
IoT Device Authentication via RAM Trace
Analysis: A Representation Learning Framework

Asif Iqbal†, Muhammad Naveed Aman‡, and Biplab Sikdar†
†Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583.

‡School of Computing, University of Nebraska-Lincoln, Nebraska, USA.
Email: {aiqbal, bsikdar}@nus.edu.sg, naveed.aman@unl.edu

Abstract—Recent advances in IoT, machine learning, and edge
computing have driven transformative paradigms like smart
cities, grids, healthcare, and transportation systems, providing
efficient solutions. This has led to a pervasive proliferation
of connected devices, ranging from high-power computers to
low-power sensors. Yet, the complex IoT architecture poses
numerous vulnerabilities, demanding robust security measures.
Existing firmware attestation techniques often encounter ob-
stacles due to proprietary constraints, necessitating access to
the device’s authentic firmware. To address this challenge, this
paper proposes a novel software-based attestation framework
that utilizes RAM traces from IoT devices for remote verification.
By employing deep learning models trained in a representation
learning paradigm, our framework empowers the remote verifier
to authenticate the internal state of IoT devices. Leveraging
data collected from real-world prototype devices, our approach
achieves an impressive 100% detection rate for critical attacks
on IoT devices with a false positive rate of 10−3. Remarkably,
our framework preserves device availability and maintains low
authentication latency, highlighting its efficacy and practicality
for securing IoT ecosystems.

Index Terms—Device Attestation, Firmware, Internet of
Things, RAM Trace, Variational Autoencoder.

I. INTRODUCTION

The utilization of Internet of Things (IoT) devices is wit-
nessing a remarkable surge across diverse domains of our
daily lives. According to the GSM report released in 2020, the
annual growth rate of IoT devices is projected at 13%, with
an anticipated total of around 2.46 billion various IoT devices
by 2025 [1]. Industries experiencing rapid adoption of IoT
devices include healthcare, smart cities, industrial manufactur-
ing and control, forest monitoring, traffic monitoring, defense,
and others [2]. Many of these devices deployed in such
applications are characterized by their affordability, resulting
in constraints in computational power, memory, and power
consumption. As these devices become increasingly integrated
into critical infrastructure, they are drawing the attention of
cyber-criminals [3]. Moreover, their distributed nature and
complex architecture make them vulnerable to cyber attacks
targeting their network communications, posing threats to
device and data integrity [4]. Recent research indicates that
over 90% of vulnerabilities detected in IoT device-enabled
smart applications are associated with firmware [5].

This research is supported by A*STAR, CISCO Systems (USA) Pte. Ltd
and National University of Singapore under its Cisco-NUS Accelerated Digital
Economy Corporate Laboratory (Award I21001E0002).

Typically, during the addition of a new IoT device or at
each power-up cycle, the device must register with a central
entity, known as the verifier, through attestation. The verifier,
acting as a secure entity, can initiate attestation even during
regular operation. It engages with the device under test, called
the prover, to verify its authenticity. The verifier challenges
the prover to generate a hash digest based on its firmware
source code, which it shares for verification. Then, the verifier
computes the same checksum using a locally stored version of
the prover’s firmware to authenticate it. However, the iterative
checksum computations, requiring multiple passes over the
device firmware, lead to increased computational overhead and
verification time. Moreover, this approach demands the verifier
to possess a local copy of the prover’s firmware, which may
not always be practical and raises potential concerns about
intellectual property (IP) infringement.

IoT devices are typically designed for particular tasks, with
their computational resources finely tuned to fulfill those tasks’
requirements. The introduction of additional tasks or security
protocols on IoT devices may hinder their routine operations to
some degree, commonly known as impacting their availability.
Ideally, implementing a security protocol on a device should
not hinder its availability, especially for devices tasked with
real-time or safety-critical applications. Nevertheless, many
attestation techniques require uninterrupted execution of their
security protocols, which often requires considerable time to
execute, leading to reduced availability of the device.

