
1

On Reducing the Degree of Second-Order Scaling
in Network Traffic

B. Sikdar, K. Chandrayana, K. S. Vastola and S. Kalyanaraman
Dept. of ECSE, Rensselaer Polytechnic Institute

Troy, NY 12180 USA

Abstract— While it is well known that second order scaling in network
traffic can leads to larger queueing delays, higher drop rates and extended
periods of congestion, reducing the scaling exponents has remained an open
problem. In this paper we evaluate some techniques to reduce the degree
of scaling in TCP traffic, specifically by reducing two related causes: (1)
timeouts and exponential backoffs (2) burstiness and ACK compression.
We propose a simple modification to the RED algorithm, and show that it
can lead to significant reductions in both multi and mono fractal properties
of TCP traffic as compared to the currently implemented active and passive
buffer management policies. We then evaluate TCP pacing and show that
it too can reduce the multi and mono fractal scaling of traffic. We also
show that though our techniques are aimed at small time-scale TCP related
causes of scaling, it is also effective in reducing the degree of self-similarity
in traffic even when application and user level causes are also present, as
long as TCP is used as the underlying transport protocol.

I. INTRODUCTION

The presence of scaling in the second-order properties of net-
work traffic has been established in a variety of network environ-
ments and its causes have been traced to various factors. These
scaling phenomena can be divided into three categories: (1) self-
similarity or scaling as time scales go to infinity [2], [12], [25],
(2) multi-fractality or scaling as time scales go to zero [5], [6]
and (3) pseudo self-similarity or scaling over a limited range of
timescales [10], [22]. The causes behind each of these phenom-
ena have also been investigated [2], [25], [5], [10], [18], [22],
[23], [24]. Also, it is well known that the scaling, burstiness and
long-range dependence associated self-similar and multi-fractal
nature of traffic can lead to a number of undesirable effects like
high buffer overflow rates, large delays and persistent periods
of congestion [3], [4], [19]. The severity of these conditions is
dependent on various conditions like the relevant time-scales of
the system [15], [9] and system utilization [3]. However, given
other factors are constant, the overflow rates are proportional to
the degree of self-similarity or the Hurst parameter [16].

Our focus in this paper is to study techniques which reduce
the degree of second order scaling in network traffic. The time-
scales over which we focus our attentions corresponds from few
milli-seconds to 100s of seconds and thus corresponds to the
multi-fractal and pseudo self-similar behavior. One of the main
contributors to the scaling behavior in these time scales are pro-
tocol (TCP) related causes [18], [5], [10], [22], [23], [24] and
these are the causes that we target.

We investigate two different techniques in this paper which
reduces the degree of second-order scaling in network traffic.
The underlying idea of the first technique is to reduce the inci-
dence of timeouts and exponential backoff in TCP flows which
can cause scaling on finite time-scales as shown in [10], [22].

Supported in parts by DARPA contract F30602-00-2-0537, DoD MURI con-
tract F49620-97-1-0382 and NSF grant ANI 9806660.

We do this by looking at existing and also proposing a new
buffer management policy to reduce correlated losses (and con-
sequently timeouts) in TCP flows. The second technique is to
eliminate the inherent burstiness and back-to-back packet trans-
missions in TCP flows. One of the reasons behind this behav-
ior is the phenomenon of ACK compression in TCP flows [26].
ACK compression has also been suggested as a possible cause
of the fractal nature of network traffic in [6]. We look at the im-
pact of reducing the effects of ACK compression and burstiness
of TCP sources through TCP pacing [26] on the second-order
scaling of traffic.

Our results show that both these techniques are very success-
ful in reducing the scaling exponents and burstiness in traffic.
While these techniques are aimed at TCP’s contribution to traf-
fic scaling, we also show that these techniques are also effective
when other factors like heavy-tailed file sizes and human causes
like think times are also present, as long as TCP is used as the
underlying transport protocol. Also, while we mainly concen-
trate on the multi-fractal and fixed time-scale properties, our
simulations show that the large time scale properties are also
affected by these schemes resulting in lower degrees of self-
similarity or the Hurst parameter.

The rest of the paper is organized as follows. In Section II we
give a brief overview of basic concepts. Section III investigates
the impact of three buffer management schemes on traffic scal-
ing: taildrop, RED and a proposed modified RED algorithm. In
Section IV we concentrate on the impact of reducing the bursti-
ness of TCP flows. Finally, Section V presents the discussions
and concluding remarks.

