
Analytic Models and Comparative Study of the
Latency and Steady-State Throughput of TCP

Tahoe, Reno and SACK
B. Sikdar, S. Kalyanaraman and K. S. Vastola

Dept. of ECSE, Rensselaer Polytechnic Institute
Troy, NY 12180 USA

email: fbsikdar,shivkuma,vastolag@networks.ecse.rpi.edu

Abstract— Continuing the process of improvements made to TCP
through the addition of new algorithms in Tahoe and Reno, TCP SACK
aims to provide robustness to TCP in the presence of multiple losses from
the same window. In this paper we present analytic models to estimate the
latency and steady-state throughput to TCP Tahoe, Reno and SACK and
validate our models using both simulations and TCP traces collected from
the Internet. In addition to being the first models for the latency of finite
Tahoe and SACK flows, our model for the latency of TCP Reno gives a more
accurate estimation of the transfer times than existing models. Our models
show that under the losses introduced by the droptail queues which dom-
inate most routers in the Internet, current implementations of SACK fail
to provide adequate protection against timeouts and a loss of roughly more
than half the packets in a round will lead to timeouts. We also show that
with independent losses, SACK performs better than Tahoe and Reno and
as losses become correlated, Tahoe can outperform both Reno and SACK.

I. INTRODUCTION

Early TCP implementations used a go-back-n model and re-
quired the expiration of a retransmission timer to recover any
loss. TCP Tahoe added added the slow-start, congestion avoid-
ance and fast retransmit algorithms to TCP [7]. TCP Reno re-
tained the new algorithms of TCP Tahoe while adding fast re-
covery to the implementations [8]. TCP SACK allows receivers
to ACK out of sequence data and is aimed at eliminating the
timeouts which arise in TCP Reno due to multiple losses from
the same window [1], [2]. The most recent proposal for adding
SACK to TCP is in [12].

In this paper we first present analytic models for estimating
the latencies and steady state throughput of TCP Tahoe, Reno
and SACK. Our models are validated using both traces collected
from the Internet as well as simulations. We then compare the
performance of these versions of TCP under independent and
correlated loss scenarios. Existing analytic models for TCP fo-
cus mainly on TCP Reno [4], [6], [10], [11], [14], [15] as it
the most widely implemented version of TCP. Also, these mod-
els are for the steady state throughput of infinite TCP connec-
tions. In [9], models for the steady state throughput of Tahoe,
Reno and NewReno are presented assuming an independent loss
model without delayed ACKs. In [3] and [16] models for esti-
mating the latency of TCP Reno are presented for correlated and
independent losses respectively.

Though TCP Reno has been modeled extensively no litera-
ture exists on modeling the latencies of finite TCP flows using

This work supported in part by DARPA under contract numbers F19628-98-
C-0057 and F30602-00-2-0537, NSF contract AWI 9806660 and by MURI con-
tract F49620-97-1-0382 through AFOSR.

Tahoe or SACK. In [5] simulations using the the simulator ns
are used to compare the performance of the three versions with
four sets of simulations. This paper, in addition to being the first
to present models for the latency of TCP Tahoe and SACK, also
presents a model for the latency of TCP Reno gives yields more
accurate results compared to existing models. We also show a
serious drawback in current SACK implementations (which use
a variable pipe which can lead to severe performance degra-
dations. We show how TCP SACK can lead to timeouts even
on the receipt of 3 duplicate ACKs and derive the precise condi-
tions under which these timeouts occur.

Another important contribution of this work is to show that
Tahoe can outperform both Reno and SACK under correlated
losses. In [5] simulation scenarios were used show that both
Tahoe and SACK outperform Reno in the presence of multiple
losses in a window. Also, SACK performs better than Tahoe in
the examples considered. However, as our analysis shows, with
correlated losses which arise from the droptail queues dominat-
ing the routers in the Internet, Tahoe can perform better than
both Reno and SACK. But, using simulations we show that if the
loss scenario is changed to an independent model, both SACK
and Reno outperform Tahoe. Thus, proper determination of the
loss model is of utmost importance in determining TCP perfor-
mance.

The rest of the paper is organized as follows. In Section II
we present the assumptions made in our models. Section III
presents the models for the latencies and their validation while
Section IV presents the models for the steady state throughput.
In Section V we compare the performance of the three versions
of TCP in terms of their latencies and their steady-state through-
put. Finally we present a discussion on the results and conclud-
ing remarks in Section VI.

II. ASSUMPTIONS

We follow assumptions on the network and the TCP sender
and receiver similar to those in [3], [15], [16]. Our models ac-
count only for the delays arising from TCP’s performance and
we ignore the delays arising at the endpoints from factors like
buffer limitations. We assume that the sender transmits full
sized segments as fast as its congestion window allows and that
the receiver advertises a consistent flow control window,Wmax.
We assume that the receiver uses the delayed acknowledgment
scheme specified in RFC 2581. As in [3], we do not account
for the effects of Nagle’s algorithm and silly window avoidance.



We model the latency of TCP flows in terms of “rounds” as de-
fined in [15]. A round begins with the transmission of a window
of packets and ends on the receipt of an ACK for one of these
packets.