Device attestation methods in the literature can be classified
into two main categories: software-based, hardware-based, and
a hybrid approach. Software-based techniques involve execut-
ing an algorithm on the device under test during runtime and
comparing it with the expected value stored at the verifier. Due
to their limited computational capabilities, the runtime of these
techniques may vary based on the device’s current state or
configuration, making them suitable for attestation purposes.
Although these techniques are computationally intensive, they
are well-suited for low-cost embedded devices as they do
not require additional hardware for execution. The classical
approaches like SWATT [6], SCUBA [7], and SAKE [8] and
more recent [9], [10] belong to this category. These techniques
require a genuine copy of the firmware stored in the flash
memory, which is not ideal. Moreover, during attestation, the
device availability is severely reduced as well.

In contrast, hardware-based techniques require additional

Gateway
Verifier

Request

Response

The Internet

Local Network

Fig. 1. The proposed system model.

components such as secure co-processors or Trusted Platform
Modules (TPM) [11], resulting in lower computational de-
mands, and do not impact the device availability. Techniques
such as [12]–[14] belong to this category. However, due to the
advanced hardware requirements, these methods are impracti-
cal for the majority of IoT devices. Hybrid techniques aim to
strike a balance between the two approaches by minimizing
computational complexity while requiring minimal additional
hardware. Techniques proposed in [15]–[19] fall into this
category. Nevertheless, due to the inherent complexity and
stringent architectural requirements of these hybrid techniques,
their applicability remains severely limited [20].

In recent years, machine learning (ML) techniques have
emerged as viable options for IoT device attestation [20],
[21]. The majority of ML methods adopted in this context
operate under the supervised learning paradigm, where training
a model requires samples from all anticipated classes. While
supervised ML-based approaches have been effective in device
attestation [20], [21], they are subject to a major limitation: the
need for comprehensive acquisition and labeling of training
datasets covering the diverse attack vectors encountered by
devices during operation. This task proves exceptionally chal-
lenging due to the continual emergence of new attack vectors,
rendering comprehensive coverage impractical. Consequently,
when confronted with a test sample significantly dissimilar to
all trained classes, the model’s decision may lack reliability.

To address the challenges outlined above, this paper presents
a software-based device attestation framework employing un-
supervised Deep Learning (DL) techniques. In contrast to
conventional methods, our approach imposes no additional
computational burdens on the device under test, thus main-
taining device availability. Moreover, instead of depending on
the genuine firmware of the prover, our framework utilizes
a Conditional Variational AutoEncoder (C-VAE) model [22]
trained on features extracted from an IoT device’s RAM. This
strategy enables the detection of even subtle modifications to
a device’s firmware.

In summary, our primary contributions include:
1) Introducing a software-based attestation framework that

utilizes preprocessed and condensed RAM trace features,
eliminating the need for resource-intensive computations
on the device under evaluation.

2) Developing a device tampering detector leveraging the
C-VAE model trained within the representation learning
paradigm.

3) Evaluating the proposed framework on real prototype
devices across four distinct applications affected by three
different types of attacks.

The remainder of the paper is structured as follows: Section
II provides preliminary details about the underlying system
model. Section III presents the proposed framework, detailing
the feature generation procedure and the tampering detection
model. Experimental evaluation is discussed in Section IV,
utilizing data obtained from a real prototype system. Finally,
Section V concludes the paper.

II. PRELIMINARIES

A. System Model

The system model underlying our framework is depicted in
Fig. 1, comprising three key entities:

1) The IoT Device: Multiple IoT devices are connected
to a gateway node through wired or wireless interfaces.
These devices may have varying capabilities in terms of
battery life, memory, and processing power, and serve as
the provers in attestation queries.