II. DISCRETE WAVELET TRANSFORM AND MULTI-SCALING

We first present a brief description of the basic concepts asso-
ciated with traffic scaling and differentiate between the various
types of scaling behavior studied in literature which is based
partly on [3], [5]. Consider an arrival process A��� t� which
counts the cumulative traffic arrival in the time interval ��� t�
and its associated increment process X��i� defines as

X��i� � A��� i���A��� �i� ���� (1)

The basic hypothesis associated with scaling of process is that
the moments of the increment process behave as

X
i

X��i�
q � C�q�����q� as �� � (2)

While in theory, this behavior should hold over all time scales
for the scaling hypothesis to be satisfied, in practice, the hypoth-
esis can be said to be reasonable if the behavior is satisfied over

2

a range of timescales. The function ��q� is called the structure
function and for mono-fractal or self-similar processes, ��q� is
linear in q. For multi-fractal processes, ��q� is non-linear in q
and for both the processes, in general, is decreasing in q.

The discrete wavelet transform represents a one dimensional
signal X�t� in terms of shifted and dilated versions of a band-
pass wavelet function ��t� and shifted versions of a low pass
scaling function ��t�. For the choices of ��t� and ��t� which
allow us to form an orthonormal basis, the signal can be repre-
sented as

X�t� �
X
k

hX�t����k�t�i���k�t� �

�X
j��

X
k

hX�t��j�k�t�i�j�k�t� (3)

where �j�k�t� � ��j������jt � k� and �j�k�t� �
��j������jt � k� are the shifted and dilated version of the
scaling and wavelet function respectively. The quantity dj�k �
hX�j�ki is referred to as the wavelet coefficient at scale j and
time �jk. Also, j dj�k j� measures the energy in the signal at
time �jk and about the frequency ��j�� where the reference
frequency �� depends on the wavelet �. If a process has scal-
ing in some second order statistic, then it will very often have
scaling for all moments. The partition functions defined as

Sq�j� �
�

nj

X
k

j dj�k j
q� C�q�j��q� (4)

and specifically the nature of the function ��q� can then be used
to determine the nature of the scaling phenomena. For self-
similar processes ��q� is linear and given by ��q� � Hq� q��.
On the other hand, if ��q� non-linear, we say that the process
shows multi-scaling. It is common in multi-fractal theory to de-
fine the exponents slightly differently: ��q� � ��q��q�� which
results in ��q� � Hq for self-similar processes. In this paper,
we plot ��q� to study the scaling behavior of network traffic.

III. BUFFER MANAGEMENT POLICIES AND

MULTI-SCALING

In this section we look at the effect of different of buffer
management policies on the scaling properties of traffic pass-
ing through it. We consider both passive and active queue man-
agement algorithms as represented by taildrop and RED queues
respectively. We also propose a change to the current RED al-
gorithm which results in lower degrees of second order scaling.

A. Taildrop Queues

Taildrop queues are currently the most widely implemented
queueing mechanisms in routers in the Internet [17]. The first-
in-first-out (FIFO) policy of taildrop queues, coupled with the
bursty nature of TCP traffic implies that the packet drops from a
taildrop queue become correlated and multiple packets can get
dropped from the same window. To model the effect of tail-
drop queues on the probability of timeouts in TCP flows, we use
the correlated loss model used in [17] and [20]. In this model,
a packet in a window is lost independently of losses in other
rounds. However, losses within a window are correlated and

all packets following the first packet to be lost in window are
also assumed to be lost. As noted in [17] and [20], this model
is quite realistic for taildrop queues with TCP traffic given the
bursty nature of TCP sources with back to back packet trans-
mission. With correlated losses, the probability that an arbitrary
packet loss in a TCP flow with cwnd � w and a loss rate of p
leads to a timeout is given by [17], [20]

Q�w� �

���
��

� for � � w � 	

�� p���p��w��

�����p�w for
 � w � �

�� p���p����p��w��

�����p�w for � � w �Wmax

(5)

where Wmax is the maximum allowable window size.

B. RED Queues

RED is an active queue management algorithm which ran-
domly drops packets before a queue becomes full, so that end
nodes can respond to congestion before buffers overflow and
was proposed in [8]. RED probabilistically drops packets even
before the queue is full based on a weighted average of the queue
length k and two threshold values: minth and maxth. For each
packet arrival at the queue, the drop probability for the packet
d�k� is given by

d�k� �

��
�

� for k 	 minth
k�minth

maxth�minth
maxp for minth 	 k 	 maxth

� otherwise
(6)

where maxp is a control variable denoting the maximum drop
probability. The reader is referred to [8] for the detailed RED
algorithm.