In this paper we assume the correlated loss model of [15]
which is better suited for the droptail queues currently preva-
lent in the Internet. In this model, a packet in a round is lost
independently of losses in other rounds. However, losses within
a round are correlated and all packets following the first packet
to be lost in round are also assumed to be lost. The probability
that any given packet is lost is denoted by p. Finally we assume
that the time to transmit all the packets is much smaller than
the duration of the round and that the duration of the round is
independent of the window size.

III. MODELS FOR TCP LATENCY

Our approach towards modeling the latency TCP flows is to
estimate the transfer time given that the flow experiences a given
number of loss indications. We break the modeling in three
parts: flow with no losses, a single loss indication and multi-
ple loss indications. Expressions for the latency are derived as
a function of the transfer size N (in number of packets), the
packet loss probability p and the RTT.

A. Connection Establishment

A TCP connection begins with a three-way handshake. Dur-
ing this process, if either host does not receive the ACK it is
expecting within a timeout period Ts, it retransmits its SYN and
then waits twice as long for an ACK. Following [3], the expected
duration of the connection setup time can be approximated as

tsetup � RTT � �Ts ���� p����� �p�� �� (1)

B. The Slow-start Phase

TCP starts its transmission in the slow-start phase. With de-
layed ACKs, the receives sends one ACK for every two packets
that it receives or if the delayed ACK timer expires. In [16] the
authors proposed a model for the cwnd increase pattern which
accounts for the intricacies of the delayed ACK timer by mod-
eling the expected number of packets sent in each round. This
results in a more accurate model of the slow start phase as com-
pared to ���n packets in the nth round as used in [3]. The
number of packets transmitted in the nth round according to the
model of [16] is given by

w�n� �
j
�
n��
� � �

n��
�

k
(2)

The number of packets transmitted in the first k rounds of the
slow start phase is then given by

pkt�k� �

kX
n��

w�n� �
j
�
n��
� � ����

�n��
� � �� ��

p
�
k

(3)

Note that after the first packet of a flow is sent, the receiver has
to wait until the delayed ACK timer expires and an ACK is sent,
increasing the cwnd to 2. This delay due to the delayed ACK,
tdack, is 100ms for UNIX and 150ms for Windows platforms.

C. Timeouts and Congestion Avoidance

When TCP flows experience a loss, the window reduces and
then increases again either in the slow-start or congestion avoid-
ance mode. The average duration of a timeout is given by [15]

E	TO
 � To
� � p� �p� � �p� � �p� � ��p� � ��p�

�� p
(4)

where To is the duration of time the sender waits before re-
transmitting the first lost packet. Once the flow reaches the
congestion avoidance phase, the cwnd increases linearly till it
reaches Wmax, increasing by 1 every two RTTs. The number of
rounds required to transmit a packets in the congestion avoid-
ance mode with the initial value of cwnd � b is obtained by
solving a �

Pk

i���b� b i��� c� for k and is given by

tlin�a� b� �

����
���

l
a�x�x	�
	b�b��


x	�

m
� ��x� b� �� if a � Nlinl

a�Wmax�Wmax	�
	b�b��

Wmax

m
otherwise

���Wmax � �b� ��
(5)

where Nlin � Wmax�Wmax � �� � b�b � �� and denotes the
number of packets that can be sent before cwnd reaches Wmax

and x � b��� �
p

� � ��a� b�b� ������c.
D. Flows Without Losses

If the TCP flow does not experience any losses, the behavior
of all the three versions of TCP under consideration will be iden-
tical. The number of round required by the TCP flow to reach a
cwnd of wmax can be computed from Eqn. (2) and is given by

nwm �

�
� log�

�
�Wmax

� �
p
�

�	
(6)

The number of packets transmitted when cwnd reaches Wmax,
Nexp, is given by

Nexp �
j
�
nwm��

� � ����
�nwm��

� � �� ��
p
�
k
�Wmax (7)

The time to transfer N packets, N � Nexp, can be obtained by
solving N �

Pk

n�� pkt�n� for k and is given by

tnl�N� �

���
��


� log�

�
�N	�	�

p
�

�
p
�	���


�
�

��
RTT� if N � Nexph

nwm �
l
N�Nexp

Wmax

mi
RTT� otherwise

(8)

E. TCP Tahoe

When a Tahoe flow does not experience any losses, the time
taken to transfer N packets is given by Eqn. (8). We now con-
sider the cases when a Tahoe flow experiences a single or mul-
tiple loss indications.

E.1 Single Loss

We first present some expressions which will be used fre-
quently in the derivations. To find the cwnd of the round when
the ith packet is transmitted, cwnd�i , we first find the number of
rounds it takes to transmit i packets, r�i�, assuming there is no



effect of window limitation. r�i� can be calculated as in Eqn.
(8) and is given by

r�i� �



� log�

�
�i� �����

����

��
(9)

If r�i� � nwm, we know that cwnd � Wmax. For all other
cases, cwnd � Wmax and is given by Equation (2). Then,
cwnd�i is given by

cwnd�i �

�
Wmax if r�i� � nwmj
�
r�i	��

� � �
r�i	��

�

k
otherwise

(10)

