmaxth is quantified prop-
erly, an RED queue can be prevented from behaving like
a Tail-Drop thereby making the choice ofmaxp easier.

In this section we focus on determining an appropri-
ate value ofmaxth as a function of the number of active
flows. Our technique is based on estimating the expected
queue length of the RED queue without early and forced
drops given a number of flows and setting the RED pa-
rametersminth andmaxth to lie on either side of this
expected length. We model RED asMx=M=1=K queue.
The model implies we have ”bulk arrivals” (in the form
of bursts of packets from the competing TCP sources) of
varying sizes to the RED buffer. The interarrival time dis-
tribution of the bulks is given by an exponential distribu-
tion following the assumptions of [7]. The distribution
of packets inside the bulk is modeled by a general dis-
tribution g(x). The bulk size depends on the stationary

window size distribution of the TCP sources and can vary
from 0 tom, wherem is dependent on the loss rates and
the effect of TCP window limitation and has been char-
acterized in [3], [6], [8], [9]. The processing times of the
packets in the router are assumed to be exponentially dis-
tributed with mean1=� and the offered load to the queue
is thus� = E[g(x)]�=�. The buffer sizeK corresponds
to the RED parameterqlen and is the maximum number
of packets that the queue can accommodate. We assume
that if the load is sufficiently high, then at the steady state,
the average queue length and the expectation of the in-
stantaneous queue length will be approximately the same.

Let statei, 0 � i � K, denote that there arei packets
in the queue andp(i) denote the probability that there are
i packets in the system. Assuming that the service rate is
greater than the arrival rate, i.e.� < 1 (the condition for
ergodicity), we may write the steady state equations as

�p(0) = �p(1) (3)

(�+ �)p(r) = �

rX
i=1

p(r � i)g(i)

+�p(r + 1);8 1 � r � m� 1 (4)

(�+ �)p(r) = �

m�1X
i=1

p(r �m+ i)g(m� i)

+�p(r + 1);8 m � r � K � 1 (5)

�p(K) =

mX
i=0

p(k �m+ i)

iX
j=0

g(m� j) (6)

with the constraints
Pm

i=0 g(i) = 1 and
PK

i=0 p(i) = 1.
We use the method of maximum entropy [13] to calcu-

late the probabilitiesp(i) and the expected queue length.
Our system can be characterized using four constraints:
1) normalization (

PK

n=0 p(n) = 1), 2) utilization factor
� = ��=� with

PK
n=0 �0(n)p(n) = � where�0(n) =

min[1;max(0; n)] and �� is the effective arrival rate, 3)
the expected queue lengthE[Q] =

PK

n=0 np(n) and
4) the probability that the queue is full,p(K) which
can be written as

PK

n=0 �1(n)p(n) = p(K) where
�1(n) = max[0; n � K + 1]. We can now use La-
grange’s method of undetermined multipliers to obtain the
set of values forp(n) that maximizes the entropy function
H(p) = �

PK

n=0 p(n)logp(n) subject to the above four
constraints. We get

p(n) = p(0)x�0(n)ynz�1(n); (7)

where x=e��1 , y=e��2 , z=e��3 , and�1, �2 and�3 are the
Lagrangian multipliers corresponding to the constraints 2,
3 and 4. From Equation (7), we can obtain the following
recursions

p(K) = zyp(K � 1) (8)
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p(n) = yp(n� 1); 1 � n � K � 1 (9)

p(1) = xyp(0) (10)

The quantities x, y and z can be calculated by substituting
Equation (7) into the steady state equations and we have

x � y =
�

�
(11)

(�+ �) = �y + �

rX
i=1

y�ig(i) (12)

z =

mX
i=0

yi�m�1
iX

j=0

g(m� j): (13)

The above six equations define the solution to our queue-
ing model. Note that the solutions are generic in nature
and are valid for any arbitrary choice of the burst or win-
dow size distributiong(x). Distributions to characterize
g(x) for TCP sources and to estimate� from the number
of active sources is presented later in the section.