For a RED queue the packet drop pattern is closely modeled
by an independent loss model as noted in [21] and the refer-
ences therein. In the independent loss model, losses in a window
are assumed to be independent of each other and losses in other
rounds. From [11] and [21], with the independent loss model
the probability that an arbitrary packet drop leads to a timeout
in a TCP flow with a window of w packets experiencing a loss
rate of p is given by

Q�w� �

�����
����

� for � � w � 	

�� wp���p�w

�����p�w for
 � w � �

�� wp���p�w

�����p�w for � � w �Wmax

�w�w���p����p�w�n��

�����p�w

(7)
In Figure 1 we plot the probability that a loss in a TCP flow
with a congestion window of 5 leads to a timeout in the case
of correlated and independent losses. We see that with corre-
lated losses, the probability of timeouts are much higher for the
same loss rates. This leads to the intuition that the scaling and
burstiness of traffic passing through RED queues will be much
lesser than that through taildrop queues. We verify this intuition
through simulations later in this section.

C. Modified RED Queues

The independent loss model for the packet drop in a RED
queue is very accurate for the cases when the average queue

3

Correlated
Independent

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

1.0

0.6

0.8
P

ro
b
ab

il
it

y
 t

h
at

 a
 L

o
ss

 L
ea

d
s

to
 T

im
eo

u
t

Packet Loss Probability

Fig. 1. Comparison of timeout probabilities for TCP flows with a window of 5
for correlated and independent loss models.

Algorithm 1 Modified Dropping algorithm of RED
last drop flag � 0
for Each Packet Arrival do

if last drop flag = 1 then
last drop flag = 0;
goto enqueue;

else ifminth 	 avg 	 maxth then
with probability d�k�, drop the packet
if packet is dropped then

last drop flag = 1;
end if

else ifmaxth 	 avg then
Drop the packet;
last drop flag = 1;

else
goto enqueue;

end if
end for

length stays betweenmaxth andminth. However, if the offered
load is so high that the average queue length becomes close to
maxth, RED fails to perform better than taildrop queues [13].
This is due to the fact that when the average queue length be-
comes greater than maxth, RED drops each packet with proba-
bility 1. This leads to multiple packet drop from the same win-
dow, resulting in timeouts.

To deal with this situation, we propose a small change to
RED’s dropping policy and the new algorithm for packet drop-
ping is shown in Algorithm 1. The idea is not to drop any two
consecutive packets which arrive at the queue, unless of course
if the queue is full. Since TCP generally sends back to back
packets, ensuring that no two consecutive packets are dropped
will reduce the probability that multiple packets from the same
window are dropped, thereby reducing the occurrence of time-
outs.

To calculate the probability that any arbitrary packet arriving
when the average queue size is k is dropped, d��k�, we first refer
to Figure 2. The three states, denoted by fi� jg with i� j � �� �
and i � j �� �, represent the possible conditions the queue can
be in depending on whether the current or the previous packet
was dropped or not. The global balance equations for the tran-

1-d(k)

1-d(k)

d(k)

d(k)

1
0,1

1,00,0

Fig. 2. Packet drop probabilities with the modified RED algorithm

Modified RED
RED

0 5 15 25 504530 35 402010

0.0

0.4

0.6

0.8

1.0

0.2

Average Queue Length

P
ac

k
et

 D
ro

p
 P

ro
b
ab

il
it

y

Fig. 3. Comparison of packet drop probabilities in the RED and modified RED
buffer management policies.

sition probabilities from the three states can be written as

P���d�k� � P������ d�k��

P��� � P���d�k� � P���d�k�

P��� � P��� (8)

where Pi�j denotes the steady state probability of being in state
i� j and d�k� is defined in Equation (7). These steady-state are
then given by

P��� �
�� d�k�

� � d�k�
P��� �

d�k�

� � d�k�
P��� �

d�k�

� � d�k�

The probability that any arbitrary arriving packet is dropped
when the average queue length is k, � � k 	 qlen, is thus

d��k� � P���d�k� � P���d�k� �
d�k�

� � d�k�
(9)

We note that if maxp is small as is suggested in literature on
RED parameter configuring, then this modification does not sig-
nificantly affect the drop rates while the average queue length is
less than maxth. However, when the average queue length ex-
ceed maxth but is less than qlen, the packet drop probability
becomes 0.5 as compared to 1 in RED (Figure 3). This is a
sufficiently high drop rate to force TCP sources to reduce their
transmission rates but without inducing a lot of timeouts. Also,
since the packet drop probabilities for the modified RED queue
are smaller that those for a RED queue with the same parameters
for a given value of the average queue length, the corresponding
probability of timeouts in the modified RED queue would also
be smaller.

