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Abstract—Privacy concerns have become increasingly promi-
nent as machine learning (ML) models are adopted in an
increasing number of sectors. The potential of unintended or
malicious exposure of sensitive data, especially in E-Health
solutions, has increased as these models are shared and deployed
more broadly. In order to highlight the important problem of
property inference attacks, which can result in privacy and data
confidentiality breaches, this study focuses on inferring global
characteristics of the underlying datasets used to train the ML
models. Building upon the intriguing work by Ateniese et al.
on property inference attacks on ML models, we present a
novel property inference attack using Variational Auto-Encoders
(VAEs). VAEs offer a strong answer to the difficult problem of
inferring dataset attributes because of their reputation for being
successful in modeling complex data distributions and producing
synthetic data samples. Experiments on three healthcare and the
US census datasets show that the proposed attack can effectively
reveal underlying patterns in the training dataset with up to
94.29% accuracy. A comparison with the popular meta-classifier
based property inference attacks shows that the proposed attack
not only has better success rate, but can do so with half training
data and a smaller number of shadow models.

Index Terms—property inference, e-health, neural networks,
variational auto-encoders.

I. INTRODUCTION

Machine learning (ML) has emerged as a revolutionary
force in a variety of sectors, highlighting its enormous po-
tential. It continues to transform sectors including but not
limited to healthcare, banking, and transportation by allowing
computers to learn from data and make better predictions or
judgments without the need for explicit programming. Big data
is essential to identify patterns, generate precise predictions,
and enhance overall performance of ML models. This has
thus sparked a tendency in the industry to share ML models
to foster teamwork, quicken the pace of innovation, and
make advanced artificial intelligence (AI) capabilities more
accessible to all. The unrestricted sharing of models, however,
has prompted serious privacy concerns. This is particularly
critical for models trained on electronic health records (EHR),
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as they contain individuals’ medical history. Leakage of such
information can be more costly than other types, such as
business, banking, and government data [1]. Tight security
measures and ethical considerations are gaining importance
in the ML community since unauthorized access to private
data or the improper usage of shared models may undermine
data privacy and lead to dire consequences. However, striking
a balance between the advantages of open cooperation and the
data privacy preservation is a challenging task.

Patient privacy violations in machine learning models
trained on EHRs can occur when sensitive patient information
is inadvertently disclosed or inferred from the model’s pre-
dictions. This way, ML models may reveal patients’ identities
or sensitive health conditions, even if the training data was
anonymized. For instance, predictive models could expose
patients’ age, gender, geographic location, or medical history,
potentially leading to re-identification. To address these risks,
robust privacy-preserving techniques such as differential pri-
vacy and data anonymization could be employed [2], along
with adherence to strict data governance policies and regula-
tory requirements like HIPAA. These measures are essential
to safeguard patient confidentiality and ensure responsible data
handling practices throughout the ML lifecycle.

There are many different types of privacy attacks on ML
models of which the two most common types are model
inversion and membership inference attacks [3]. By attempting
to ascertain if a particular data point was included in a model’s
training dataset, membership inference attacks have the po-
tential to violate data privacy [4]. Conversely, model inversion
attacks probe a model’s output in an attempt to retrieve private
information about a specific person. Although both of these
attacks target individual records, property inference attacks are
more focused on inferring sensitive global features of a dataset,
such as the prevalence of specific traits within the data. Due
to the possibility of disclosing private information about the
inner workings of ML models, property inference attacks carry
a high risk of serious security implications. For example, for a
malware classifier trained using execution traces, an adversary
can use property inference to identify the characteristics of
the testing environment, which can reveal vulnerabilities and



evasion strategies [5]. Similarly, property inference can reveal
weaknesses in an email filtering system by having a spam
classifier take into account attributes like average sentiment or
keyword presence [6]. An adversary can reveal the model’s
biases using targeted queries. Then, they can modify email
content to get past spam filters, jeopardizing the security of
email systems and flooding users with dangerous content.

Recent research has revealed disparities in the represen-
tation of particular demographic groups in various training
datasets, including minorities and women. Variations in the
efficacy of standard classifiers among different groups have
been attributed to this representational bias [7]. Investigating
whether the dataset used for model training exhibits a higher
or lower representation of a particular class, which represents
a broader characteristic of the dataset, is therefore a common
interest.

