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Abstract—Compromised relays in clustered IoT networks can
be used to launch attacks that cannot be easily detected using
the traditional security algorithms. In this paper, we consider
an attack where a compromised relay deliberately drops the
packets received from the IoT devices it serves. Such an attack
causes the IoT devices to retransmit more frequently, thereby
increasing their processing load. As a result, their batteries will
drain at a faster rate. The difficulty in differentiating a genuine
packet drop event from a malicious packet drop event makes
it necessary to develop a novel Intrusion Detection System
(IDS) specially tailored for detecting such an attack. The IDS is
installed in a special node called a sentinel, which monitors the
network. The sentinel also estimates the packet retransmission
rate of the IoT devices, a parameter required for the IDS. The
effectiveness of the system is demonstrated experimentally on
a clustered network.

I. INTRODUCTION

With the ability to automate everything around us and its
business potential, the popularity of the Internet of Things
(IoT) is increasing day by day. Many applications like smart
grid, smart home, intelligent transport system, etc. can be
realized using IoT [1]. With more than fifty billion devices
(majority IoT devices) estimated to be connected to the
Internet by 2050 [2], radio access networks can get heavily
congested. However, the increased usage of IoT devices has
introduced many challenges like scalability, security, etc. [1],
[3], [4]. To address the scalability issue, one of the prominent
solutions is the clustering approach [5]. In such an approach,
a set of IoT devices are clustered and are assigned to a relay
which would assist in forwarding the traffic to and from the
main access point. The clustering strategy could be based on
Quality of Service requirements, location, etc.

Due to hardware constraints, IoT devices lack security
mechanisms and are vulnerable to various network attacks.
Many of these attacks can be defended against through cryp-
tography or through resilient software update patches [6].
However, clustered IoT networks are vulnerable to attacks
that can be launched at the cluster head or gateway, like se-
lective forwarding, channel degradation, black hole, etc. that
cannot be addressed using cryptography or software patches.
Such attacks affect the quality of service of the network and
can have an adverse impact in networks within healthcare,
transportation systems and other essential services.

These attacks can be realised if the attacker obtains root
access to relays, which would often be user-installed equip-

This research is supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore Telecommuni-
cations Ltd.

ment that are not professionally maintained and updated.
Also, these devices present many security flaws and various
software vulnerabilities. This can lead to an attacker gaining
remote administration capabilities. These attacks are hard
to distinguish from naturally occurring events, making them
difficult to detect. It can also be seen that an adversary can
adversely impact a set of IoT devices merely by compro-
mising the relay they are associated with. Hence, developing
Intrusion Detection Systems (IDSs) to detect such attacks is
an important task, in addition to other defenses like secured
pairing, integrity verification and secured architectures. IDS’s
can be categorized according to where most of the detection
intelligence resides – centralized, distributed, or hybrid [14].
In this paper, we propose a centralized IDS system which
relies on the rate of packet retransmissions of the IoT devices
on the uplink estimated by a trusted server, which will then
decide whether a relay has been compromised.

A. Related Work

Researchers in the past have tried to investigate the behav-
ior of adversaries, that compromise relays and disrupt the
communication in clustered IoT networks. Machine learn-
ing algorithms (such as the ones in [7]), when designed
using sufficient and appropriate training data samples, can
provide the desired performance. However, in reality, it is
problematic to inject malicious packets into the networks
to build the training data. The authors in [8] proposed a
detection technique called SVELTE to detect the presence of
a selective forwarding attack. The proposed system detects
the adversary when it filters all the packets or sends only the
mapping request packets. In [9], the authors have presented
an approach based on the channel conditions to detect selec-
tive forwarding attacks. A similar approach was proposed in
[10] to detect forwarding misbehavior of nodes. However,
a sensor monitoring the data packets of the forwarding
nodes can be expensive in terms of the energy consumed.
A sequential probability ratio based detection system was
presented in [11] for detecting selective forwarding attacks.
Their decision is based on the expected transmission count
of the nodes. A light-weight heart-beat protocol is proposed
in [12]. In this approach, an echo is sent to every node in
the network and the attack is detected when there is no reply
received from the affected nodes.