4

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

.
.
.

.
.
.Router Router

S1

S2

Sn

D2

D1

Dn

10 Mbps, 10ms 10 Mbps, 10ms

1Mbps, 100ms

Fig. 4. Topology of the network for the validation tests.

D. Results

We now compare the scaling exponents of the traffic with the
three buffer management policies. These results were generated
by simulations using the simulator ns. The topology used for
the simulations is shown in Figure 4. While the topology is very
simplistic, it was chosen since it allows us to isolate the queue-
ing policy’s contribution to the scaling components. The simu-
lations for each queueing policy is again broken in two parts: the
presence or absence of web traffic. The web traffic is introduced
as background traffic for more realistic wide area networking
scenarios and to test the effectiveness of the buffer management
policies against non-TCP related causes of scaling like file sizes
and human factors.

In the simulations with absence of web traffic, all the sources
correspond to very long TCP Reno sources which are active for
the entire duration of the simulation. In the simulations with
web traffic, a subset of the sources and destinations act as web
traffic clients and servers. The web traffic was generated us-
ing the specifications defined in [6]. For the simulations, the
buffer size of the taildrop as well as the RED and modified RED
queues was kept at 100 packets. For the RED and modified RED
queues, the other parameters were minth � 	�, maxth � ��,
maxp � �
� and wq � �
���. All the simulations were con-
ducted for a ”simulated” time of 3600.0 seconds. For the scal-
ing plots, we collected and analyzed the arrival statistics corre-
sponding to the aggregate traffic arriving at the bottleneck link.
For the throughput results, we present the statistics correspond-
ing to each of the long flows in the simulation.

In Figure 5 we compare the scaling exponents ��q� for sim-
ulations without web traffic corresponding to 30 and 50 TCP
flows. The results for other flow sizes (40 and 60) are similar.
We note that, as expected, taildrop queues show a much higher
variation and a non-linear pattern in the scaling exponents sug-
gesting multi-fractal behavior. In contrast, the linear nature of
��q� for the RED and modified RED queues suggest less bursti-
ness and a behavior consistent with self-similarity. This can be
attributed to the reduction of timeouts and exponential backoffs
in RED and modified RED queues.

The results for simulations with web traffic are shown in Fig-
ure 6. In this case, we note that the scaling exponents for all the
three queues behave linearly in q suggesting self-similar behav-
ior. The self-similar behavior in this case is due to the heavy tails
introduced by the web traffic through the file size distribution
and response times. For this case, we also plot the Hurst param-
eters for each case in Table I. We note that for lower loads the
Hurst parameters corresponding to the taildrop queue are higher
than both the RED and the modified RED algorithms. As the

����

��������

�
�
�
�
�
�
�
�

��

�
�
�
�

��

�� �� ��

�� ��

�
�
�
�

�
�
�
�

�
�
�
�

��

(b) Paced TCP(a) TCP Reno

Source Destination Source Destination

Fig. 7. The packet sending pattern of Reno and paced TCP during slow-start

load on the network increases, the Hurst parameter of the traffic
in the RED queue becomes more than the other two scheduling
disciplines. This is due to the higher proportion of consecutive
losses in RED queues under high loads [13]. However, we note
that for all cases, the modified RED algorithm performs better
than the others or equals the best performance.

In Table I we also compare the throughputs of the long TCP
flows in the simulation scenarios. The improvement in the
throughput with RED queues over taildrop queues is around 1-
3% for the cases without web traffic. In the presence of web
traffic this improvement increases to between 5-11%. In the ab-
sence of web traffic, the throughput of the RED and modified
RED are almost identical. However in the presence of web traf-
fic, the throughput of the modified RED generally increases and
the increase is around 5%.