The significance of fighting against property inference at-
tacks stems from the potentially disastrous effects of disclosing
broader, population-level knowledge. It is imperative to defend
against such attacks in order to preserve the privacy and
confidentiality of sensitive data, particularly in industries such
as healthcare and finance, where even aggregate data might
be misused for nefarious intent or biased profiling. Thus,
it is important to identify all possible property inference
attacks. Differential privacy appears to provide limited or
no protection against property inference attacks, as it was
designed primarily to provide privacy assurances in instances
involving membership inference attacks [8]. Relatively little
study has been done on property inference attacks and the
defenses that go along with them, which is noteworthy and
indicates a major need in the field [3].

Ateniese et al. were among the first to study property
inference attacks [8]. The attack involved training a meta-
classifier to identify whether a target classifier has a particular
property, P , or not. The adversary creates a collection of
substitute classifiers, which are commonly known as shadow
classifiers. Each of these shadow classifiers is trained on a
dataset that has been purposefully designed to either possess
or lack the property P . They are trained for the same task as
the target classifier. The parameters of these shadow classifiers
are then used to train the meta classifier. In addition to
demonstrating how this attack can be used against classifiers
such as Support Vector Machines (SVMs) and Hidden Markov
Models (HMMs), Ateniese et al. also pointed out that this type
of property inference cannot be effectively thwarted by the use
of differential privacy mechanisms that are intended to provide
record-level privacy.

When trained with unlabeled data, the representation learn-
ing based variational auto-encoders (VAEs) demonstrate ex-
ceptional performance [9]. Through the seamless integration
of auto-encoders and probabilistic modeling, VAEs produce
continuous, organized latent space representations. They stand
out from other generative models like conventional auto-
encoders and generative adversarial networks (GANs) due
to their probabilistic character. This makes them useful for
applications where uncertainty is a concern, such as natural

language processing and image generation. Due to their ability
to learn a continuous, ordered representation of the data, VAEs
allow for flexible manipulation in the latent space.

In this paper, we propose a property inference attack frame-
work using the VAE. By harnessing the capability of VAEs to
generate samples from the same distribution as the training
data, we exploit their ability to distinguish samples lying
outside the training distribution. We evaluate our approach on
four datasets, including the default baseline US Census dataset
and three healthcare-related datasets. Our experimental results
demonstrate the superiority of the proposed VAE-based attack
framework over existing meta-classifier-based techniques. This
paper presents a novel method of using VAEs for property
inference attacks with the following major contributions:

1) A VAE based property inference attack on ML models.
2) A thorough evaluation of the proposed attack on four

different datasets.
3) A comparison with the existing state-of-the-art property

inference attacks.
This paper is organized as follows: Section II explains the

threat model and discusses the underlying assumptions. In
Section III we formulate the problem and in Section IV, we
present the proposed property inference attack. Experiment
setup along with the results and findings are presented in Sec-
tion V, which provides a thorough analysis of the conclusions
drawn from our experimentation. We conclude the paper in
Section VI.

II. THREAT MODEL

Suppose that a fully connected neural network (FCNN) h is
trained for classification using a training dataset L. Following
training, this model is shared with consumers, allowing them
to make predictions. The objective of the adversary is to
identify training data properties when they are only provided
access to the model h.

A. Assumptions

We make the following two key assumptions. Firstly, we
presume that the adversary has white box access of the
model and thus, has knowledge of the model architecture and
parameters [5]. This is a fair assumption given that models are
openly shared on many different platforms. Additionally, there
exist methods for effectively extracting the models when the
user is just given an executable software file for predictions,
or when users have the option to use ML models as a
service through an Application Programming Interface (API)
[10, 11]. Secondly, we assume that the adversary cannot alter
the data collection processes that compose the target model’s
training dataset or tamper with the target model’s training
process. This suggests that this study does not take integrity
assaults into consideration, hence eliminating the chance that
an opponent could secretly impart the target property during
training by surreptitiously embedding covert information into
the model. These presumptions set the parameters for the
study’s investigation of property inference, guaranteeing a
problem-focused investigation [12].



III. PROBLEM FORMULATION

FCNNs are the main building blocks in ML tasks due to
their adaptability. They are made up of multiple layers of
networked computational units, or neurons, where each one
processes data using a weighted sum followed by an activation
function. The output of a single neuron, o is computed as:

o = γ(Wx+ b), (1)

where W is the weight vector, x is the input data vector, b
is the bias term, and γ is the non-linear activation function
(sigmoid or ReLU).