B. Our Contribution

Our previous work in [13] describes the IDS in detail,
however the results are limited to simulations. In this paper,



we have implemented the above IDS on an IoT network with
one IoT device. We considered that the compromised relay
is affecting the link between the relay and the IoT device
i.e. through selective packet forwarding. We used a sentinel
node to monitor the network and the IDS algorithm is based
on Generalized Likelihood Ratio Test, as described in [13].
The algorithm requires the number of packets retransmitted
by the IoT device. One key difference between the present
paper and [13] is that we use the sentinel node to calculate
the number of packets retransmitted by the IoT device and
do not depend on the resource-constrained IoT device to
calculate and transmit the same using the side channel. The
sentinel sniffs all the packets being transmitted by the IoT
device, and since a re-transmission can be differentiated from
a first transmission, the number of retransmitted packets can
be estimated.

II. SYSTEM MODEL

In this section we summarize the detection system in [13],
obtain the sufficient statistics for the adversary parameter
estimation and derive the bias of the estimator. We also
compare the performance of the detection system with a
scheme that does not require adversary parameter estimation.

A. Network and Adversary Model

A clustered network with a set of M IoT devices, D =
{Dj , j = 1, 2, · · · ,M} was used for deriving the detection
algorithm in [13]. The network is illustrated in Figure 1. The
natural retransmission rate of the IoT device Dj is assumed
to be known and denoted by αj .
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Fig. 1: Network Model

We now describe how an adversary, who has compromised
the relay, disrupts the communication in the network. Once
an adversary gains access to the relay, it is possible to imple-
ment Man-in-the-middle attacks like passive eavesdropping,
selective forwarding (i.e. drop packets deliberately), data in-
tegrity attack (i.e. with some probability modify the payload),
etc. Data Integrity attacks can be handled using efficient
techniques like the one in [14]. In this paper, we assume that
the adversary implements the selective forwarding attack.
The probability of the relay maliciously dropping packets
(i.e. attack probability) received from Dj is unknown but

assumed to be a constant, and is denoted by δj . In the
presence of such an adversary, the retransmission rate will
increase to

βj = δj + (1− δj)αj (1)

for j ∈ {1, 2, · · · ,M}. This affects the quality of com-
munication in the network and resembles severe channel
degradation, with the severity increasing with δj .

B. Intrusion Detection System

From (1), it can be established that βj > αj for δj >
0. Therefore, in the presence of the adversary described in
Section II-A, the retransmission rate increases and is a strong
indicator that the attack is being implemented. Therefore, the
detection system should be based on the retransmission rate
of the IoT device as discussed in [13]. The IDS performs a
binary hypothesis test:

• Hypothesis H1: Relay is compromised and deliberately
dropping packets

• Hypothesis H0: Relay is not compromised and is in
normal operation.

The number of packets retransmitted by Dj out of the past
K packets is given by nj . The estimated attack probability
of δj is given as:

δ̂j = max

(
0,

nj

K − αj
1− αj

)
. (2)

The detection algorithm in [13] decides in favor of hypothesis
H1 when

S =

M∑
j=1

Sj > log(γ) = Γ (3)

where Sj = nj log
(
nj(1−αj)
αj(K−nj)

)
+K log

(
K−nj

K(1−αj)

)
if nj

K is
greater than αj else Sj = 0.