A. Parameter Settings

The expected value of instantaneous queue will be in
terms of the arrival rate and the expectation of distribution
of the bulk size and is given by

f(�; �g) = E[Q] =

KX
i=1

ip(i) (14)

where�g = E[g(x)]. To configure the RED parameters
minth andmaxth, we propose placing them such that
E[Q] lies between them and is equidistant from from both
minth andmaxth, i.e.,

maxth �minth
2

+minth = E[Q] (15)

This allows scalability of the parameter settings as the
number of flows in the queue changes. For moderate in-
crease in the number of flows, the expected queue length
would still be less thanmaxth preventing the RED queue
from behaving like a TailDrop while keeping the utiliza-
tion high. On the other hand, if the number of active
flows decreases, the queue length reduces, allowing the
sources to increase their rates without causing congestion
since the queue has been configured for a larger number
of flows. Now, using the guidelinemaxth = 3minth [5]
we can writeminth andmaxth in terms ofE[Q] as

minth =
E[Q]

2
and maxth =

3E[Q]

2
(16)

The remaining three parameter settings are quite straight-
forward. The maximum queue lengthqlen is determined
by the physical system configuration and is the size of the
queue. The maximum loss ratemaxp is set according to

the loss rate conditions prevailing in the network which
should be around 2% under normal conditions and thus
good guideline would be to setmaxp between 0.05 and
0.1. The parameterwq determines how fast the weighted
average responds to the instantaneous queue lengths. In
[4] quantitative guidelines forwq are presented, in terms
of the size of the transient burst that the queue can accom-
modate without dropping any packets at all and in general
should be less than 0.005 with 0.002 being the default.

An RED queue starts behaving as TailDrop when the
weighted average queue reachesmaxth and all packets
experience a forced drop. A rough estimate of the input
arrival rate at which the expected queue length exceeds
maxth and thus the range of the number of flows over
which the parameter setting is valid can then be obtained
by solving Equation 14 with respect to the arrival rate.
So, the worst case scenario for the RED (when it becomes
Tail-Drop) can be written as

� = F (maxth; �g) (17)

whereF is the inverse mapping of the functionf.

B. Arrival Rate as a Function of the Number of Flows

We now address the issue of estimating the batch arrival
rate� as a function of the number of active flows. We
assume that the reader is familiar with the basic mech-
anisms of TCP like slow-start, timeouts, fast-retransmit
and recovery etc. and is referred to [14] for further de-
tails. For simplicity, we consider the case when all the
sources have the same round trip time (RTT). The case
for heterogeneous RTTs is similar in nature. TCP trans-
mits its packets according to a window based flow control
mechanism and transmits a window’s worth of packets ev-
ery RTT. Thus the batch arrival rate corresponding to each
TCP source is1=RTT . However, when a TCP source en-
counters a loss and goes into a timeout, no packets are
sent till the retransmission timer expires. If we denote the
fraction of time a TCP source spends in timeout by, the
effective batch arrival rate corresponding to each source
is thus(1 � )=RTT . Now, if there areN flows in the
queue, the total batch arrival rate is given by

� =
1� 

RTT
N (18)

We use the derivations of [12] to estimate the fraction of
time a TCP source spends in the timeout phase. From
[12], a TCP source experiencing a loss rate ofp has an
expected timeout durationE[TO] given by

E[TO] = TO
1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1� p
(19)

whereTO is the period of time a sender waits before re-
transmitting an unacknowledged packet. We denote the
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probability that an arbitrary loss leads to a timeout by
Q and the expected duration of a congestion avoidance
phase (where packets are transmitted every RTT) is de-
noted byE[CA]. Q andE[CA] can be expressed as

Q = min

 
1;

(1 + (1� p)3(1� (1� p)E[W ]�3))

(1� (1� p)E[W ])(1� (1� p)3)
�1

!
(20)

E[CA] =

(�
b
2E[Wu] + 1

�
RTT if E[Wu] < Wmax�

b
8Wmax +

1�p
pWmax

+ 2
�
RTT otherwise

(21)
where E[W ] = min(Wmax; E[Wu]) is the ex-
pected value of the window size,E[Wu] = 2+b

3b +q
8(1�p)
3bp +

�
2+b
3b

�2
is the expected value of the uncon-

strained window size andWmax is the receiver’s adver-
tised maximum window size. The fraction of the time the
TCP source spends in timeout is then

 =
QE[TO]

E[CA] +QE[TO]
(22)

C. Window Size Distribution

The window size distribution of TCP flows in ideal
congestion avoidance (TCP flows without timeouts) has
been investigated in [6] and similar results have also been
obtained in [10]. Misra and Ott [8] extend the analysis of
idealized TCP connections for the cases of variable packet
loss rates for RED like queues. In [9] this model is ex-
tended to model the window size distribution for multiple
persistent flows.

While the models described above are obtained using
analytic derivations using a number of simplifying as-
sumptions, the window size distribution of TCP flows
based on empirical measurements is presented in [3]. Us-
ing measurements conducted on a bottleneck link con-
necting two corporate LANs it was shown that the TCP
congestion window size can be approximated by a trun-
cated normal distribution (i.e. with no negative values).
The window distributiong(x) used in the derivations of
this section and of Section III can be characterized using
any of the models mentioned above. In our simulations,
we use the truncated Gaussian distribution of [3] as the
distribution forg(x).