The following expression represents the output of the ith

neuron in the tth layer in a fully connected layer:

oti = γ(wt
i .o

t−1 + bti), (2)

where ot−1 is the output of the previous layer, wt
i is the

weight vector of the ith neuron in the tth layer, and bti is
the respective bias vector. Computation of the output of the
network, denoted by y, from a given input x, involves a
sequence of transformations through the layers of the FCNN,
given as:

y = h(x) = H|h|(H|h|−1(. . . (H2(H1(x))))), (3)

where h represents the neural network function, |h| is the
number of computational layers (hidden and output layers),
and Hi is the transformation function in the ith layer. The
transformation functions are contingent on the nature of the
task. For example, recurrent layers are used for text analysis,
whereas convolutional layers are utilized for image processing.
Hyperparameters are terms used to describe training-related
variables such as learning rate and network structure such as
the number of layers and neurons in each layer.

Utilizing backpropagation and optimization techniques, the
network attempts to minimize a specified loss function, such
as mean squared error for regression or binary cross-entropy
for classification tasks. By updating the network’s weights and
biases repeatedly, this iterative approach improves its predic-
tion performance. The aforementioned equations summarize
the fundamental ideas and procedures that support neural
networks, which are now widely used in ML applications. In
summary, input data x is mapped to the output y using a neural
network as follows:

y = h(x,WNN , B), (4)

where WNN is the model weights of the trained neural
network and B is the bias vector.

VAEs are a form of generative model commonly employed
in unsupervised learning. Because VAEs use probabilistic
reasoning, they can create new data points by sampling from
the learnt latent space distribution, which sets them apart from
other algorithms. An encoder and a decoder make up the two
basic parts of a VAE. The main innovation of VAEs is the
way they learn the latent space’s probability distribution using
variational inference, which enables sampling and the creation
of new data points. The encoder is trained to map the input

samples into a smooth and connected latent space (trained to
be similar to the standard Normal distribution), and samples
from the latent space are mapped back to the data space by
the decoder. The method of training a VAE entails optimizing
the Evidence Lower Bound (ELBO) by modifying the encoder
and decoder parameters.

VAEs are trained using the ELBO as the objective function.
The reconstruction term and the regularization term are its two
constituent terms. It is mathematically defined as:

ELBO = E[logP (X|z)]−KL(q(z|X)||p(z)) (5)

where E represents the expectation, X represents the input
data, P (X|z) is the log-likelihood of the data given the
latent space representation (modeled by the decoder network),
q(z|X) is the estimated posterior distribution of the latent
space (modeled by the encoder network), p(z) is the prior
distribution in the latent space, and KL is the Kullback-
Leibler divergence. ELBO acts as a trade-off between the
latent space’s regularization (KL divergence term) and recon-
struction quality (log-likelihood term). VAEs seek to produce
data that closely resembles the input while guaranteeing that
the latent space adheres to a particular prior distribution by
maximizing the ELBO. The latent variable z, which is the
input to the decoder network is sampled from the latent space
parameterized by the encoder using the reparameterization
trick, shown as:

z = µ+ σ ∗ ϵ (6)

where ϵ ∼ N (0, 1), µ and σ are the outputs of the encoder
network. The reparameterization trick ensure the end-to-end
differentiability of the VAE network.
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Fig. 1: Proposed property inference attack.

IV. PROPOSED PROPERTY INFERENCE ATTACK

The proposed property inference attack framework is shown
in Fig. 1, where, the features extracted from target model are
passed through the trained VAE model, and its reconstruction
error is used to hypothesize whether the data used to train



the target model contained the target property or not. Let
htarget be the target model, and (h1, . . . , hm) be the m
shadow models. It is critical to underscore that within our
approach, the shadow models undergo training exclusively
on datasets that contain or lack the property P . Clarifying
the meaning of the term “property” in relation to a dataset
is of the utmost importance. For instance in a healthcare
dataset, P1 may denote the presence of a particular disease
in the patient’s data record, and P2 could indicate patient’s
gender. On the other hand, P1 may suggest a high probability
of sunny days in the context of weather forecast, but P2

may suggest an equal chance of all weather conditions. The
aforementioned examples serve to demonstrate that P1 and
P2 are not negations of one another, but rather symbolize
alternative options, and the attacker is free to select any type
of property. In this work, we study binary property inference.
For the sake of simplicity, we therefore always refer to P1 as
P and P2 as P̄ .