IV. REDUCING SOURCE-LEVEL BURSTINESS OF TCP
FLOWS

TCP traffic is inherently bursty in nature and TCP sources
tend to send back to back packets. One of the key reasons be-
hind this behavior is ACK compression as described in [26].
The self-clocking mechanism of TCP depends on the arrival of
ACKs at the same spacing with which they were generated by
the receiver. However, in the presence of two-way traffic, queue-
ing on the reverse path can alter this spacing and the ACKs arrive
closer together than they were sent. The first immediate conse-
quence of this is that the sender becomes bursty and sends more
back to back packets. Additionally, with the ACKs being re-
ceived quicker than they were sent, the sender might be misled
into sending more data than the network can accept [14]. This
in turn contributes to the losses and timeouts experienced by the
TCP flow. It was also conjectured in [6] that the phenomenon of
ACK compression might be responsible for the fractal behavior
of network traffic. Thus, the prospect of reducing scaling in net-
work traffic by undoing the effects ACK compression on TCP
dynamics is very promising and worthy of further exploration.

One of the most widely reported mechanisms for smoothing
out TCP traffic is through evenly spacing or “pacing” a win-
dow of packets over the round-trip time and was first proposed
in [26]. Since then, pacing has been proposed for cases where
the ACK clocking is lost to avoid slow starts at the beginning of
connections, after losses or at the resumption of idle connection.
For more details on these and other environments where pacing
is used, we refer the reader to [1] and the references therein. Pac-
ing is accomplished at the sender (receiver) if instead of trans-

5

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4
−3

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4
−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

Taildrop RED Modified RED

Fig. 5. Scaling behavior without web traffic: 30 flows (top) and 50 flows (bottom).

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

Taildrop RED Modified RED

Fig. 6. Scaling behavior with web traffic: 30 TCP flows and 10 web sessions.

Queues with web traffic

Configuration Taildrop RED Modified RED
Throughput H Throughput H Throughput H

10 Long, 5 web 63988.44 0.58 72982.00 0.50 63055.77 0.50
15 Long, 5 web 42099.70 0.67 44785.19 0.60 47422.37 0.57

10 Long, 10 web 33005.78 0.74 37165.11 0.76 34517.33 0.75
15 Long, 10 web 22318.52 0.77 23449.48 0.84 25204.88 0.77
20 Long, 10 web 17508.89 0.80 19952.00 0.91 21275.88 0.80

TABLE I

THROUGHPUT (IN BITS/SEC) AND HURST PARAMETERS FOR THE THREE BUFFER MANAGEMENT POLICIES.

mitting a packet (ACK) everytime an ACK (packet) is received,
it is delayed to maintain the proper spacing between two succes-
sive packets (ACKs). The delay between two successive packets
is given by

delay �
RTT

cwnd
(10)

where cwnd is the current value of the congestion window.
The concept of TCP pacing and its difference from conven-
tional TCP versions is illustrated in Figure 7. The figure shows
the cwnd increase and the packet transmission patterns of TCP
Reno and TCP pacing.

In Figures 8 and 9 we plot the behavior of the scaling expo-
nent of paced TCP and TCP Reno for taildrop and RED queues.
We again note that while TCP Reno shows multi-fractal behav-
ior, specially with taildrop queues, while multi-fractal scaling is
absent for paced TCP for both taildrop and RED queues. In both
the cases, pacing the TCP packets instead of sending them in
bursts leads to significant reductions in the traffic burstiness and
consequently the scaling. We also note that though we present
the results only for TCP Reno, comparisons with other versions
of TCP yield similar results since other versions also send back
to back packets whenever possible.

6

0 2 4

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4
−3

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

60 Flows, Reno 60 Flows, Paced 70 Flows, Reno 70 Flows, Paced

Fig. 8. Comparison of scaling behavior without web traffic for Reno and Paced TCP: Taildrop queue.

0 2 4

−3

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−3

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

40 Flows, Reno 40 Flows, Paced 80 Flows, Reno 80 Flows, Paced

Fig. 9. Comparison of scaling behavior without web traffic for Reno and Paced TCP: RED queue.

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4

−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

0 2 4
−2.5

−2

−1.5

−1

−0.5

0

Multiscale Diagram: (j
1
,j

2
) = (1, 12)

q

ζ
q

Reno, Taildrop Paced, Taildrop Reno, RED Paced, RED

Fig. 10. Comparison of scaling behavior with web traffic (20 long flows and 10 web session) for Reno and Paced TCP.