The sequence number of the last packet transmitted in this
round, nmax�i�, is obtained using Equation (3) and is given by

nmax�i� �

��
�
Nexp �

l
max ���i�Nexp


Wmax

m
Wmax if r�i� � nwmj

�
r�i	��

� � ����
�r�i	��

� � �� �
p
�

�

k
otherwise

(11)
From our correlated loss model, if packet i is lost, then all the

packets following it in the same round, i.e., i�� to nmax�i� are
also lost and we denote the number of losses by nloss. Also,
in this round i � nmax�i� � cwnd�i � � packets are transmit-

ted correctly before the ith packet. Since the receiver used de-
layed ACKs, we can thus expect ACKs for half of these packets,
each of which increases cwnd by one. We denote the cwnd
in the round which now follows by cwnd�i and the number
of packets transmitted in it by nrnd�i . On detecting the loss
the sender retransmits the lost packets and sets its ssthresh to
n � maxf�� dcwnd�i ��eg. Let the duration of the slow start
phase following a loss indication in TCP Tahoe be denoted by
r�n� and the number of packets transmitted in these rounds be
denoted by k�. Each of the quantities is then given by

nloss � nmax�i�� i� �

cwnd�i � minfWmax� cwnd
�
i � d�cwnd�i � nloss���eg

nrnd�i � cwnd�i � nloss

k� �
j
�
r�n	��

� � ����
�r�n	��

� � �� ��
p
�
k

(12)

and r�n� is obtained from Eqn. (9). Now if nrnd�i � �, the
sender will get at least three duplicate ACKs for packet i and en-
ter fast retransmit and recovery. Otherwise, the connection times
out. When the congestion avoidance phase begins, nrnd�i � k�

additional packets have been correctly transferred. The transfer
time for the remaining a � N�nrnd�i �k��i�� packets to be
transmitted in the linear increase phase can be found using Eqn.
(5) with b � n. Also, the time to transmit the first i� � packets
can be obtained using the expression for the no loss case. The
time to transmit N packets with a loss indication at packet i is
then given by

tsl�N� �

����
���

	tnl�i� � r�n� � � if nrnd�i � �
�tlin�a� b�
RTT
	tnl�i� � r�n� � tlin�a� b�� else
I�nrnd�i � �� �E	TO



RTT

(13)

E.2 Multiple Losses

Let there be M loss indications in a flow of N packets, the
second of which occurs at packet number m. The first m � �
packets have one loss indication and the time to transmit these
packets can be obtained from the results of the previous subsec-
tion. The average number of packets between two successive
losses is given by

Da �
N �m� �

M � �
(14)

To obtain the transfer time for the last N � m � � pack-
ets, we first compute the average time to transmit Da pack-
ets. After the first loss, we approximate the possible range
of values of cwnd when the subsequent losses occur by
�� � � � �minfWmax� d��	

p
�	��Da

� eg. Also, to keep the analysis
tractable, we assume that each of these possible values of cwnd
and the position of the lost packet within a cwnd are equally
likely when the loss occurs.

Now consider the flow with cwnd � h where the loss indica-
tion occurs at the jth packet of the round. We want to find the
time to transmit Da packets correctly following the j th packet.
For analytic tractability, we now assume that the flow was in
the congestion avoidance mode when this loss indication oc-
curred, as it will subsequently be following the first loss indi-
cation. The number of packets lost in this round is now given by
h�j�� while j�� packets are transmitted successfully. When
the loss is detected, ssthresh is set to n � maxf�� dh��eg. In
case of a timeout we need r�n� rounds with k� packets trans-
mitted in them till the flow enters the congestion avoidance
mode again. Using the same definition for the quantities nloss,
cwnd�j , cwnd�j , nrnd�j , r�n� and k� as for the single loss case,
we have

cwnd�j � h

nloss � h� j � �

cwnd�j � h

nrnd�j � cwnd�j � nloss � j � � (15)

and r�n� and k� are obtained from Eqn. (9) and (12) respec-
tively. Now if nrnd�j � �, we get enough duplicate ACKs to
lead to a fast retransmit. Again since a � Da�k�� j�� pack-
ets remain to be transmitted in the congestion avoidance phase,
the time to transmit Da packets after the loss indication is thus

tM loss�Da� �

����
���

	r�n� � � if nrnd�i � �
�tlin�a� n�
RTT
	tlin�a� n� �E	TO
� otherwise
r�n� � I�j � � � ��
RTT

(16)
The expected duration to transmit the Da packets can now be
obtained by averaging Eqn. (16) for the possible value of h and
j. The time to transmit the N packets with M loss indications
is then

tml�N� � Eftsl�m� ��g� �M � ��EftM loss�Da�g (17)



File p � ����� p � ����� p � �����

Size sim. ana. sim. ana. sim. ana.
1 KB 0.28 0.28 0.47 0.47 0.94 1.04
4 KB 0.39 0.37 0.75 0.76 1.56 1.47
8 KB 0.72 0.68 1.23 1.27 1.78 1.82

16 KB 0.82 0.81 1.69 1.73 2.73 2.68

File p � ����� p � ����� p � �����

Size sim. ana. sim. ana. sim. ana.
1 KB 0.36 0.35 0.63 0.64 1.02 1.17
4 KB 0.63 0.60 1.08 1.12 1.81 1.74
8 KB 0.99 0.94 1.48 1.52 2.62 2.69

16 KB 1.42 1.37 2.16 2.21 3.47 3.49

TABLE I

TCP TAHOE TRANSFER TIMES. RTT � ���ms (TOP) AND

RTT � ���ms (BOTTOM),MSS � ���KB , Wmax � ��.