The attack is carried out as follows:
1) Shadow training sets are created that contain the property

of interest P .
2) Training the shadow models, which are implemented

using neural networks, using the shadow training sets.
3) The model weights of each individual shadow classi-

fier are taken as the training features, represented as
F1, F2, . . . , Fm. We then use these feature representations
to build a large-scale dataset for training the VAE.

Specifically designed for the purpose of anomaly identifica-
tion, this VAE uses the shadow model weights to identify and
recognize aberrant patterns. Using the shadow models neural
network weights as our training dataset for the VAE training,
the VAE is trained to detect the presence of a property in
the target model. The idea is that a trained VAE will be
able to reconstruct the network weights of a model trained on
dataset containing the property P well, and would lead to high
reconstruction errors otherwise. To make this classification, the
VAE’s reconstruction error, σ, is compared with a threshold,
ρ. If the reconstruction error is greater than the threshold
the anomaly is detected, represented by 1, indicating that the
property P is not present. If σ is less than the threshold, the
anomaly is not detected, represented by 0, indicating that the
target model has the property P . The testing block in Fig. 1
depicts this classification with the reconstruction error given
by σ = ||M −M̂ ||2, where M is the input model weights and
M̂ is the reconstructed model weights by the VAE.

Property inference leverages the assumption that ML models
that have been trained using comparable data and method-
ologies will demonstrate similar underlying functions. These
common patterns in their parameters represent these shared
functions. Adversary’s goal is finding these patterns in the
target model in order to reveal particular characteristics that
the model’s designer might not have wanted to reveal.

V. EXPERIMENTAL EVALUATION

We analyzed the proposed property inference attack using
a unique approach, leveraging four datasets to evaluate our

technique. The first dataset is the US Census dataset [13]
which is a collection of data gathered from demographic
surveys carried out in 1994 and 1995 by the U.S. Cen-
sus Bureau. It has 299,285 records, each of which has 41
characteristics pertaining to employment and demographics,
including citizenship, marital status, education, occupation,
and race/gender. This dataset is included in the analysis as it
serves as a default dataset commonly used in many property
inference attack works. The main goal is to use the available
census attributes to estimate if a person makes more than
$50,000 per year or not. The dataset was preprocessed and
cleaned for missing values using OpenRefine [14].

The second dataset we utilized pertains to cardiovascular
disease, the Framingham Heart Disease dataset (FHS) [15].
It is worth noting that the original dataset utilized in our
analysis had missing values and a “education” characteristic
was eliminated due to its insignificance to the classification job
at hand. Preprocessing was done on the dataset to fix these
missing values and guarantee data consistency using mean
value of the attributes to fill the missing values for continuous
valued attributes whereas for binary valued attributes with
missing values, the records were discarded from the training
set. Fourteen different features such as gender, age, smoking
status, etc are included in this extensive dataset. In addition,
the dataset has a sixteenth feature that shows the chance of
getting coronary heart disease (CHD) over a ten-year period.
These traits are used to forecast if a patient has a 10-year
chance of developing CHD in the future. The third dataset
we used is Sepsis Survival Minimal Clinical Records datasets
[16]. The dataset includes medical records from 110,204
admissions in Norway between 2011 and 2012 that involved
84,811 hospitalized patients. The aim is to forecast the survival
status of the patient roughly nine days post-hospitalization by
utilizing three characteristics: age, gender, and the number of
episodes. The fourth dataset we worked on is CDC Diabetes
Health Indicators [17]. The dataset has 35 features, including
some demographic information for each individual such as
age, gender, and so on, while the remainder of the features are
health-related, such as if the person has high blood pressure
or is a smoker, among others.

In the evaluation we compare our technique with the base-
line approach proposed in [5] which is based on the state-
of-the-art property inference attack by Ateniese et al. [8]
and the neuron sorting approach [5]. The baseline strategy
trains the meta-classifier directly on the raw shadow classifier
parameters, while the sorting approach sorts the parameters
by the sum of weights in descending order [5]. First, for
every dataset we create a fleet of 4, 000 neural network-based
shadow models with property P for training the VAE. For the
baseline strategy and the sorting strategy, for every dataset we
create a fleet of 4, 000 neural network-based shadow models
out of which half of them are with property P and other half
are with property P̄ .