C. Sufficient Statistic

In this section, we prove that the number of packets
retransmitted is a sufficient statistic for estimating the attack
probability. The probability mass function (PMF) of the num-
ber of packets retransmitted out of K packets transmitted, in
the presence of attack, by device Dj is

P (Nj = n|H1) =

(
K

n

)
(βj)

n(1− βj)(K−n). (4)

The same can be re-written as

P (Nj = n|H1) =

(
K

n

)
(αj + δj − αjδj)n

× (1− αj)(K−n)(1− δj)(K−n)

=g(T (n), δj)× h(n)

P (Nj = n|H1) = g(T (n), δj)× h(n) (5)



where the functions g(T (n), δj), h(n) and T (n) are defined
as

g(T (n), δj) =

(
(1− δj)K

(
αj

1− δj
+ αj

)n)
(6)

h(n) =

((
K

n

)
(1− αj)(K−n)

)
(7)

T (n) =n (8)

Clearly, using Neyman-Fisher Factorization theorem [15],
T (n) = n, i.e. the number of packets retransmitted, is a
sufficient statistic for estimating δj , the attack probability.

D. Bias of the Estimator
The mean (µ̂j) of δ̂j can be written as

µ̂j =

K∑
n=bKαjc+1

nj

K − αj
1− αj

× P (Nj = n|H1) (9)

where byc is the largest integer not larger than y. Since
obtaining a closed form expression for µ̂j is difficult, we

calculate a bound on the mean. Say, δ̂′j =
nj
K −αj

1−αj
which

implies that δ̂j = max(0, δ̂′j). It can be seen that δ̂′j ≤ δ̂j
which implies that E[δ̂′j ] ≤ E[δ̂j ]. Hence, the bound on the
mean is as follows:

µ̂j ≥
E[nj ]
K − αj
1− αj

(10)

⇒ µ̂j ≥
βj − αj
1− αj

(11)

⇒ µ̂j ≥ δj (12)

The estimator is biased since the average of the estimator is
greater than the true value of the parameter. The bias, b(δj),
of the estimator is given as follows:

b(δj) = µ̂j − δj (13)

For sufficiently large K, the binomially distributed vari-
able Nj , j ∈ {1, · · · ,M} become approximately Gaussian
due to the Central Limit theorem. In other words, Nj ∼
N (Kβj ,Kβj(1 − βj)), as K → ∞. Using this, µ̂j can be
approximated as

µ̂j =

∫ ∞
Kαj

( nj

K − αj
1− αj

)
N (Kβj ,Kβj(1− βj)). (14)

Solving the integral in (14) and substituting it in (13) we
obtain the below.

b(δj) =

√
βj(1− βj)

2πK(1− αj)2
exp

(
−δj

βj(1− δj)

)
− δjQ

(√
K(βj − αj)√
βj(1− βj)

)
(15)

where,

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du.

It can be observed that for a higher K, the bias is approxi-
mately zero. Hence, we can establish that for higher values
of K the estimator in (2) is unbiased.

E. Comparison with Rao’s Test

In this section, we compare the detection algorithm ob-
tained using GLRT against a scheme based on Rao’s Test
[16]. Rao’s test is computationally simple as compared to
GLRT since we need not estimate the MLE under hypothesis
H1. The detection algorithm is obtained as follows:

1) The joint probability distribution of the variables nj , j ∈
{1, 2, · · · ,M}, given δj , j ∈ {1, 2, · · · ,M}, is:

f(D) =

M∏
j=1

P (Nj = nj ; δj) (16)

where N = [N1, · · · , NM ], n = [n1, · · · , nM ], D =
[δ1, · · · , δM ] and P (Nj = n; δj) =

(
K
n

)
(βj)

n(1 −
βj)

(K−n).
2) The Rao’s test decides H1 if

∂f(D)

∂D

∣∣∣T
D=0

I−1(0)
∂f(D)

∂D

∣∣∣
D=0

> Γr (17)

where I(0) is the Fisher information under H0 and Γr
is a pre-defined threshold.