E.3 The Expected Transfer Time

Combining the results of the previous sections, the expected
transfer time for a flow of N packets is given by

Ttransfer�N� � tsetup � tdack � ��� p�N tnl�N� �

p��� p�N��Eftsl�N�g� tml�N� (18)

where tsetup, tnl�N�, tsl�N� and tml�N� are defined in Eqns.
(1), (8), (13) and (17) respectively.

In Tables I we present the comparison of the results from our
model with those from simulations using ns. A 2-state Markov
error model was used to model the correlated loss process. We
note the close agreement between the analytic and simulation
results.

F. TCP Reno

TCP Reno adds the fast-recovery algorithm to TCP Tahoe
which can results in substantial improvements in the presence
of single packet losses. However with multiple packet losses,
TCP Reno has to resort to timeouts to recover the losses and its
performance degrades. When the Reno flow does not experience
any losses, the transfer time is obtained using Eqn. (8).

F.1 Single Loss

Following the notation used for the Tahoe model we again ob-
tain cwnd�i from Eqn. (10) and nloss, cwnd�i and nrnd�i from
Eqn. (12). However, since Reno can recover multiple lost pack-
ets (with one recovery per round), we can have another round of
nrnd�i packets with cwnd denoted by cwnd�i before a timeout
may be detected. If nrnd�i � �, we have three duplicate ACKs
in the next round resulting in a cwnd of

cwnd�i � minfWmax� dcwnd�i ��e� nrnd�i g (19)

The number of packets unacknowledged at the end of first round
following the round with the losses is cwnd�i . Thus if cwnd�i �
cwnd�i

nrnd�i � cwnd�i � cwnd�i (20)

With TCP Reno, a single packet loss in a window of less than 4
(tcprextthresh��), two or more losses in windows between 4
and 8 (tcprextthresh�� and ��tcprextthresh���) and three
or more losses for higher windows lead to timeouts [13]. For all

other cases, the losses can be recovered using fast retransmis-
sions. Let us first consider the simpler case when the losses are
recovered using fast retransmissions. Since nrnd�i �nrnd�i new
packets along with the nloss retransmitted packets are sent be-
fore the congestion avoidance phase begins, we only have a �
N �nloss�nrnd�i �nrnd�i � i�� packets to send in conges-
tion avoidance phase. Also, since each recovered loss reduces
ssthresh by half, we have n � maxf�� dcwnd�i �nlosseg.
Then

tsl�N� � 	tnl�i� � nloss� � � tlin�a� n�
RTT (21)

If the flow times out while recovering the the losses, we can
have between 0 and 3 additional rounds of packets where the
first couple of losses may be recovered. If the first packet of the
round is lost then we do not have any additional rounds and the
flow directly times out. If nrnd�i is one or two, then we have an-
other round with nrnd�i packets before the flow times out. For
other cases we have at least one packet which is recovered using
fast recovery. In this round nrnd�i additional packets are sent
along with the retransmitted packet. Also, if nrnd�i � � we
have a third additional round with another fast retransmit. The
flow now inevitably times out. We denote the number of addi-
tional packets transmitted before the timeout by k�� and during
the slow start phase following the timeout by k�. We also denote
the number of rounds before the timeout starts by tTO and the
duration of the slow start phase by r�n�. After some algebraic
simplifications we then have

k�� �

��
�
nrnd�i if nrnd�i � �
maxfcwnd�i � cwnd�i g � nrnd�� � � if nrnd�i � �
maxfcwnd�i � cwnd�i g � nrnd�� otherwise

(22)

tTO �

��
�

I�nrnd�i � �� if nrnd�i � �
� if nrnd�i � �
� otherwise

(23)

n �

��
�

maxf�� dcwnd�i ��eg if nrnd�i � �
maxf�� dcwnd�i ��eg if nrnd�i � �
maxf�� dcwnd�i ��eg otherwise

(24)

with r�n� and k� given by Eqns. (9) and (12) respectively. Since
we only have to transmit a � N � k� � k�� � i � � packets in
the congestion avoidance phase, the time to transmit N packets
is then given by

tsl�N� � 	tnl�i� � tTO � r�n� �E	TO
 � tlin�a� n�
RTT
(25)

F.2 Multiple Losses

We follow the same approach as used in modeling Tahoe
flows with multiple losses and use the same expressions for find-
ingDa and the range of possible cwnd values. Now consider the
flow with cwnd � h where the loss indication occurs at the jth

packet of the round. Using the same definition for the quanti-
ties nloss, we can use Eqn. (15) to find cwnd�j , cwnd�j , nloss
and nrnd�j . Also, cwnd�j and nrnd�j correspond to cwnd�i and
nrnd�i of the single loss case and given by Eqns. (19) and (20)
respectively. When all the losses are successfully recovered us-
ing fast retransmits, a � Da�nloss�nrnd�j �nrnd�j packets



File p � ����� p � ����� p � �����

Size sim. ana. sim. ana. sim. ana.
1 KB 0.27 0.26 0.53 0.54 0.96 0.96
4 KB 0.42 0.41 0.83 0.85 1.63 1.62
8 KB 0.63 0.62 1.18 1.14 2.05 2.08
16KB 0.80 0.80 1.34 1.37 2.66 2.68

File p � ����� p � ����� p � �����

Size sim. ana. sim. ana. sim. ana.
1 KB 0.38 0.36 0.70 0.65 1.00 1.06
4 KB 0.65 0.63 1.06 1.07 2.08 2.10
8 KB 0.97 0.87 1.62 1.64 2.47 2.52

