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Abstract—Federated Learning (FL)-based Intrusion Detection
Systems (IDSs) have recently surfaced as viable privacy-preserving
solution to decentralized grid zones. However, conventional syn-
chronous FL methods face technical challenges including the lack
of consideration of communication delays and straggler nodes. To
level the playing field, we propose a novel power system misbe-
haviour detection framework that leverages semi-asynchronous
federated learning and dynamic aggregation. Specifically, our
framework introduces an adaptive learning rate mechanism in the
semi-asynchronous FL setting, allowing for efficient model updates
and mitigating the impact of stragglers on the training process.
Experiments conducted on publicly available Mississippi State
University and Oak Ridge National Laboratory Power System
Attack (MSU-ORNL PSA) Dataset demonstrate that our adaptive
learning semi-asynchronous FL framework achieves superior
attack detection rate while safeguarding data confidentiality and
minimizing the negative effects of practical world communication
latency and straggler nodes. Furthermore, our proposed method
shows a significant 40% improvement in training time compared
to conventional synchronous FL methods, showcasing the effec-
tiveness and efficiency of our recommended approach.

Index Terms—Federated Learning, Intrusion Detection, Inter-
net of Things (IoT), Smart Grid

I. INTRODUCTION

The rapid adoption of Internet of Things (IoT) devices along
with revolutionary advancements in communication technology
within modern power systems has sparked an unparalleled
surge in data synthesis by edge devices. However, the progres-
sion of cyberattack fabrication methods alongside poor attack
mitigation strategies, has resulted in the vulnerability of Smart
Grids (SG) to cyber threats launched by malicious entities seek-
ing illicit monetary and/or political benefits [1]. Consequently,
it becomes imperative to design effective defenses to safeguard
the valuable assets of SGs to counteract such forms of cyber
threats.

In the recent past, several academic works [2], [3] have
proposed innovative protection strategies against cyber threats
in Smart Grids (SGs) using cutting-edge machine learning and
deep learning techniques. Nevertheless, centralized intrusion

defense solutions suffer from storage limitations, communi-
cation bottlenecks, and privacy concerns. To address these
challenges, Federated Learning (FL)-based cyberattack coun-
termeasures [4] have emerged as promising privacy-preserving
solutions. These approaches leverage distributed learning by
limiting data sharing and allowing cooperative on-device model
training at the edge. For example, a federated false data
injection attack detection mechanism using transformers was
introduced in [5], showcasing its effectiveness. Despite these
advancements, current FL-based cyberattack countermeasures
predominantly rely on synchronous aggregation protocols such
as FedAvg [6] and its extensions. These protocols involve
the central orchestrator broadcasting the model, waiting for
updates from all participating clients, and aggregating the
local updates until convergence. However, resource-constrained
Intelligent Electronic Devices (IEDs) in real-world scenarios
present limitations. Studies [7] have highlighted issues with ex-
isting FL-based cyberattack detection methods. Firstly, delays
in wireless SCADA communication protocols like IEC 61850
and unexpected dropout of client nodes lead to stragglers and
communication inefficiency. Secondly, faster nodes experience
global learning suspensions and timeouts while waiting for
all updates. Thirdly, resource wastage occurs when competent
client nodes remain idle due to node selection in large-scale
setups. To address these challenges, asynchronous FL methods
[8] have been proposed as alternatives. However, they assume
physical homogeneity of data, which is unrealistic within a
practical SG scenario due to continual data sensing by IEDs.

In this paper, we present semi-asynchronous federated in-
trusion detection framework with a dynamic aggregation to
distinguish between adversarial cyberattacks and natural power
system disturbances in decentralized power grids, while fac-
toring in the presence of straggler client nodes. Thus, the
major breakthroughs of this manuscript are as follows: 1) To
counter the drawbacks of physical homogeneity and resource
availability, we introduce a lightweight and privacy-preserving
on-device collaborative semi-asynchronous intrusion detection
framework in relation to power control systems. Our framework
incorporates dynamic federated aggregation techniques to adap-979-8-3503-1090-0/23/$31.00 © 2023 IEEE



Fig. 1. Overview of our proposed misbehaviour detection power system model. The proposed framework with adaptive learning rate is employed for the
training process. The framework incorporates an adaptive learning rate scheme, where the learning rate is initialized as η0 and is decayed by a factor γ after
each model aggregation. This adaptive learning rate allows the framework to dynamically adjust the influence of each device’s update on the aggregated model.
After reaching a predetermined cut-off time, the control center initiates the aggregation of model parameters.