2) The Gateway: Typically, IoT devices lack a complete
TCP/IP protocol stack due to resource constraints and
rely on a relatively powerful Gateway node for routing
and internet connectivity. In the proposed system model,
the gateway node serves dual functions: (i) acting as a
router and device manager for the connected IoT devices,
enabling communication between IoT devices and the
central entity (verifier), and (ii) processing the incoming
binary RAM traces to extract training features (details
in Section III). The gateway node uses the internet to
communicate with the verifier system and can operate in
either training or testing mode.

3) The Verifier: This entity represents a trusted remote
server responsible for IoT device attestation during
bootup or regular operation. It maintains records of all
connected gateway nodes and the device IDs of subse-
quent IoT devices associated with them. Furthermore, it
oversees the management of detection models for device
attestation and operates in either training or testing mode.

B. Information Flow

The information flow, as seen in Fig. 1, is presented in
this section. Commencing with the prover, upon receipt of an
attestation request, it captures a snapshot of its current working
memory and transmits it to the gateway node. This RAM trace
consists of a 1D array of binary values saved in HEX format.
By aggregating consecutive HEX digits, each representing 1
byte, the data is encoded into decimal values within the range
of [0, 255] (8-bit unsigned integers), followed by normalization
to scale it into the range of [0, 1.0]. Depending on the operation
mode, this trace undergoes one of two preprocessing pipelines
at the gateway node to generate a feature vector (as detailed
in Section III-A). Subsequently, the resulting feature vector is

transmitted to the verifier system. In training mode, the verifier
utilizes the received feature set to commence model training.
Conversely, in testing mode, the received feature is subjected
to the detection algorithm and thresholding to classify the
device as genuine or tampered. Further details on each of the
aforementioned steps is provided in Section III.

C. The RAM Trace

The data stored in a device’s RAM at any given moment
during its operation is intricately tied to its ongoing functions.
Typically, the RAM of an embedded device can be segmented
into the following primary sections:

i. .data: It stores global and initialized static variables.
ii. .bss: Memory allocation for uninitialized static and

global variables is managed within this section.
iii. .text: This section contains the executable code.
iv. Heap/Stack: Reserved for dynamic memory allo-

cation, function return addresses, interrupts, and local
variables storage.

The underlying assumption is that alterations to a device’s
firmware will impact its execution cycle, leading to changes in
the device’s RAM trace. Depending on the scale of firmware
modifications, these changes can range from minor to sig-
nificant and may appear in various segments of the RAM.
For example, the introduction of new pointers into the control
dependency graph of the executable code can affect all four
memory areas of a device. Moreover, the detectability of
alterations reflected in the main memory is influenced by
the nature of tampering. While substantial modifications are
generally easier to identify, subtle tampering may result in
minimal or localized deviations in the RAM trace, posing
greater challenges for detection.

III. THE PROPOSED FRAMEWORK

In this section, we introduce our proposed framework,
comprising a pre-processing pipeline for generating highly
informative training features and a detection framework based
on the C-VAE model. Further details are provided in the
subsequent subsections.

A. Feature Generation

To facilitate efficient detection modeling, it’s crucial to
generate RAM features that don’t necessitate complex compu-
tations during the actual attestation process, thus minimizing
their impact on device availability. Under typical operation,
RAM changes are minimal, with only select locations being
updated during application execution [20]. In the event of
tampered firmware, the resulting RAM trace diverges from the
norm. However, across both normal and tampered scenarios,
the majority of RAM content remains unchanged. Effective
model training requires preprocessing the RAM trace to elimi-
nate such redundancy while preserving distinctive information.
This ensures the model focuses on data variations rather than
the baseline trends present in training samples.

Consider a dataset matrix containing m RAM traces with n
elements each, denoted as X ∈ Rm×n. The dataset matrix

0 20 40 60 80 100 120 140
Singular Value Index

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Va
ria

nc
e

Ex
pl

ai
ne

d
Pe

rc
en

ta
ge

AES128
LED
Temperature
XTS

Fig. 2. Initial 150 singular values from different firmware datasets.