Queues with web traffic

Configuration Taildrop RED
Reno Paced Reno Paced

10 Long, 5 web 0.58 0.50 0.50 0.50
15 Long, 5 web 0.67 0.50 0.60 0.50

10 Long, 10 web 0.74 0.50 0.76 0.50
15 Long, 10 web 0.77 0.50 0.84 0.50
20 Long, 10 web 0.80 0.54 0.91 0.58

TABLE II

HURST PARAMETERS FOR RENO AND PACED TCP WITH WEB TRAFFIC FOR

TAILDROP AND RED QUEUES.

In Figure 10 we compare the scaling exponents for paced and
TCP Reno in the presence of web traffic. While we show only
the case with 20 long TCP flows and 10 web sessions, the results
for other cases (enumerated in Table II) are similar. We note that
the behavior of ��q� is linear in q suggesting the presence of self-
similar properties. In Table II we compare the Hurst parameters
for the simulations with web traffic. We note that pacing is very
successful at reducing the degree of self-similarity even with

the presence of session and user level causes. Also, we note that
pacing leads to larger reductions in H as compared to the mod-
ified RED algorithm. This leads us to believe (without rigorous
proof) that the inherent burstiness in TCP flows is a greater con-
tributor to traffic self-similarity than timeouts and exponential
backoffs. This makes pacing more successful at reducing traffic
self-similarity over a large number of scenarios as compared to
the modified RED algorithm.

V. SUMMARY

In this paper we explored some methods for reducing the de-
gree of second order scaling of TCP traffic. The methods were
based on two of the causes which contribute to the self-similarity
and multi-fractal nature of network and in particular TCP traf-
fic: timeouts and the burstiness of TCP traffic. While we con-
sidered only the causes of multi and mono fractality from the
TCP point of view, our solutions are also effective against other
causes of self-similarity like session interarrival times and heavy
tailed distributions in the file sizes, introduced by web traffic.

We first investigated the impact of various buffer management
policies on the second order scaling of TCP traffic. Our results
show that while taildrop queues lead to a multi-fractal behavior
in traffic, RED and modified RED queues result in self-similar

7

traffic. Also, in the presence of web traffic, the traffic has mono-
fractal characteristics due to the heavy tails associated with web
server file sizes and inter-file separation times. For these cases,
RED and modified RED algorithms have lower degrees of self-
similarity than taildrop queues and the modified RED queue
consistently gives the lowest degree of self-similarity for all
these scenarios. This is due to the reduction of timeouts and
exponential backoffs in RED and modified RED queues which
has been shown to be a contributor to the scaling of network
traffic.

Another factor contributing to the multi-fractal scaling of net-
work traffic is the inherent burstiness of TCP traffic which can
be reduced by paced TCP. Our simulations show that pacing in
TCP eliminated the multi-fractal scaling of TCP traffic under
both taildrop and RED queues. Also, in the presence of web
traffic, paced TCP results in significant reductions in the Hurst
parameter for both RED and taildrop queues at the bottleneck
when compared to other versions of TCP and is in fact more
successful at it than the modified RED algorithm.

REFERENCES

[1] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the performance
of TCP pacing,” Proceedings of IEEE INFOCOM, pp. 1157-1165, Tel-Aviv,
Israel, March 2000.

[2] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic:
Evidence and possible causes,” IEEE/ACM Trans. on Networking, vol. 5,
no. 6, pp. 835-846, Dec 1997.

[3] A. Erramilli, O. Narayan, A. Neidhardt and I. Sainee, “Performance im-
pacts of multi-scaling in wide area TCP/IP traffic,” Proceedings of IEEE
INFOCOM, pp. 352-259, Tel Aviv, Israel, March 2000.

[4] A. Erramilli, O. Narayan and W. Willinger, “Experimental queueing anal-
ysis with long-range dependent packet traffic,” IEEE/ACM Transactions on
Networking, vol. 4, no. 2, pp. 209-223, April 1996.

[5] A. Feldmann, A. C. Gilbert and W. Willinger, “Data networks as cascades:
Investigating the multifractal nature of Internet WAN traffic,” Computer
Communications Review, vol. 28, no. 4, pp. 42-58, 1998.

[6] A. Feldmann, A. C. Gilbert, P. Huang and W. Willinger, “Dynamics of IP
traffic: A study of the role of variability and the impact of control,” Pro-
ceeding of ACM SIGCOMM, Boston, MA, August 1999.