tively adjust the aggregation process based on the availability
and reliability of participating client nodes. By dynamically
adapting the aggregation mechanism, this mitigates the im-
pact of straggler nodes and communication delays, leading to
improved convergence speed and efficiency. 2) To improve
the anomaly detection rate in power systems, we leverage
a representation learning-based Deep Auto-Encoder (DAE)
model within the proposed framework. By utilizing the power
of deep learning, the Deep Auto-Encoder model effectively
learns and captures complex patterns and features from power
system data, enabling accurate discrimination between cyber-
attacks and natural disturbances. The dynamic aggregation
mechanism ensures that the learned knowledge from individual
client nodes is efficiently aggregated to enhance the overall
detection performance. 3) Finally, we extensively evaluate the
performance of our suggested approach using the Mississippi
State University and Oak Ridge National Laboratory Power
System Attack (MSU-ORNL PSA) Dataset [9]. The evaluation
demonstrates the robustness of the solution in handling physical
heterogeneity and resource constraints. Comparative analysis
with state-of-the-art models reveals that it achieves a superior
detection rate with an accuracy of 93.2% and reduces the
training time by 40% in the presence of straggler nodes. These
results validate the effectiveness and efficiency of our proposed
dynamically aggregated semi-asynchronous FL framework for
intrusion detection in power control systems.

The remaining structure of this article is organized as fol-
lows: Section II briefly introduces the power system model and
highlights the key challenges faced by synchronous FL-based
cyberattack detection methods. The proposed attack detection
module and our solution is presented in Section III. Section
IV presents the experimental scenarios used to demonstrate
the reliability of our proposed approach through evaluation on
publicly accessible datasets. Finally, Section V wraps up the
paper with brief remarks.

II. POWER SYSTEM MODEL & PROBLEM FORMULATION

Throughout this manuscript, we examine a generic decentral-
ized smart grid system that is divided into a variable number
of grid zones denoted as N ∈ R+. As depicted in Fig. 1,
we briefly discuss the three primary actors in our system
model as follows: 1) Control Centre: The control centre serves
as the central orchestrator responsible for coordinating and
monitoring grid operations. It is assumed to possess adequate
computational infrastructure and acts as the central orchestrator
of the federated intrusion detection system. 2) SCADA Sub-
systems: The SCADA sub-systems are client nodes equipped
with advanced data collection capabilities, playing a vital role
in monitoring and collecting data from Intelligent Electronic
Devices (IEDs). These SCADA sub-systems function as client
nodes, jointly training local models on their respective datasets
and updating model parameters to the control centre. 3) Grid
Zones: The power grid zones are equipped with multiple IEDs
such as relays and synchrophasors, as well as sensor networks
continuously capturing power-related data, including current,
phase angle, and voltage. Additionally, we assume that the
SCADA sub-systems are honest and non-colluding, meaning
they do not communicate with each other laterally to ensure
data integrity and confidentiality, model quality, fairness etc..
Furthermore, the IEDs are connected to the SCADA sub-
systems through stable high-speed communication networks to
enable continuous data transmission.

The primary objective of our proposed solution is to optimize
the objective function gk for the global model parameter
P ∈ RM . This objective function is defined as gk(P ) =
1
Nk

∑Nk
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. Furthermore, the overall objective function G

for all K distributed datasets can be expressed as G(P ) =∑K
k=1

Nk

N gk(P ), which is the sum of local loss functions for
each k. Here, N represents the total number of data samples



used for training. To achieve model convergence, popular
federated learning aggregation algorithms such as FedAvg,
FedSGD, and their extensions [10] are employed to aggregate
local weights from all federated client nodes over multiple
training rounds.

Current state-of-the-art literature on FL-based misbehaviour
detection [5], [11], [12] lack consideration of communication
delays between the central orchestrator and the client nodes.
However, in the practical world, wireless communication pro-
tocols (such as IEC 61850 protocol) used for data transmission
are subject to communication delays and unreliability which
may be due to unforeseen circumstances including natural
disasters, demographical locations, high magnetic fields, and
so on. Definitively, in terms of misbehaviour detection within
decentralized smart grid systems, communication latency is
an urgent issue which is barely studied in the context of
federated attack detection. Furthermore, active node dropouts
due to power or connectivity issues is frequent. The scarcity
of literature [13] that take into consideration the effect of
stragglers signifies the urgent need to design fault-resilient
intrusion detection frameworks for power system anomaly
detection which is tackled throughout this paper.