(m ̸= n or m = n) with rank r ≤ min(m,n) can be
decomposed into three sub-matrices using the reduced singular
value decomposition (r-SVD) [23] as

X = U S V⊤, (1)

where U ∈ Rm×r and V ∈ Rn×r are left and right semi-
unitary matrices, i.e., U⊤U = V⊤V = Ir, containing singular
vectors, and S ∈ Rr×r contains their unique respective
singular values σ1 ≥ σ2 ≥ . . . σr > 0 on its main diagonal,
and r is the matrix rank. These unique σ values represent the
amount of variance of X explained by the respective left and
right singular vectors. This relationship can be seen through
the outer product from of SVD, given by:

X =

r∑
i=1

σiuiv⊤i , (2)

where ui and vi are the ith left and right singular vectors,
respectively. To provide insight, we present the first 150 sin-
gular values extracted from RAM traces collected from diverse
applications (details in Section IV-A) in Fig. 2. It’s observed
that the leading singular value alone covers over 82.5% of the
total variation within the RAM trace data. In ML, it’s advisable
to eliminate shared information from the dataset prior to
training. Thus, we opt to discard the rank-1 outer product
from the training dataset X. Additionally, the figure indicates
that approximately 99.5% of the total variation is captured
by the initial β = 150 components, allowing for further
dataset size reduction without significant loss of information.
In essence, removing the first component eradicates redundant
information, while discarding components beyond β mitigates
noisy elements. Consequently, retaining components enables
the model to focus on valuable distinctive information. As
the individual RAM traces are kept as row vectors in X, we
use V̂ = V2:β ∈ Rn×(β−1), containing [2 : β] right singular
vectors of V, as the projector to reduce X as:

X̂ = X V̂ = U S V⊤ V̂ = U2:β S2:β . (3)

Following this transformation, the reduced matrix X̂ becomes
suitable for effective training of ML models. Within the
proposed framework, feature generation is handled by the

Encoder Decoder

Latent Variable

Device ID

Fig. 3. The detector model architecture.

gateway node. However, the computations undertaken differ
depending on whether the node is operating in training mode
or testing mode (inference). The details are summarized below:

1) Training Mode: In the training mode, the gateway node
gathers a set of RAM traces from all connected IoT devices,
storing them as Xi ∈ Rm×n matrices, with i representing the
index of the respective IoT device. With enough RAM traces at
hand, the gateway computes the r-SVD of each dataset Xi sep-
arately. Subsequently, it utilizes the corresponding projection
matrix V̂i to generate the feature matrix X̂i, as described in
(3). The gateway stores the projection matrices corresponding
to each IoT device for future use and forwards the processed
feature matrices from all devices to the verifier system for
training the model.

2) Testing Mode: In testing (verification) mode, the gate-
way node receives a RAM trace, call it xi ∈ Rn, from the ith

device. It then uses the stored projection matrix V̂i to project
xi onto the subspace spanned by the rows of V̂i to generate
the feature vector x̂i = V̂

⊤
i xi. By doing so, we remove the

redundant information and keep the variations along those
components which were used to train the model.

B. Proposed Detection Model

As mentioned earlier, supervised learning mandates training
data covering samples from all potential classes encountered
during model operations. Models trained on such exhaustive
datasets can identify test samples sharing similar features with
their training counterparts. Nevertheless, these models fre-
quently encounter challenges when presented with test samples
dissimilar to any of the class samples they were trained on.
For the IoT device attestation problem, our aim is to train a
model capable of excelling not only on samples encountered
during training but also adeptly identifying previously unseen
samples. In the event of a novel attack, our model should have
the ability to flag it as potentially malicious. In our attestation
framework, the gateway node gathers RAM traces from IoT
devices, preprocesses them, and sends the feature dataset to
the verifier. The verifier trains a single model and, in testing
mode, classifies feature samples as genuine or not.