3) After simplifying (17), we establish that the network is
under attack iff

M∑
j=1

(nj −Kαj)2

K(1− αj)
> Γr. (18)

Considering the expressions in (3) and (18), it can be
established that the average number of operations required
for GLRT based test is greater than the number required by
Rao’s test. We now compare the performances of both these
tests. The performance characteristics (i.e. false alarm and
missed detection probabilities) of the detection scheme in
(3) and the detection scheme in (18) are plotted in Figure
2. The result was generated using MATLAB. We used a
network setup with one access point, one relay and eight
IoT devices associated with the relay. The value of K is
100. The simulated natural PDPs and attack probabilities on
every device are given in Table I. The probability that H1 is
decided in the absence of attack is called the false alarm
probability and the probability that H0 is decided in the
presence of attack is called the missed detection probability.
To calculate the simulated false alarm probability, PFA, the
following steps were followed:
• We setup the network using H0, i.e., all the values of
δj , j ∈ {1, · · · ,M} are equal to zero. In every iteration,
using simulations, we determine the number of packets
dropped for every IoT Device and then calculate δ̂j , j ∈
{1, · · · ,M} using (2).

• We then plug in the values in (3) and (18) and compare
with Γ and Γr to decide H0 or H1.

A similar approach was carried out for obtaining the sim-
ulated missed detection probability values with the only
difference being that the network is setup using H1. It can be
seen from Figure 2 that the GLRT scheme outperforms the
Rao’s test one and therefore GLRT based test is preferred
over Rao’s test even though the latter is computationally
simple.



Device D1 D2 D3 D4 D5 D6 D7 D8

αj 0.06 0.24 0.13 0.97 0.09 0.07 0.02 0.12
δj 0.2 0 0 0 0.1 0 0 0.2

TABLE I: Parameters of the Devices
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Fig. 2: Comparison with the scheme based on Rao’s Test

III. EXPERIMENTAL SETUP

This section mainly describes the experimental setup used
for demonstarting the performance of the IDS in (3). It
includes the network setup (i.e. the clustered IoT network),
the adversary implementation (i.e. how an adversary intrudes
and disrupts the communication) and the function of the
sentinel.

A. Network Setup

We consider an IoT network with one IoT Device (D),
one Relay (R) and one Access Point (AP ). The IoT device
exchanges information with a server, via R and AP . The
server in our testbed is connected directly to the Access
Point, but will normally be situated in a remote location.
The wireless links operate in IEEE 802.11bg mixed mode.
The following is a brief description of the setup:

1) IoT Device: A DHT 11 Temperature and Humidity
Sensor is used. This is connected to a RaspberryPi 3B+
which forwards the readings to the AP . Paho-MQTT
Library is installed on the RaspberryPi to enable the
above transmission. The device operates as a ‘publisher’
(an MQTT client) publishing topics ‘Temperature’ and
‘Humidity’.

2) Relay: We used a TP-Link AC 1750 dual band router
as the relay.

3) Access Point: A RaspberryPi 3B+ device is used. Paho-
MQTT Library is installed here as well and the device
operates as a ’subscriber’ to subscribe to the topics
published by the IoT device.

4) Sentinel Node: This is an inexpensive Wi-Fi adapter
capable of monitor mode used to sniff packets in a
network. For our experiment, we use a D-Link DWA-
137 Wireless N High-Gain USB Wi-Fi adapter which
is readily available as an off-the-shelf purchase. This
experiment is performed on a host (Intel Core i7-7770

@ 3.60GHz with 16GB RAM of memory) running
Kali Linux. The Wi-Fi adapter is connected to the
host machine and set to monitor mode on the desired
channel.

The network model is illustrated in Figure 3. The dotted
lines indicate that the sentinel is sniffing all the packets on
the link D → R, and not only those addressed to it (if any).
The IoT device uses MQTT (Message Queuing Telemetry
Transport) protocol to communicate with the server. MQTT
is a lightweight, publish-subscribe network protocol and runs
over TCP/IP. When a packet is dropped due to network non-
idealities, it does not reach the destination and hence there
will be no acknowledgment sent from the destination. The
IoT device will retransmit all unacknowledged packets. We
can assume that the retransmission rate of the IoT device D
under normal conditions can be estimated and is constant at
α.