16 KB 1.41 1.31 2.16 2.17 3.72 3.71

TABLE II

TCP RENO TRANSFER TIMES. RTT � ���ms (TOP) AND RTT � ���ms

(BOTTOM),MSS � ���KB, Wmax � ��.

are transmitted during congestion avoidance which begins with
a cwnd of n � maxf�� dcwnd�i �nlosseg. The time to transmit
the Da packets can now be expressed as

tM loss�Da� � 	nloss� � � tlin�a� n�
RTT (26)

For flows resorting to timeouts, we use the same notation for
k��, k�, tTO n and r�n� in the single loss case, and obtain them
using Eqns. (22), (12), (23), (24) and (9) respectively. In the
congestion avoidance phase we are now left with a � Da �
k� � k�� to be transmitted. The time to transmit the Da packets
can now be expressed as

tM loss�Da� � 	E	TO
 � tTO � r�n� � tlin�a� n�
RTT
(27)

Following the same expectation operations as for TCP Tahoe,
the time to transmit the N packets with M loss indications is
then

tml�N� � Eftsl�m� ��g� �M � ��EftM loss�Da�g (28)

F.3 The Expected Transfer Time

Combining the results of the previous sections, the expected
transfer time for a flow of N packets is given by

Ttransfer�N� � tsetup � ��� p�N tnl�N� � tdack �

p��� p�N��Eftsl�N�g� tml (29)

where tsetup, tnl�N� and tml�N� are defined in Eqns. (1), (8)
and (28) respectively and tsl�N� is defined in Eqns. (21) and
(25).

In Tables II we present the comparison of the results from our
model with those from ns simulations. Again we have a close
agreement between the analytic and simulation results. For TCP
Reno we also validate our model by comparing the delays pre-
dicted by our model with measurements of actual TCP trans-
fers over the Internet. These measurements were done for files
with randomly generated sizes transferred between machines at
RPI Troy, NY and Ohio State University, Columbus OH, MIT,
Boston MA, University of California, Los Angeles CA and Uni-
versity of Pisa, Pisa Italy. For space restrictions, we only show
the results for transfers to Los Angeles in Fig. 1. The results for
the others are similar. We also plot the results from the model
given in [3]. For short transfers, our results are clearly much
closer to the measured average while for large transfers there is
no appreciable difference between the two models.

G. TCP SACK

TCP SACK is specially aimed at eliminating timeouts in the
presence of multiple losses. However, we now show that with
correlated losses, SACK fails to achieve this goal and timeouts
occur quite frequently. For our analysis, we assume the SACK
implementation of [5]. We use the same definitions from the pre-
vious subsections and obtain cwnd�i from Eqn. (10) and nloss,
cwnd�i and nrnd�i from Eqn. (12).

We first identify the cases in which TCP SACK can lead to a
time out. It is easy to see that if nrnd�i � � (i.e. tcprextthresh)
the sender does not receive enough duplicate acknowledgments
and resorts to timeouts. However, in the presence of correlated
losses, there is another factor which leads to most of the time-
outs in current SACK implementations and this is the variable
pipe. In TCP SACK, pipe controls the transmission of new
or retransmitted packets during fast recovery. The sender sends
new or retransmitted packets only if the value of pipe is less
than cwnd. When the third duplicate ACK is received and the
first packet is retransmitted, pipe is initialized to cwnd�i � �
and cwnd is set to cwnd�i ��. For each of the additional du-
plicate ACKs resulting from the rest of the nrnd�i � � packets
pipe is decremented by one resulting in

pipe � cwnd�i � nrnd�i � nloss (30)

If pipe � cwnd no more packets are transmitted. The par-
tial ACK corresponding to the first retransmitted packet comes,
pipe is decremented by two. Now if pipe is still greater than
equal to cwnd the flow will timeout. The condition for time-
outs resulting due to the implementation of pipe can then be
expressed as

nloss� � � dcwnd�i ��e (31)

This roughly translates to: if more than half of the packets in a
round are lost, SACK is unable to recover them without a time-
out. Thus with correlated losses, Tahoe can out perform SACK
since it is the most conservative and starts retransmitting all lost
packets on the receipt of 3 duplicate ACKs.

G.1 Single Loss

Let us first consider the case when the flow resorts to a time-
out to recover the losses, which happens if nrnd�i � � or the
if the condition of Eqn. (31) is satisfied. If nrnd�i � � we
have at least one round following the round with losses and if
nrnd�i � � we have one additional round where one packet is
recovered with a fast retransmit. A fast retransmit results in the
cwnd being halved and the value of cwnd and the number of
packets transmitted in the next round, nrnd�i are given by

cwnd�i � dcwnd�i ��e
nrnd�i � � �maxf�� cwnd�i � pipeg (32)

Also, when the loss is detected, ssthresh is set to n �
minf�� dcwnd�i ��eg and the number of packets transmitted in
the slow start phase, k� is obtained from Eqn. (12). The number
of packets remaining to be transmitted in the congestion avoid-
ance mode is thus a � N � nrnd�i � nrnd�i � k� � i� �. The
time to transmit N packets with one loss indication resulting in



2000

Proposed

3000

Measured

[CSAn00]
T

ra
n

sf
er

 T
im

e 
(s

ec
)