[7] D. R. Figueiredo, B. Liu, V. Misra and D. Towsley, “On the autocorrelation
structure of TCP traffic,” Technical Report TR 00-55, University of Mas-
sachusetts, Computer Science Department, Amherst, MA, 2000.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for TCP con-
gestion avoidance,” IEEE/ACM Transactions on Networking vol. 1, no. 4,
pp. 397-413, August 1993.

[9] M. Grossglauser and J-C. Bolot, “On the relevance of long-range depen-
dence in network traffic,” IEEE/ACM Transactions on Networking, vol. 7,
no. 5, pp. 629-640, October 1999.

[10] L. Guo, M. Crovella and I. Matta, “How does TCP generate pseudo-self-
similarity?,” Proceedings of the International Workshop on Modeling, Anal-
ysis and Simulation of Computer and Telecommunications Systems, Cincin-
nati, OH, August 2001.

[11] A. Kumar, “Comparative Performance Analysis of Versions of TCP in a
Local Network with a Lossy Link,” IEEE/ACM Trans. on Networking, vol.
6, no. 4, pp. 485-498, August 1998.

[12] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, “On the self-
similar nature of Ethernet traffic (extended version),” IEEE/ACM Transac-
tions on Networking, vol. 2, no. 1, pp. 1-15, Feb 1994.

[13] M. May, T. Bonald and J.-C. Bolot, “Analytic evaluation of RED perfor-
mance,” Proceedings of IEEE INFOCOM, pp. 1415-1424, Tel-Aviv, Israel,
March 2000.

[14] J. Mogul, “Observing TCP dynamics in real networks,” Proceedings of
ACM SIGCOMM, pp. 305-317, Baltimore, MD, August 1992.

[15] A. L. Neidhardt and J. L. Wang, “The concept of relevant time scales and
its application to queueing analysis of self-similar traffic,” Proceedings of
ACM SIGMETRICS, pp. 222-232, Madison, WI, June 1998.

[16] I. Norros, “A storage model with self-similar input,” Queueing Systems,
vol. 16, pp. 387-396, 1994.

[17] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP Reno per-
formance: A simple model and its empirical validation,” IEEE/ACM Trans.
on Networking, vol. 8, no. 2, pp. 133-145, April 2000.

[18] K. Park, G. Kim, and M. Crovella, “On the relationship between file sizes,
transport protocols, and self-similar network traffic,” Proceedings of Inter-
national Conference on Network Protocols, pp. 171-180, Columbus, OH,
October 1996.

[19] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson mod-
eling,” IEEE/ACM Trans. on Networking, vol. 3, no. 3, pp. 226-244, June
1995.

[20] B. Sikdar, S. Kalyanaraman and K. S. Vastola, “An integrated model for
the latency and steady state throughput of TCP connections,” Performance
Evaluation, vol. 46, no. 2-3, pp. 139-154, September 2001.

[21] B. Sikdar, S. Kalyanaraman and K. S. Vastola, “TCP Reno with random
losses: Latency, throughput and sensitivity analysis,” Proceedings of IEEE
IPCCC, pp. 188-195, Phoenix, AZ, April 2001.

[22] B. Sikdar and K. S. Vastola, “The effect of TCP on the self-similarity of
network traffic,” Proceedings of the 35th Conference on Information Sci-
ences and Systems, Baltimore, MD, March 2001.

[23] A. Veres and M. Boda, “The chaotic nature of TCP congestion control,”
Proceedings of IEEE INFOCOM, pp. 1715-1723, Tel-Aviv, Israel, 2000.

[24] A. Veres, Z. Kenesi, S. Molnár and G. Vattay, “On the propagation of
long-range dependence in the Internet,” Proceedings of ACM SIGCOMM,
pp. 243-254, Stockholm, Sweden, September 2000.

[25] W. Willinger, M. S. Taqqu, R. Sherman and D. V. Wilson, “Self-similarity
through high-variability: Statistical analysis of Ethernet LAN traffic at the
source level,” IEEE/ACM Trans. on Networking, vol. 5, no. 1, pp. 71-86,
1997.

[26] L. Zhang, S. Shenker, and D. Clark, “Observations on the dynamics of a
congestion control algorithm: The effects of two-way traffic,” Proceedings
of ACM SIGCOMM, pp. 133-147, Zurich, Switzerland, September 1991.