…
…
…

IoT Device	ሺܦሻ Relay ሺܴሻ Access Point ሺܲܣሻ Server

Sentinel

Fig. 3: Experimental Network Setup.

B. Adversary Implementation

Man-in-the-middle attacks (MITMs) can be implemented
using ARP (Address Resolution Protocol) Poisoning. ARP is
used for mapping a MAC address to an IP address. In an ARP
poisoning attack, an attacker sends false ARP reply messages
over a local network (LAN) to associate the attacker’s MAC
address with the IP address of a legitimate machine on the
network. Once the attacker’s MAC address is mapped to the
IP address of a legitimate machine, any message directed to
the legitimate machine goes to the attacker’s machine. In our
testbed, the adversary performs an ARP poisoning attack
to direct all traffic from the IoT device to a machine
within the attacker’s control, as illustrated in Figure
4. The adversary is now able to sniff, modify or drop the
data packets. Kali Linux running on a VirtualBox was setup
as the attacker’s machine. Ettercap, an open source network
security tool on Kali Linux, is used to carry out the Man-in-
the-middle attack.

C. Functions of the Sentinel

In [13], two methods are proposed to implement the
IDS. In both the proposals, the IoT device calculates the
retransmission rate and sends it periodically to a trusted
machine (i.e. either the sentinel or the Access Point) which
raises an alert when the attack is detected. We implemented
this proposal making use of the ‘Scapy’ library of Python.
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Fig. 4: Attack Scenario.

But this method requires the resource-constrained IoT device
to calculate its own retransmission rate. In this paper, we
propose instead to use a relatively inexpensive sentinel
node for monitoring and calculating the number of packets
retransmitted by the IoT device. The tasks executed by the
sentinel are described briefly below:

1) Estimating the number of restransmitted packets
by the IoT Devices: The IoT device is assumed to
transmit in an 802.11 mode compatible with the sniffing
device. The sentinel operating in monitor mode will
now be able to capture the traffic of the IoT device
using Wireshark. Using this method, we can count the
number of retransmitted packets out of the past K
packets transmitted by the IoT device.

2) Implementing the Intrusion Detection System: Our
network model has only one IoT device. Therefore,
the Intrusion Detection System running on the sentinel
decides that the relay is malicious iff

S = n log(a) +K log(1− δ̂) > Γ (19)

where a = β̂

α(1−δ̂)
, β̂ = δ̂ + (1 − δ̂)α and K = 100.

The value of the estimated attack probability, δ̂, is

δ̂ = max

(
0,

(n/K)− α
1− α

)
(20)

In the absence of attack, according to [13], S fol-
lows a Gamma distribution with its inverse scale pa-
rameter equal to 1.25 and shape parameter g(α) ,
0.1777e0.4565α − 0.189e−786.1α. Since the expressions
for missed detection probability are not available, the
value of the threshold is set using the false alarm prob-
ability expression. For a desired false alarm probability
ρ, Γ can be obtained using the cumultive distribution
function of the Gamma distribution such that

P (S > Γ|H0) = ρ (21)

In general, there would be more than one IoT device in
the network. Since this is an IEEE 802.11 based network and
follows Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) protocol, at a given instant there can be at
most one transmission in the network. Therefore, even if
the number of IoT devices is greater than one, the sentinel
will be able to capture every transmission and will also be
able to estimate the number of retransmitted packets of all
the IoT Devices present in the network. The transmissions

of different IoT devices can be differentiated using their IP
addresses. Note that, during the attack, the IP address is not
affected. Also, there could be more than one relay in the
network. Since the multiple access scheme is CSMA/CA,
the neighboring relays transmit in orthogonal channels and
therefore a sentinel node can monitor traffic from multiple
relay clusters [17].