1.0

1.5

2.0

0.5

0.0

Data Transfered (Bytes)
8000700060005000 90001000 4000

RTT = 0.1184, p = 0.0011, Wmax = 18

1.0

Measured

2.0

Proposed
[CSAn00]

Data Transfered (Bytes)
9000080000700006000050000400003000020000

T
ra

n
sf

er
 T

im
e 

(s
ec

)

3.0

4.0

5.0

6.0

0.0

RTT = 0.1184, p = 0.0011, Wmax = 18

Fig. 1. Comparison of latency of TCP Reno transfer between Troy, NY and Los Angeles, CA.

a timeout is thus given by

tsl�N� �
�
tnl�i� �E	TO
 � I�nrnd�i � ���

I�nrnd�i � �� � tlin�a� n�

RTT (33)

In the case that all the losses are recovered without any timeout,
in each round the partial ACKs decrease pipe by two. Since
nrnd�i packets are retransmitted in the round following the re-
ceipt of the duplicate ACKs, the number of losses which remain
to be transmitted, rl, is given by rl � nloss�nrnd�i The num-
ber of rounds spent in this exponential phase till all the losses
are recovered, r�n� and the packets transmitted in these r�n�
rounds, k�, can be easily shown to be given by

r�n� �



log�

�
rl

nrnd�i
� �

��
k� � nrnd�i ��

r�n
 � �� (34)

We then have a � N � nrnd�i � nrnd�i ���
r�n
 � i� � packets

to be transmitted in the congestion avoidance mode resulting in
a total transfer time of

tsl�N� � 	tnl�i� � � � r�n� � tlin�a� n�
RTT (35)

G.2 Multiple Losses

Following the same approach as used for Tahoe and Reno
and using the same definitions, we can again use Eqn. (15)
to obtain nloss, cwnd�j , cwnd�j , nrnd�j . The value of pipe
after the receipt of the duplicate ACKs can now be found us-
ing Eqn. (30). The quantities cwnd�j and nrnd�j correspond
to cwnd�i and nrnd�i of the single loss case and are similarly
obtained using Eqn. (32). We first consider the case when the
flow times outs. When the loss is detected, ssthresh is set to
n � minf�� dcwnd�i ��eg and the number of packets transmitted
in the slow start phase, k� is again obtained from Eqn. (12). The
number of packets remaining to be transmitted in the congestion
avoidance mode is then a � Da�nrnd�j �nrnd�j � k� and the
time to transmit Da packets is thus

tM loss�Da� �
�
E	TO
 � r�n� � I�nrnd�j � ��

�I�nrnd�j � �� � tlin�a� n�

RTT (36)

In the case that the losses are recovered without any timeouts,
the number of losses which remain to be transmitted after the

File p � ����� p � ����� p � �����

Size sim. ana. sim. ana. sim. ana.
1 KB 0.31 0.30 0.62 0.62 0.96 1.09
4 KB 0.40 0.41 0.96 0.98 1.88 1.91
8 KB 0.65 0.62 1.12 1.08 2.00 1.04

16 KB 0.82 0.80 1.58 1.56 2.81 2.88

File p � ����� p � ����� p � �����

Size sim. ana. sim. ana. sim. ana.
1 KB 0.37 0.36 0.59 0.61 1.05 1.20
4 KB 0.59 0.59 1.08 1.05 1.81 1.79
8 KB 0.99 0.91 1.50 1.53 2.53 2.56

16 KB 1.43 1.40 2.22 2.36 3.58 3.63

TABLE III

TCP SACK TRANSFER TIMES. RTT � ���ms (TOP) AND

RTT � ���ms (BOTTOM),MSS � ���KB , Wmax � ��.

first round of retransmissions is rl � nloss�nrnd�j . As for the
single loss case, the time to transmit the remain losses, r�n�, and
the number of packets transmitted in these rounds, k � are given
by Eqn. (34). Now, only a � Da � nrnd�j � nrnd�j ���

r�n


packets remain to be transmitted in the congestion avoidance
mode and the transfer time for Da packets is given by

tM loss�Da� � 	� � r�n� � tlin�a� n�
RTT (37)

Following the same expectation operations as in the previous
two models, the time to transmit the N packets with M loss
indications is given by

tml�N� � Eftsl�m� ��g� �M � ��EftM loss�Da�g (38)

G.3 The Expected Transfer Time

Combining the results of the previous sections, the expected
transfer time for a flow of N packets is given by

Ttransfer�N� � tsetup � ��� p�N tnl�N� � tdack

p��� p�N��Eftsl�N�g� tml�N� (39)

where tsetup, tnl�N� and tml�N� are defined in Eqns. (1), (8)
and (38) respectively and tsl�N� is defined in Eqns. (33) and
(35).

In Table III we present the comparison of the results from our
model with those from simulations using ns. Again, our results
match very well with the simulation results.



Measured

10000

Proposed

10

[PFTK00]

Frequency of Loss Indications (p)
0.001 1.00.10.01

N
u

m
b

er
 o

f 
P

ac
k

et
s 

S
en

t

100

1000

1
RTT = 0.2501, TO = 2.5127, Wmax = 8, 100sec

Proposed

10000

10

Measured

[PFTK00]

Frequency of Loss Indications (p)
0.001 1.00.10.01

N
u

m
b

er
 o

f 
P

ac
k

et
s 

S
en

t

100

1000

1
RTT = 0.2539, TO = 2.4545, Wmax = 32, 100sec

Fig. 2. Steady state throughput of TCP Reno connections.