III. PROPOSED METHOD

Throughout this section, we first describe the deep learning
model considered for cyberattack detection followed by the
proposed robust asynchronous FL-based intrusion detection
framework.

A. Attack Detection Module

Our primary objective is to tackle the issue of intrusion
detection in power systems by utilizing a Deep Auto-encoder
(DAE) model, as illustrated in Figure 2. DAEs are highly
effective unsupervised neural networks designed for represen-
tation learning, with the aim of achieving an identity mapping
between input and output data. Our proposed DAE network
architecture consists of two symmetrical Deep Belief Networks
(DBNs): the first five shallow layers form the encoding portion
of the network, while the subsequent five shallow layers
constitute the decoding part. Restricted Boltzmann Machines
(RBMs) form the fundamental building blocks of DBNs and
are employed in each layer due to their generative modelling
capabilities, amongst others. These RBMs enable bidirectional
communication, acting as hidden layers for the preceding
nodes and visible layers for the subsequent nodes. However,
within a single layer, there is no lateral communication among
nodes. The RBMs are trained using the Contrastive Diver-
gence Algorithm. In our model, rectified linear unit (ReLU)
activation functions are applied to all DAE layers to improve
the effectiveness of RBMs. ReLU activation is easier to train
and often yields better results. The reconstruction disparity,
quantified by the Mean Squared Error (MSE), serves as an
indication of the presence of cyber attacks. In our case, if
the reconstruction loss r exceeds a predefined threshold τ , it
suggests the occurrence of a cyber attack. During the training

process, we sort the reconstruction errors for the training set in
ascending order, selecting the value of t at the inflection point
in the loss distribution. This value is employed as a threshold
for classification purposes. To facilitate classification, softmax
layers are added following the RBM stack. We set the learning
rate and batch size to 10−3 and 100 respectively for training.
Our DAE model is the foundation for cyberattack classification
in our research article.

B. Semi-asynchronous FL Framework with Dynamic Aggrega-
tion

Algorithm 1: Proposed Framework
Input: Initial learning rate η0, learning rate decay

factor γ, Active SCADA sub-system K , local data
sample Dk for k ∈ [1,K], time for aggregation Ta,
time cost for SCADA sub-systems [s0, s1, ..., sk]

Initiate common unanimous model parameter P0,
parameter buffer B and learning rate η = η0;

for each training round t in Tcl ∈ (1, n) do

At Control Centre:
Get local gradient (gtk, tk) from each node k;

sk ← adjust tk; B +←− (gtk, tk);

if Time for aggregation Ta is attained then
B′ ← group by model version t and compute

aggregation;

foreach (gtk, tk) in B′ do

Add new global g and t;

end
Broadcast freshly aggregated global parameters
(g, t) to respective SCADA sub-systems k;

Clear B;

Decay learning rate: η ← γ · η;
end

At SCADA Sub-System:
for each k ∈ [K] do

Calculate local gradient gtk = ∇fk(Zt) using
Dk;

Calculate time cost of each client tk;

Scale local gradient by learning rate:
gtk ← η · gtk;

Update (gtk, tk) to control centre;
end

end

Output: Global Model, M

As depicted in Figure 1, our proposed solution focusses on
a federated power system setup where K distributed SCADA



Fig. 2. Graphical overview of the proposed misbehaviour detection model architecture with data samples as they go through the the anomaly detection process.
Our proposed misbehavior detection model comprises three key components: the Encoder, Latent Distribution, and Decoder. The Encoder compresses input
data into a lower-dimensional latent representation. The Latent Distribution enforces a bottleneck, ensuring a compressed knowledge representation for further
analysis. The Decoder reconstructs the original input based on the latent vectors generated by the Latent Distribution. By comparing the reconstructed output
with the original input, the model facilitates anomaly detection. This schematic provides a concise overview of our misbehavior detection model architecture
and the data flow during the anomaly detection process.

sub-systems are connected to the control centre through com-
munication protocols. We acknowledge the presence of trans-
mission delays and errors in the communication between the
SCADA sub-systems and the control centre, which hampers
stable and reliable communication due to the heterogeneous
nature of the edge-based SCADA sub-systems. To address these
challenges, we propose a semi-asynchronous federated learn-
ing (FL) framework that leverages adaptive learning rate and
model update aggregation. The semi-asynchronous framework
overcomes the limitations of synchronous FL, such as stragglers
and the training time associated with waiting for all local model
updates. However, it introduces the issue of staleness in local
updates, which can hinder learning performance. To handle
staleness, we incorporate an adaptive learning rate algorithm
that dynamically adjusts the influence of each sub-system’s
update on the aggregated model. The learning rate, denoted as
η, is initialized at η0. After each model update aggregation, the
learning rate is decayed by a factor γ: η ← γ ·η. This adaptive
learning rate ensures that recent model updates have a stronger
impact on the aggregated model, thereby mitigating stale-
ness issues. By combining the semi-asynchronous framework,
model update aggregation, and adaptive learning rate algorithm,
we strike a balance between reducing staleness and optimizing
the learning process in the federated power system setup.
This approach overcomes the challenges posed by transmission
delays and errors, while enhancing the overall convergence and
performance of the FL-based intrusion detection system model.