This work harnesses the capabilities of a conditional-VAE
(C-VAE), a DL model, for detecting firmware tampering in
IoT devices. By training the model with data collected from
authentic IoT devices, the model learns the inherent latent
patterns and characteristics unique to these devices. Conse-
quently, the C-VAE becomes adept at distinguishing between

test samples resembling genuine patterns and those displaying
anomalies, aiding in the identification of previously unseen
test samples. Employing artificial neural networks (ANNs)
as the base learners, our model architecture comprises an
Encoder and a Decoder network, implemented through two
ANNs interconnected and operating within the C-VAE setup
[22], [24]. The model architecture is shown in Fig. 3.

The C-VAE model is trained by maximizing the variational
lower bound [24], given by

LV AE(θ,ϕ; x, z, c) = Ez∼qϕ(z|x,c)(log pθ(x|z, c))
−DKL(qϕ(z|x, c)||pz(z)). (4)

where x is an input sample, c is the one-hot-encoded device
ID, z is the latent variable computed via the reparameterization
trick [24] as z = µz + Σz ⊙ ϵ. Here ϵ ∼ N (0, I) and ⊙
denotes element-wise multiplication. The first component in
(4) represents the log likelihood function and the second com-
ponent constitutes the latent loss, which is computed using the
Kullback-Leibler divergence (KLD) between the distribution
qϕ(z|x, c) learned by the Encoder and some prior distribu-
tion pz(z), typically set to a standard Normal distribution,
facilitating KLD computation without the need for estimation
[24]. In essence, the first term encourages the decoder to
reconstruct the input sample from the latent space as accurately
as possible. Meanwhile, the latent loss compels the Encoder
to learn a distribution that is symmetric around the origin,
thereby ensuring a cohesive latent space. By incorporating
auxiliary information such as the device ID c, the encoder
is encouraged to map samples from various devices closer to
the origin of the latent space.

Utilizing a trained C-VAE model, our detection approach
operates by computing a test statistic δRE for a given test
sample x̄ and its corresponding reconstruction ˆ̄x, defined as
δRE = ∥x̄ − ˆ̄x∥2. The underlying concept is straightforward:
if the test sample is authentic, the model’s reconstruction will
be precise, resulting in a low δRE ; conversely, for a test sample
from a tampered device, the δRE will be high. Consequently,
by employing a predefined threshold ζ, if δRE < ζ, the
test sample is classified as authentic; otherwise, it is deemed
tampered. The selection of a suitable threshold is pivotal to
ensure robust detection of tampered samples. We determine the
threshold ζ based on the predefined acceptable False Positive
Rate (FPR) tolerance, typically established during the design
phase of a detection model. Once the model is trained using
the entire training dataset, this threshold can be computed by
analyzing the δRE of all training samples and selecting the
threshold leading to the specified FPR.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Datasets

The genuine and attack datasets utilized in this study were
obtained from [20], where RAM traces for four distinct ap-
plications were generated using a real-world prototype setup.
This setup employed the Arduino Uno, a commonly used IoT
device, featuring an 8-bit microcontroller with 32 KB of flash

memory and 2 KB of RAM. For the gateway node, a Raspberry
Pi 3 equipped with a 64-bit 1.2 GHz processor was utilized. As
detailed in [20], two cryptography-based applications, denoted
as F1 (AES128) and F4 (XTS), as well as two sensor-based
applications, referred to as F2 (LED) and F3 (Temperature),
were studied. These applications were chosen to assess the
effectiveness of our proposed attestation method in real-world
application scenarios. Subsequently, three distinct attacks are
performed against each dataset Fi, which are:
A1: Attack via Control Dependency Graph: Under this

attack scenario, we introduce new pointers to alter the
control dependency graph of the device. This attack
mainly affects the .data section of the RAM.

A2: Attack via Functional Dependency: Here we setup a
new stack frame which affects the stack section of the
RAM.

A3: Attack via Variable Initialization: Here we alter the
code for variable initialization which results in changes
in .bss section of the RAM.