IV. STEADY-STATE THROUGHPUT

In this section, we model the steady state throughput of infi-
nite Tahoe, Reno and SACK flows by extending the models of
the previous section. We first note that for an infinite flow with
p � �, the probability that the flow experiences a single on no
loss indications is 0 and the average number of packets between
two successive losses, d � ��p. The time between two succes-
sive losses can be obtained using the equation for tM loss�d� for
each of the three versions. Dividing d by the expected values
of this transfer time then gives us the steady state throughput of
the flow. The possible values of the cwnd in this case is again
assumed the cwnd to vary uniformly between 1 and cwm, where
cwm is given by

cwm � min
nl

��� �
p
� � ��d���

m
�Wmax

o
(40)

The expected time to transfer d packets can now be obtained by
averaging tM loss�d� over all possible values of the cwnd and
all possible positions of the loss indication within the round and
is given by

tss�p� �
�

cwm�cwm � ��

cwmX
h��

hX
j��

tM loss�d� (41)

where tM loss�d� is given by Eqn. (16) for Tahoe, Eqns. (26)
and (27) for Reno, and Eqns. (36) and (37) for SACK. The
steady state throughput in bytes per second of a TCP connection
is thus

R �
dMSS

tss
�

MSS

tssp
(42)

We note that though the expression for the steady state
throughput does not have the same closed form as those in [15],
their numerical values are almost the same. In Fig. 2 we show
the results of our model extended to calculate the steady state
throughput. The results are for TCP Reno and we compare our
results with the model and traces reported in [15]. We see that
our results are almost exact over the whole range of loss prob-
abilities. We could not present any results for the case of TCP
Tahoe and SACK as we currently do not have access to machines
running Tahoe and SACK at other locations though we hope to
add them in the final version of the paper.

V. COMPARISON OF TAHOE, RENO AND SACK

In this section we compare the performance of the three ver-
sions of TCP in terms of both their latency and steady-state
throughput. In Fig. 3(a) and 3(b) we plot the expected trans-
fer times and the steady state throughputs of the three versions
for different loss probabilities, transfer sizes and RTTs. We note
that in all cases, Reno performs worse than the others which
is due to the fact that it resorts to timeouts in the presence of
multiple losses. The result of importance here is that Tahoe out-
performs SACK in the presence of correlated losses. This is
explained by considering the fact that with correlated losses, the
probability that a packets loss leads to the loss of more than half
of the packets of that round is close to 0.5. Thus SACK flows
timeout quite frequently, degrading their performance. How-
ever, Tahoe has a very conservative retransmission policy and
assumes that all outstanding packets following a lost packet are
also lost. The immediate retransmission of all the losses in the
slow start mode leads to considerable savings and more than
makes up for any unnecessary retransmissions.

The difference in the performance of these versions of TCP
under the influence of a different loss model is highlighted in
Fig. 3(c) which shows the simulation results of the transfer times
using ns. For these simulations, we used an independent loss
model. This scenario is more likely for queueing disciplines like
RED. With independent losses, SACK performs better than both
Tahoe and Reno while Reno performs better than Tahoe. The
examples considered in [5] which show similar results also have
independent losses. SACK performs better with independent
losses as now the probability of the loss of more than half the
packets from a window is reduced enormously.

VI. CONCLUSION AND DISCUSSIONS

While TCP Reno has been modeled extensively, no models
exist for estimating the latency of TCP Tahoe and SACK. In this
paper we presented analytic models for estimating the latencies
and the steady-state throughput of TCP Tahoe, Reno and SACK.
Our models are based on the assumption of correlated or bursty
losses currently prevalent in the Internet due to the dominance
of droptail queues in the routers. The models were validated
using both simulations as well as traces of TCP transfers over
the Internet. Also, the estimates of the transfer times predicted
by our TCP Reno model more accurate than existing models,



SACK

Tahoe
Reno

0

1

7

6

5

4

3

2T
ra

n
sf

er
 T

im
e 

(s
ec

)

5020 30 4010 90807060
No. of Packets Transfered

RTT = 0.200, TO = 2.000, p=0.001, Wmax = 20

Tahoe

1.0

Reno

0.1

SACK

Frequency of Loss Indications (p)
0.001 0.01

100000

10000

0.1

1

10

100

1000

N
u
m

b
er

 o
f 

P
ac

k
et

s 
S

en
t

RTT = 0.100, TO = 1.000, Wmax = 20, 100sec

SACK

Tahoe
Reno

1.4

1.2

1.0

0.2

0.4

0.8

0.6

10 20 30 40 50 80 907060

T
ra

n
sf

er
 T

im
e 

(s
ec

)

No. of Packets Transfered

RTT = 0.100, p = 0.001, Wmax = 100

SACK

10

No. of Packets Transfered

60 70 9080504030

Tahoe

20

Reno

0

2

12

10

8

4

6

RTT = 0.200, TO = 2.000, p=0.020, Wmax = 20

T
ra

n
sf

er
 T

im
e 

(s
ec

)

Tahoe

1.0

Reno

0.1

SACK

Frequency of Loss Indications (p)
0.001 0.01

1

1000

10

100

10000

0.1

N
u

m
b

er
 o

f 
P

ac
k

et
s 

S
en

t

RTT = 0.200, TO = 1.000, Wmax = 20, 100sec

Reno

3020

SACK

Tahoe

40

No. of Packets Transfered

60 70 90805010

2.0

1.8

1.4

1.6

1.2

1.0

0.8

0.6

0.4

0.2

T
ra

n
sf

er
 T

im
e 

(s
ec

)

RTT = 0.100, p = 0.010, Wmax = 100

(a) Correlated losses (model) (b) Correlated Losses (model) (c) Independent Losses (sim.)