IV. EXPERIMENTAL RESULTS

In this section we present our experimental results. To
calculate the value of α, using the sentinel, we estimated the
number of retransmissions out of 25000 packets transmitted
by the IoT Device D in four trials. For our setup, the
value of α was estimated as 0.035. The following results
are demonstrated in this section:

1) The estimated attack probabilities are compared against
their actual values.

2) The performance characteristics of the IDS.
3) The expressions obtained for the false alarm probability

is validated.

A. Attack Probability Estimation

We considered four scenarios. In the first scenario, the
value of δ is 0 i.e. there is no attack. In the second scenario,
the overall drop probability i.e. β is 0.1, in the third case, it is
equal to 0.15 and in the fourth, it is equal to 0.2. The average
values of the estimated attack probabilities, averaged over
250 trials, are tabulated in Table II. To calculate the estimated
attack probability, the following steps were followed:

1) We setup the network either in H0 or H1 according to
the scenario being implemented.

2) At the sentinel, for every 100 packets transmitted by D,
the number of retransmissions is estimated.

3) We then plug in the above value in (20) and obtain the
estimated attack probability.

It can be seen that the average of the estimated values are
close to their actual values.

δ E[δ̂]
Scenario 1 0 0.0057
Scenario 2 0.0674 0.0677
Scenario 3 0.1192 0.1211
Scenario 4 0.1710 0.1756

TABLE II: Attack Probabilities

B. Performance Characteristics

To demonstrate the performance, we empirically obtained
the false alarm (PFA) and missed detection (PMD) probabil-
ities. To calculate the false alarm probability, the following
steps were followed:

1) We setup the network using H0 i.e. δ is equal to zero.
2) At the sentinel, for every 100 packets transmitted by D,

the number of retransmissions is estimated.
3) The value of δ̂ is calculated using (20).
4) We then plug in this value in (21) and compare it with

a pre-defined threshold to decide H0 or H1.
The missed detection probability is also estimated similarly
except that the network is setup using H1. We considered
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Fig. 5: Performance Characteristics.
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Fig. 6: Approximated and Estimated PuFA.

three scenarios where β was equal to 0.05, 0.1 and 0.15,
respectively. The performance obtained is illustrated in Fig-
ure 5. It can be seen that the IDS is able to detect the
attack effectively even when only one device is present. The
result also demonstrates that the missed detection probability
decreases as the attack probability increases.

We now validate the expression obtained for PFA in
(21). For the same, we calculate PFA using the Gamma
approximation (termed as Approximated PFA) and compare
it with the empirically obtained PFA (termed as Estimated
PFA). The discrepancy observed between the approximated
PFA and the estimated PFA, as can be observed in Figure
6, is because we used only one IoT device in our setup.

V. CONCLUSION AND FUTURE WORK

In this paper, we experimentally demonstrated the effec-
tiveness of the Intrusion Detection System proposed in [13].
The IDS requires the number of retransmitted packets by
the IoT device to decide whether the relay is malicious
or not. We were able to show that, using a sentinel, we
can calculate the same. We proved, using Neyman-Fischer
factorization theorem, that the statistics used to monitor

the relays are sufficient. We also showed that bias of the
estimator tends towards zero as the interval size increases.
We also demonstarted that the detection algorithm based on
GLRT outperforms the detection algorithm based on Rao’s
test. The results presented demonstrate that the selective
forwarding attack, which results in draining the battery of
the device and increasing the latency of the network, can be
effectively detected.

As a part of out future work, we will demonstrate the
performance of the IDS using more than one IoT device.
We will also be looking at the possibilities where an IoT
device tries to deceive the IDS by deliberately retransmitting
successfully sent packets. By doing so, the sentinel can be
tricked into deciding that the relay is malicious when it is not.
We also plan to explore attacks beyond ARP poisoning
that can cause similar damage to the networks.
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