During each communication round t of the proposed frame-
work with adaptive learning rate (as detailed in Algorithm 1),
the control centre and the SCADA sub-systems perform the
following steps: 1) The control centre obtains the gradients
(gtk, tk) from each SCADA sub-system k. 2) If the aggregation
time Ta is reached, the control centre clusters the model updates
by the time version and computes the aggregation. The newly
aggregated global parameters (g, t) are then updated to the

source SCADA sub-systems. 3) The control centre also updates
the model parameter buffer B and the time cost sk for each
SCADA sub-system. 4) At the SCADA sub-systems, each sub-
system k computes the local gradient gtk = ∇fk(Zt) using
its local training set Dk. 5) The sub-systems scale their local
gradient by the current learning rate: gtk ← η · gtk. 6) The
scaled gradients (gtk, tk) are then updated to the control centre.
7) Once the aggregation time Ta is reached, the control centre
aggregates the model updates, updates the global parameters,
and distributes the updated parameters to the sub-systems. The
learning rate is also decayed by multiplying it with the decay
factor γ: η ← γ ·η. By incorporating adaptive learning rate into
the framework, the learning rate is adjusted during the training
process. Decay factor γ can be used to control the rate at which
the learning rate decreases over time. This adaptive learning
rate allows the framework to adaptively change the influence
of each device’s update on the aggregated model, leading
to improved convergence and performance in the federated
learning process.

IV. EXPERIMENTAL VALIDATIONS AND DISCUSSIONS

Throughout this section, we initially describe the data used
for the experimental validation followed by the empirical after-
math that substantiate the attack detection effectiveness, robust-
ness and computation efficiency of our propounded framework
as discussed in Section III.

A. Dataset Description and Feature Engineering

We evaluate our proposed architecture using the publicly
available industrial control system dataset, Mississippi State
University and Oak Ridge National Laboratory Power System
Attack (MSU-ORNL PSA) Dataset [9]. It is a three-class
dataset which consists of 15 data files exhibiting matching
feature composition whereby scenarios of Natural Events (spo-
radic Single Line to Ground (SLG) disturbances), Attack Events



Fig. 3. Average intrusion detection rate of proposed framework vs. state-of-
the-art federated models using four metrics: accuracy, precision, recall and
F-Score metrics.

Fig. 4. Detection accuracy of proposed approach vs. state-of-the-art federated
models over several data files.

(data injection attacks, remote tripping command injection
attacks, etc.) and No Events have been simulated and recorded.
The real-time synchrophasor measurement data collected at
a sample rate of 120 per second from four Phasor Mea-
surement Units (PMUs) constitutes of 128 features including
frequency, current phase angle, voltage phase magnitude, etc.
We impute missing values present in the dataset using K-
Nearest Neighbour (KNN) machine learning algorithm in view
of avoiding information loss. To train our proposed attack
detection module, a basis of 100 features has been chosen via
Principal Component Analysis (PCA) to cull out unnecessary
features and decrease training complexity. Next, we normalize
the input features into the range (0,1). Lastly, we divide the
dataset into a train-test split of 70% and 30% respectively.

B. Intrusion Detection Performance

TABLE I
AVERAGE INTRUSION DETECTION RATE OF PROPOSED FRAMEWORK VS.

STATE-OF-THE-ART MODELS

Federated Models
Metric (%) Prop. Approach CNN LSTM RBM RNN
Accuracy 93.2 90.4 83.7 75.1 71.4
Precision 91.3 88.1 81.4 74.2 70.6
Recall 89.7 85.2 79.5 73.6 69.9
F1-Score 88.9 84.2 77.7 72.5 68.4

Fig. 5. Resilience of proposed approach vs. synchronous FL aggregation
solutions based on accuracy with rising number of affected nodes.