Fig. 3. Transfer times and steady state throughput for Tahoe, Reno and SACK for correlated and independent losses.

specially for short transfers.

TCP SACK is specially geared towards providing smaller re-
transmission times in the presence of multiple losses from the
same window. However, we show that with correlated losses
losses SACK is unable to provide adequate protection against
the occurance of timeouts. If a SACK flow with a current win-
dow of cwnd loses �� cwnd�� packets then current implemen-
tations of SACK will timeout. Hence correlated losses, TCP
Tahoe performs better than SACK because of its conservative re-
transmission policy. Though Tahoe may unnecessarily retrans-
mit some correctly received packets, this is more than made up
the avoidance of timeouts through the direct retransmission of
all the packets which are outstanding at the instant the loss is
detected.

It is also of interest to note that the performance of the three
versions of TCP changes when an independent loss scenario
(unrealistic in current Internet scenarios) is used. With inde-
pendent losses, the probability of multiple losses from the same
window reduces and SACK is able to recover the losses without
going into a timeout in most cases. Thus in these cases SACK
perform better than both Tahoe and Reno while Reno performs
better that Tahoe. Since independent loss models do not reflect
reality, it is apparent that such assumptions will lead to incorrect
conclusions. The point to note here though is that buffer man-
agement policies can make significant differences in protocol
performance.

Though there are various possibilities to provide enhanced ro-
bustness against timeout to SACK, the most apparent one is to
change the implementation of pipe to allow retransmission of
lost packets on the receipt of partial ACKs even though pipe
may be less than cwnd. Since SACK times out in the presence
of heavy losses compared to the window size (where the losses

need not be back to back) this change would eliminate timeouts
in these circumstances also. Also, with droptail queues here
to stay in the foreseeable future, providing protection against
bursty losses is necessary to ensure the benefits promised by
SACK.

REFERENCES

[1] R. Braden and V. Jacobson, “TCP extensions for long delay paths,” RFC
1072, October 1988.

[2] R. Braden, V. Jacobson and L. Zhang, “TCP extensions for high-speed
paths,” RFC 1185, October 1990.

[3] N. Cardwell, S. Savage and T. Anderson, “Modeling TCP latency,” Pro-
ceedings of IEEE INFOCOM, Tel Aviv, Israel, March 2000.

[4] C. Casetti and M. Meo, “A New Approach to Model the Stationary Behav-
ior of TCP Connections,” Proc. IEEE INFOCOM, Tel Aviv, Israel, March
2000.

[5] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP,” Computer Comm. Review, vol. 26 no. 3, pp. 5-21, July 1996.

[6] J. Heidemann, K. Obraczka and J. Touch, “Modeling the performance of
HTTP over several transfer protocols,” IEEE/ACM Trans. on Networking,
vol. 5, no. 5, Oct 1997.

[7] V. Jacobson, “Congestion avoidance and control,” Proceedings of ACM
SIGCOMM, pp. 314-329, 1988.

[8] V. Jacobson, “Modified TCP congestion avoidance algorithm,” Email to
the end2end-interest mailing list, ftp://ftp.ee.lbl.gov/email/
vanj.90apr30.txt.

[9] A. Kumar, “Comparative performance analysis of versions of TCP in a local
network with a lossy link,” IEEE/ACM Trans. on Networking, vol. 6, no. 4,
Aug 1997.

[10] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for net-
works with high bandwidth-delay products and random loss,” IEEE/ACM
Trans. on Networking, vol. 5, no. 3, pp 336-350, Jun 1997.

[11] M. Mathis, J. Semke, J. Mahdavi and T. Ott, “The macroscopic behavior
of the TCP congestion Avoidance Algorithm,” Computer Communications
Review, vol. 27, no. 3, pp 67-82, July 1997.

[12] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective Ac-
knowledgment Options,” RFC 2018, April 1996.

[13] R. Morris, “Scalable TCP Congestion Control,” Proceedings of IEEE IN-
FOCOM, Tel-Aviv, Israel, March 2000.

[14] T. Ott, J.H.B. Kemperman and M. Mathis, “The stationary behavior of



ideal TCP congestion avoidance,” Unpublished Manuscript, Aug 1996.
ftp://ftp.bellcore.com/pub/ tjo/TCPwindow.ps

[15] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP Reno per-
formance: A simple model and its empirical validation,” IEEE/ACM Trans.
on Networking, vol. 8, no. 2, pp. 133-145, April 2000.

[16] B. Sikdar, S. Kalyanaraman and K. S. Vastola, “TCP Reno with Ran-
dom losses: Latency, Throughput and Sensitivity Analysis,” Proceedings
of IEEE IPCCC, Phoenix, AZ, April 2001.

[17] W. R. Stevens, “TCP/IP illustrated volume 1,” Addison Wesley, 1994.