The attacks discussed above cover the most critical and fun-
damental attacks considering the three types of dependencies
when it comes to good software engineering practices [20],
[25]. In doing so, we cover majority of the tampering attacks
carried on embedded devices.

The next step entails capturing RAM traces from the pro-
totype IoT device while it runs one of the specified firmware
variants. Initially, we upload firmware Fi onto the IoT device
and let it operate for a set duration. During normal device
operation, we collect numerous RAM trace samples using
the gateway node. Each sample consists of 2048 bytes, with
random intervals between consecutive samples. These samples
are labeled as genuine and stored for further analysis. Subse-
quently, we upload each attack variant of a particular firmware
to obtain their corresponding tampered RAM traces. This
yields three distinct sets of tampered RAM traces (A1, A2, A3)
for each firmware variant Fi.

B. C-VAE Model Training

With genuine RAM trace datasets at hand, the subsequent
model training and evaluations are conducted using Python
v3.9 using the PyTorch deep learning library. The proposed
C-VAE model, as shown in Fig. 3 contains two ANNs, each
consisting of 3 layers. The input to the encoder model is a
vector x ∈ Rk, where k is 2048 for raw RAM trace features,
and k = β − 1 for the processed features. The device ID
associated with x is encoded as a one-hot vector to create
c ∈ R4, reflecting the use of four different firmware classes
to train the model. The encoder model is structured as an
ANN with a node configuration of 100 − 50 − 4 (a 2D
latent space). Following generation of the latent variable z
using the reparameterization trick, both z and device ID c
are fed into the decoder model, which is also an ANN with
a node configuration of 50 − 100 − k, where k represents
the size of the input feature x. The Rectified Linear Unit
(ReLU) activation function is applied at all inner nodes, with
no activation function at the output layer for both encoder

and decoder networks. The model parameters are updated
using the Adam optimizer with a decreasing learning rate of
[1e−4, 5e−5, 1e−5], changed every 50 iterations. The batch size
was set to 256, and the model was trained for 200 epochs.

TABLE I
THE DETECTION ACCURACY OF THE C-VAE MODEL TRAINED AND

TESTED ON RAW AND PREPROCESSED RAM TRACES

Test DS ↓ F1 F2 F3 F4

Raw

A1 100 10.1 29 0.8

A2 3.5 100 0.5 3.2

A3 100 3.6 28.9 0.2

Processed

A1 100 100 100 100

A2 100 100 100 100

A3 100 100 100 100

C. Detector Performance

With the trained model in hand, the verifier can attest
any device by requesting the gateway node to acquire and
process a RAM trace sample from the target device. To enable
classification, we compute the test statistic δRE for all the
training dataset and use the input FPR of 1e−3 to compute
the threshold ζRE , both are shown in Fig. 4 (a). The detection
accuracy of the models trained and tested on preprocessed
data and raw RAM traces is shown in Table I. These results
are averaged over 10 trials and the highest component kept
was β = 150. Looking at the scores reported by the model
trained on raw RAM samples, we see that it completely
failed to detect tampering instances from most of the attack
cases across all firmware. This failure can be attributed to the
fact that without the removal of most dominant component
(redundant information) from data leads the model to overlook
smaller details during training, resulting in it failing to separate
the genuine from attack samples effectively. The detection
accuracy of the model trained on the proposed preprocessing
pipeline, however, achieved 100% accuracy in detecting all
attack types across all firmware applications, underscoring the
efficacy of the preprocessing steps taken.

To visualize this result, we show the test statistics for
all attack types across all firmware in Fig. 4. From Fig. 4
(a) we can see that the model was able to reconstruct the
training samples with high precision. However, it struggled
to accurately reconstruct the attack samples, as shown in Fig.
4 (b-d), leading to high test statistics. This underscores the
effectiveness of projecting the test samples onto the subspace
occupied by the training samples, assisting the model in
distinguishing between genuine and attack samples. Moreover,
owing to the distinction between the test statistics of authentic
and attack samples, the detector maintains 100% accuracy even
for input FPR as low as 1e−6.