In order to train models using the US Census dataset,
neural networks with three hidden layers of 32, 16, and 8
sizes are utilized. For training the models using Framingham
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Fig. 2: Accuracy of attacks.

TABLE I: Experiment Details

Experiment Dataset Target Property P
P1 US Census Higher proportion of women (80% of Women)
P2 Framingham Heart Disease Increased total cholesterol levels greater than 240 mg/dL (80%)
P3 Sepsis Survival Higher proportion of women (85% of Women)
P4 CDC Diabetes Higher proportion of women (80% of Women)

dataset neural networks two hidden layers of 32 and 16 sizes
are utilized. For models trained on Sepsis dataset and CDC
diabetes dataset, neural networks having two hidden layers
of sizes 16 and 8 are used. PyTorch is used to train every
neural network model. We utilize the Adam optimizer with 40
maximum training epochs, ReLu as the activation function, a
learning rate of 0.001, and a weight decay of 0.01 for all of
our training models. The purpose of the meta classifiers that
are set up for binary classification to determine whether the
property P is present in the training dataset of the target. The
activation function used for all hidden layers is ReLU, whereas
sigmoid activation functions is used for the output layer of
the meta classifier.

In Table I, we display the properties targeted for deduction
from the target model. To determine the threshold ρ required
by our proposed model, we set a false positive rate (FPR) over
the training dataset. Specifically, with a trained VAE model,
we computed the reconstruction error of the entire training set

TABLE II: Property inference attack accuracy under multiple
false positive rates.

FPR → 10% 5% 1%
P1 90 89.56 77.33
P2 86.50 82.5 71.37
P3 65.42 65.00 65.10
P4 94.29 95.75 89.25

and selected the error value as ρ corresponding to the desired
FPR. We conducted all experiments 10 times, each with a fresh
permutation of the training dataset. Additionally, the target
model was retrained for each trial. The resulting accuracies
reported in Fig. 2 represent the average across these trials.
The FPR used for the VAE model was set to 10%. Observing
the figure, we notice that the sorted and baseline methods
exhibit improved attack accuracy as the size of the training
set increases. Conversely, the proposed attack using the VAE
shows consistent accuracy across different training set sizes.



This suggests that the proposed method achieves higher attack
success rates with relatively smaller training datasets, requiring
fewer shadow models to be trained.

To further analyze the proposed attack’s accuracy across
various FPR values, we repeated the experiment for all four
datasets using FPR values of 10%, 5%, and 1% for a fixed
training set size of 4, 000. The results are presented in Table
II, indicating that the attack success rate remains stable under
FPRs of 10-5%, but decreases significantly under 1% FPR.
Nevertheless, even at 1% FPR, the proposed model achieves
higher accuracy than the baseline and sorted methods for P2,
P3, and P4. Moreover, for FPR of 5% and P1, the proposed
model’s accuracy surpasses that of the compared methods.
These observations underscore the robustness of the proposed
attack model to threshold selection.

In light of the meta classifiers’ data requirements, the
reduced accuracy is therefore well within the anticipated range.
This result highlights the potential benefit of our methodology,
which uses VAE to perform property inference attacks with
comparatively lower data requirements, while maintaining a
respectable level of property P identification accuracy. When
the training set size is the same, it is clear from a direct
comparison that our proposed attack performs significantly
better than the attack proposed in [5]. This significant gap
draws attention to a critical advantage that the proposed attack
provides when it comes to property inference attacks, i.e., the
proposed attack does not require labelled data for training
where labeled data may be hard to come by or difficult to
access.

VI. CONCLUSION

This paper offered light on the under explored subject
of property inference attacks, a vital part of data security
in the context of machine learning. The proposed method,
which makes use of VAEs trained with the weights of shadow
models can effectively be used for determining if global
attributes are present in a target model or not. Experiments
on actual data showed that the proposed attack can reveal
underlying data properties of a machine learning model with
upto 94.29% accuracy. Moreover, a comparison with the state-
of-the-art showed that the proposed attack does not only have
significantly higher accuracy but does so with approximately
50% lesser data. In summary, by demonstrating the viability
of property inference attacks and the efficiency of VAEs
in this situation, our research advances the field of data
security. This approach opens the door for further research into
improving the security of ML models while also deepening our
understanding of data security.
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