IV. SIMULATION RESULTS

To verify our results, we carried out extensive simula-
tions using the network simulationns[15]. The topology
used for these simulations is shown in Figure 1 where the
router deployed a RED queue. The TCP sources are of the
TCP Reno family and do not employ delayed acknowl-
edgments.

In the first set of experiments, we configure the RED
queue for 48 TCP flows each with an RTT of52ms.
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Fig. 1. Topology used in the experiments. The figure shows values for
two sets of experiments with different link rates with the second set
of values in the parentheses

No. of Loss Rate Timeouts Fairness
Flows Prop Morr Prop Morr Prop Morr

32 5.17 6.35 366 840 0.10 0.19
48 5.72 6.05 642 1472 0.20 0.27
64 6.11 5.88 1113 1861 0.25 0.33

TABLE I

COMPARISON OF LOSS RATES(%), TIMEOUTS AND THE FAIRNESS

OF OUR PROPOSED CONFIGURATION AND THAT PROPOSED IN[10].

Using the expressions of the previous sectionE[Q] was
calculated to be 79.54.g(x) had a truncated Gaussian
distribution with mean 4, variance 4 and the maximum
burst size of 8. Following the guidelines of the previous
section, the RED parameters were set tominth = 40,
maxth = 120,maxp = 0:10, wq = 0:002 and the queue
lengthqlen = 200. Figure 2(a) shows the simulation re-
sults for the instantaneous and average queue length of the
RED queue set with these values and 48 sources. Note
that our derivations predict the expected queue length
quite closely andmaxth is configured high enough to
prevent forced drops. Figures 2(b) and 2(c) show the
simulation results for the RED queue configured with the
same values but with 32 and 64 flows. Note than even
with a 33% change in the number of flows, our configu-
ration keeps the average queue length less than the con-
figuredmaxth showing the scalability of our parameter
configuration. Figure 2 also shows the results for an RED
queue configured with the guidelines in [10]. Following
the guidelines of [10],minth = 20 andmaxth = 60
with the other parameters being the same. Note that this
scheme fails to keep the queue from behaving as a Tail-
Drop queue and the average queue stays at 60 most of the
time, for all three cases. Also, note that the configuration
is not scalable as is evident from the graphs for32 and
64 sources in Figure 2. In Table I we compare the perfor-
mance of the queue with our settings with those from [10]
in terms of the goodput, the drop rates experienced by the
flows, number of timeouts experienced by the flows and
the fairness. We define fairness as the coefficient of vari-
ation of the throughputs of the various sources. Thus a
lower value for the fairness index implies a fairer queue.
Note that our configuration performs better than that of
[10] in almost all cases.

Please note that the proposed value ofminth = 5 and
maxth = 20 in [5] fail to be practical even for moderate
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(a) 48 flows (b) 32 flows (c) 64 flows

Fig. 2. Instantaneous and average queue lengths for an RED queue configured for 48 flows and fed with 32, 48 and 64 flows for the proposed
configuration (top) and that proposed in [10] (bottom).

loads. Hence, we do not present any comparison with
these guidelines.

V. DISCUSSION ANDCONCLUSIONS

In this paper we presented a scalable mechanism to
configure RED queue parameters. While the choice of
RED parameters has a profound impact on the behav-
ior of the queue, parameter configuration has remained
an open area and existing guidelines fail to provide sat-
isfactory performance over a large number of scenarios.
Our method configures the RED parameters based on
the expected queue length of a DropTail queue fed with
the same arrival process. By setting the key parameters
minth andmaxth on either side of this expected queue
length, we ensure that the output link remains utilized
while effectively controlling the rates of the flows pre-
venting the onset of congestion. This also provides scal-
ability to the configuration in the face of changing flow
conditions. Our results show that even for large varia-
tions in the number of flows (> 35 %) the expected queue
length stays below the configuredmaxth preventing the
RED queue from behaving like a DropTail at all times.

Our configuration policy also performs favorably when
compared to the other mechanisms proposed in litera-
ture. Comparisons were made in terms of four parame-
ters: goodput, loss rates, timeouts and fairness and our
scheme outperforms that of [10] in almost all cases. Our
configuration is able to reduce the loss rates by keeping
the RED queue in the random drop part most of the time
thereby preventing the forced drops. Also, the reduction
in the timeouts is a direct consequence of the queue stay-
ing in the random drop part. It is well known that TCP is
able to recover individual losses (which result from ran-
dom drops) without timeouts but in the presence of bursty

losses of a TailDrop queue, TCP resorts to timeouts [12].
The increase in the fairness can also be tied to the reduc-
tion in timeouts.
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