D. Computational Workload Distribution

In the proposed framework, the primary computational bur-
den is handled by the gateway and verifier nodes, both during

0 1000 2000 3000 4000 5000 6000
Input Samples

0.00

0.01

0.02

0.03
M

SE
Recon Error on Training Dataset

F1: AES128
F2: LED
F3: Temperature
F4: XTS

0 500 1000 1500 2000 2500 3000
Input Samples

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Recon Error on A1 Dataset

F0
F1
F2
F3

(a) (b)

0 250 500 750 1000 1250 1500 1750 2000
Input Samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

Recon Error on A2 Dataset
F0
F1
F2
F3

0 250 500 750 1000 1250 1500 1750 2000
Input Samples

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Recon Error on A3 Dataset

F0
F1
F2
F3

(c) (d)

Fig. 4. Test statistic ζRE of all training and attack samples under 0.1% Input FPR, represented by the horizontal black line.

the training and testing (verification) modes. The IoT device’s
involvement is minimal, limited to providing a RAM snapshot.
Thus, the IoT device remains unaffected during training and
may only need to pause operations during verification until
authentication is complete.

In training mode, the gateway node collects multiple RAM
traces from each IoT device, computes and stores the pro-
jection matrix V̂i, and forwards the processed features to the
verifier. The verifier then trains the model once sufficient sam-
ples are collected, making this phase the most computationally
intensive. Conversely, the testing/verification mode is less
demanding. The IoT device sends a single RAM trace to the
gateway node, which performs a matrix-vector multiplication
and sends the result to the verifier. The verifier then performs
a forward pass through the trained model for authentication,
a relatively light computational task.

For instance, ignoring the limited communication overhead,
our framework took approximately 1.3 ms to authenticate a
single device when running on a desktop PC with an Intel Core
i7-13700K and an Nvidia RTX 3080. If required, this time can
be reduced further by utilizing more powerful hardware at the
gateway and verifier nodes.

V. CONCLUSION

This paper presents a novel IoT device attestation frame-
work, comprising preprocessing and detection based on rep-
resentation learning. Utilizing RAM traces as the primary
training feature, the gateway node collects and processes data
for model training by the verifier node. In testing, the verifier
utilizes the model to attest IoT devices, requesting prepro-
cessed samples from the device under test via the gateway
node. With a simple forward pass through the network, the
test statistic verifies sample authenticity, with computational
tasks managed by the gateway and verifier nodes to maintain
device availability, which, alongside the 100% detection ac-

curacy across all attack datasets, showcases the framework’s
suitability for real-time deployment in the IoT ecosystem.

REFERENCES

[1] G. Association et al., “The mobile economy 2020,” GSM Association,
2020.

[2] T. N. Alrumaih, M. J. Alenazi, N. A. AlSowaygh, A. A. Humayed, and
I. A. Alablani, “Cyber resilience in industrial networks: A state of the
art, challenges, and future directions,” Journal of King Saud University-
Computer and Information Sciences, p. 101781, 2023.

[3] J. Lee, L. Kim, and T. Kwon, “Flexicast: Energy-efficient software in-
tegrity checks to build secure industrial wireless active sensor networks,”
IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 6–14,
2015.

[4] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on IoT security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019.

[5] Y. Shi, W. Wei, F. Zhang, X. Luo, Z. He, and H. Fan, “SDSRS: A
novel white-box cryptography scheme for securing embedded devices
in IIoT,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3,
pp. 1602–1616, 2019.

[6] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “SWATT: Software-
based attestation for embedded devices,” in IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004, pp. 272–282, IEEE, 2004.

[7] A. Seshadri, M. Luk, A. Perrig, L. Van Doorn, and P. Khosla, “SCUBA:
Secure code update by attestation in sensor networks,” in Proceedings
of the 5th ACM workshop on Wireless security, pp. 85–94, 2006.