First, we validate and contrast the intrusion detection perfor-
mance of our novel against four state-of-the-art models namely
Convolutional Neural Network (CNN), Restricted Boltzman
Machine (RBM), Long Short Term Memory (LSTM) and
Recurrent Neural Network (RNN), which are all trained in
a similar federated set-up. The global models, obtained after
training and fine-tuning, are then evaluated on the test set split.
As illustrated in Fig. 3 and Table I, we compare the detection
rate of our proposed framework using the four main classifica-
tion metrics namely accuracy, precision, recall and F-1 Score.
Anomalies, being distinct from normal patterns, can elevate
prediction errors and contribute to higher averaged loss values
as defined by our objective function. From these experimental
results, we note that our proposed approach achieves superior
detection performance as opposed to all competing models
considered. Specifically, our framework achieved the highest
overall accuracy of 93.2% as opposed to CNN (90.4%), LSTM
(83.7%), RBM (75.1%) and lastly, RNN (71.4%). Likewise,
in terms of other classification evaluation metrics, our work
outperforms the other rivalling federated models. We also
notice that RNN produces the lowest cyberattack detection
performance amongst all methods. Furthermore, we assess the
cyberattack detection performance of our proposed architecture
on the data files forming part of the three-class MSU-ORNL
PSA Dataset. Experimental validations, as depicted in Fig. 4
reveal that our proposed architecture outshines other popular
cyberattack detection algorithms For instance, the accuracy
of our solution on dataset 1 is 93.8% as opposed to CNN
(90.4%) or RBM (75.3%). Identically, for dataset 15, our
proposed solution achieves an accuracy rate of 93.2% as
compared to LSTM (79.2%) or RNN (73.1%). Therefore, we
can establish that our proposed semi-asynchronous federated
malicious attack detection with dynamic aggregation attains
ample intrusion detection performance in contrast to that of
state-of-the-art deep learning algorithms whilst promising data
privacy and minimizing the effect of communication delays and
stragglers.

C. Resilience to stragglers

Considering the negative constraints of transmission delays
and stragglers within the practical SG scenario, we propose



Fig. 6. Computation time of proposed approach vs. synchronous FL aggrega-
tion methods on varying number of affected SCADA sub-system nodes.

to solve this challenge using a semi-asynchronous FL-based
approach with dynamic adaptive learning rate. To replicate the
effects of delayed clients, we initially configure K = 10 and
initiate a respite mechanism for a selected number of client
nodes such that they are unresponsive for a certain amount of
time. Next, we contrast the robustness of our solution against
that of two classical synchronous FL aggregation solution
FedAvg and FedSGD. As illustrated in Fig. 5, we perceive
that the performance of our framework tends to stay relatively
consistent with growing number of impacted nodes. On the flip
side, synchronous FL-based aggregation algorithms experience
a drastic intrusion detection performance downturn with rising
number of straggler SCADA sub-systems. Therefore, we can
conclude that our semi-asynchronous attack detection algorithm
is robust against communication latency and straggler nodes.

D. Computational Efficiency

Consequently, we assess the computational efficiency
through training time taken by the semi-asynchronous federated
approach with dynamic aggregation as discussed in Section
III. Explicitly, we compare the time for training taken for
model convergence of our proposed solution against that of
FedAVG and FedSGD in varying scenarios of impacted nodes.
As presented in Fig. 6, we note that there is comparatively a
decrease in training time to reach model convergence by our
algorithm. In particular, it can be highlighted that the proposed
solution achieves around 40% improvement in computational
efficiency in comparison with rivalling aggregation methods.
However, we also note an increase in the computation time
of our proposed approach with increasing number of affected
nodes which is related to more communication rounds needed
for model convergence with increasing number of straggler
nodes.

V. CONCLUSION

Throughout our work, we initially put forward a computation
efficient and privacy-centric misbehaviour detection strategy to
alleviate the real-world impacts of communication unreliability
and straggler nodes within decentralized power grid systems.
Moreover, we present a representation learning-based auto-
encoder for accurate discernment between cyberattacks, power

faults and normal operations. Lastly, we comprehensively val-
idate the performance of our proposed solution by utilizing
the publicly available MSU-ORNL PSA Dataset in terms
of detection rate, robustness and computation efficiency. The
experimental results reveal that our proposed approach achieves
superior misbehaviour detection performance as compared to
other state-of-the-art deep learning models whilst achieving a
40% improvement in computation time in contrast to classical
synchronous aggregation methods. In future, we plan to explore
robust techniques to enhance the robustness of our federated
framework as one of our previous works [14] suggests their
extreme vulnerability to Byzantine attacks.
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