[8] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software attestation for key
establishment in sensor networks,” in Distributed Computing in Sensor
Systems: 4th IEEE International Conference, DCOSS 2008 Santorini
Island, Greece, June 11-14, 2008 Proceedings 4, pp. 372–385, Springer,
2008.

[9] B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
efficient software-based attestation for industrial control devices with
arm processors,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, pp. 425–436, 2017.

[10] J. Cao, T. Zhu, R. Ma, Z. Guo, Y. Zhang, and H. Li, “A software-
based remote attestation scheme for internet of things devices,” IEEE
Transactions on Dependable and Secure Computing, vol. 20, no. 2,
pp. 1422–1434, 2023.

[11] T. C. Group, “TPM main specification level 2 version 1.2.”
[12] C. Krauß, F. Stumpf, and C. Eckert, “Detecting node compromise in

hybrid wireless sensor networks using attestation techniques,” in Security
and Privacy in Ad-hoc and Sensor Networks: 4th European Workshop,
ESAS 2007, Cambridge, UK, July 2-3, 2007. Proceedings 4, pp. 203–
217, Springer, 2007.

[13] W. Yan, A. Fu, Y. Mu, X. Zhe, S. Yu, and B. Kuang, “EAPA: Efficient
attestation resilient to physical attacks for IoT devices,” in Proceedings
of the 2nd International ACM Workshop on Security and Privacy for the
Internet-of-Things, pp. 2–7, 2019.

[14] T. Van Strydonck, J. Noorman, J. Jackson, L. A. Dias, R. Vanderstraeten,
D. Oswald, F. Piessens, and D. Devriese, “CHERI-TrEE: Flexible en-
claves on capability machines,” in 2023 IEEE 8th European Symposium
on Security and Privacy (EuroS&P), pp. 1143–1159, IEEE, 2023.

[15] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny trust anchor for tiny devices,” in Proceedings of the
52nd annual design automation conference, pp. 1–6, 2015.

[16] X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation of
IoT devices via smarm: Shuffled measurements against roving malware,”
in 2018 IEEE international symposium on hardware oriented security
and trust (HOST), pp. 9–16, IEEE, 2018.

[17] M. N. Aman and B. Sikdar, “ATT-Auth: A hybrid protocol for industrial
IoT attestation with authentication,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 5119–5131, 2018.

[18] M. N. Aman, M. H. Basheer, S. Dash, A. Sancheti, J. W. Wong, J. Xu,
H. W. Lim, and B. Sikdar, “PRoM: Passive remote attestation against
roving malware in multicore IoT devices,” IEEE Systems Journal,
vol. 16, no. 1, pp. 789–800, 2021.

[19] M. Zhang, Y. Zhang, S. Li, and Q. Wan, “Software trusted startup
and update protection scheme of IoT devices,” in 2023 IEEE 9th Intl
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl
Conference on High Performance and Smart Computing, (HPSC) and
IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 147–
152, 2023.

[20] M. N. Aman, H. Basheer, J. W. Wong, J. Xu, H. W. Lim, and B. Sikdar,
“Machine-learning-based attestation for the internet of things using
memory traces,” IEEE Internet of Things Journal, vol. 9, no. 20,
pp. 20431–20443, 2022.

[21] K. Istiaque Ahmed, M. Tahir, M. Hadi Habaebi, S. Lun Lau, and
A. Ahad, “Machine learning for authentication and authorization in IoT:
Taxonomy, challenges and future research direction,” Sensors, vol. 21,
no. 15, p. 5122, 2021.

[22] B. Zhang, D. Xiong, J. Su, H. Duan, and M. Zhang, “Variational neural
machine translation,” arxiv.org, 2016.

[23] A. Roy and S. Banerjee, Linear algebra and matrix analysis for
statistics. Chapman and Hall/CRC, 2014.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[25] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software compo-

nents with dependency graphs,” in Proceedings of the 6th International
Workshop on Security Measurements and Metrics, pp. 1–8, 2010.

