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Abstract—This paper considers the problem of energy-delay
tradeoff in wireless networks using a N -policy queueing system
based scheduler. A novel analytical model for N-policy queueing
system is proposed and tested against other established models
and simulation results. Using the model, we argue that N-policy
queueing system does not necessarily save more energy as N
increases.Based on the analytical and simulation results, we
present a scheme for the optimal selection of N for a given
arrival and service rate. Simulation results based on applying this
framework on sensor networks show that the proposed schemes
outperforms previous work in the area. Furthermore, an adaptive
N-policy system design is illustrated and shown to save energy
while satisfying delay requirements.

I. INTRODUCTION

The continued growth in the popularity of information and
communication technologies and the resulting impact of their
power requirements has led to the birth of the concept of green
networks. Due to the relatively short lifetime of the battery
that typically powers the end terminals, how to optimize the
energy usage to facilitate reliable and energy efficient wireless
communication has been a critical research issue in both
academia and industry. Much of the existing work in this
focuses on sleeping period control for saving energy [4], [5].
However, while increasing the sleeping period increases the
energy savings, the average packet delay also increases. This
gives rise to another concern in the system design: the energy-
delay tradeoff.

This paper presents a scheduler to address the energy-delay
tradeoff in wireless devices. This paper proposes an analyti-
cal model to characterize the fundamental tradeoffs between
energy saving and latency in wireless devices. Henceforth, in
our work, the wireless devices together with the aggregation
point compose a basic sensor system. The packets are carried
from the physical memory of the devices to the transmitter (i.e.
scheduling a packet for transmission) by proactively sensing
the workload in the device’s packet queue.

Sensor systems have their applications in many areas. It is
widely used in home surveillance, supermarket self-checkouts
and other civil applications. The limited battery power of
sensors has been a constraint in their design. Together with the
expected customer experience of a sensor system, their power
management scheme has become a major metric to measure
the system’s performance. Power management schemes vary in

different scenarios. For inter-device communication in the sys-
tem, the transmission power is adjusted against the condition
of the communication channel. Also, the power of the devices
may be switched between on and off modes according to
specific design configurations. Much work has been conducted
for the latter case [4], [5], [7]–[9]. To determine how to
switch between different power modes, the criteria may be
the duration of the working hours [4], [5], the amount of
workload that has been processed, or the amount of workload
to be processed [7], [8]. In another line of work, N -policy
queue to schedule on-off periods has been considered. The
N -policy queue has been studied extensively in the past [2],
[3]. How to find the optimal N to achieve a system design goal
while meeting the required statistical performance indicators
related to customer experience has been a practical engineering
issue. Existing works typically evaluate the long term queue
length distribution and use Little’s law to obtain the average
customer waiting duration in the queue, and furthermore the
average drop ratio. To be more specific, the long term expected
queue length is decomposed into two parts : the working
part when the server is on and the idle part when the server
is off. However, these works are primarily theoretical and
inadequately argue for their applicability in real life scenarios.
For example, reference [4] aims to design a power efficiency
scheme for wireless sensor networks but the scheme neglects
the finiteness of the buffer size of each sensor. Furthermore,
most of the existing work assumes that the traffic generated
by the nodes is well known in advance and can be modeled
accurately. However, traffic in real-life systems can vary over
time and are in general unpredictable.

Our work aims to change the system configuration to adapt
to the real-time traffic in order to save energy while not
violating the delay constraint. In the proposed system, we
dynamically select the threshold N in a a N -policy queue.
Intuitively, when the traffic is high, the system should resume
work more quickly (i.e. the threshold N should be small), and
vice versa. It is also our objective to evaluate the long term
average duration that the system spends in both sleeping and
active modes. Using these average on-off times, we derive the
system performance metrics and consequently the threshold
N , which can be adjusted iteratively.

In short, our work has four contributions:



• A new analytical model is derived and tested against the
previous models in literature and also against simulation
results.

• Based on the analytical model, power consumption for a
selected threshold is derived. Both analytical derivation
and simulation results show that the power consumed
does not decrease as the threshold N increases, given
a fixed arrival and service rate.

• Comparisons of performance against the established duty
cycle control scheme are conducted and show positive
results.

• A threshold N adjustment scheme is proposed and shown
to save more energy within a given delay bound.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the system
model, its evaluation, and its comparison against simulation
results. Finally, Section IV concludes the paper.

II. LITERATURE REVIEW

Previous researches focus on the derivation of the system
queueing analysis when the system is steady, given a well-
established statistical traffic model. Literature has also covered
how to model the network traffic. This paper does not consider
the issue of traffic modeling.

Research on the duty cycle control for sensor system (T -
policy queueing theory) has included the following work: [4],
[6]. In [4], the policy manages to achieve limited amount of
backlog in the buffer by using the control principle while [6]
touches the base of delay issue. It increases the duty cycle for
some nodes to decrease the delay, as these nodes are far from
the sink and have more energy in storage.

Researches that follow the case of N -policy queueing theory
includes: [7], [8]. Different cost functions for the queues have
been proposed in literature. In [7], the cost function composes
of packet holding energy consumption while in [8], the cost
function includes transition power per cycle. It is worthwhile
to note that in [7], if only considering the on mode energy
consumption and off mode energy consumption, the power
per threshold is a constant while in reality, as demonstrated
well by simulation and mathematical analysis, the power per
threshold varies and does not follow a deterministic pattern.
Furthermore, to set the benchmark power as the one while
N = 1 is not reasonable as N = 1 means the system would
switch to sleeping mode when the buffer is empty. The correct
benchmark would be the value when the system is always on,
that is when N = 0. Research on N -policy queue theoretically
could be categorized as N -policy with setup time and N -
policy without setup time. The former has its applicability
to the real world situation when the server needs time to
warm up before the service while for the latter case, most
of the work is devoted to generalize the policy into broader
representations, such as to consider the arrival as batch Poisson
process or to allow for the service time to follow a general
probability distribution [3]. In [2], the author has presented
the mathematical analysis of system performance metrics for
different N -policy queueing policies. In [3], the authors have

discussed further the mathematical models behind the queue
length distribution incurred by adding the threshold. Another
interesting branch that ascends from the N -policy queue is to
optimize the system from the user’s perspective, that is to grant
the user’s strategic decision whether to enque or not based on
the current state of the queue [10]. Most of these work on
N -policy is for server with finite capacity. Works that discuss
the tradeoff between energy conservation and average packet
delay are largely absent.

III. SYSTEM MODEL

Let the packet arrival process at each device follow a
Poisson distribution with average rate λ and the scheduler
departs the packets at a steady rate of µ. The maximum queue
length at each node is K. The queue status is observed every 1

µ
interval and we denote the threshold for waking up the queue
by N .

A. Model Jessica

The probability that the queue length reaches the threshold
during the first observation interval is given by

P1 = 1−
N−1∑
0

exp(−λ
µ

) ·
λ
µ

k

k!
. (1)

Similarly, the probability that the queue length reaches the
threshold during the second observation interval is given by

P2 = (1− P1) · (1−
N−1∑
0

exp (−2 · λ
µ

) ·
(2 · λµ )

k

k!
). (2)

Proceeding along these lines, the probability that the queue
length reaches the n-th observation interval is given by

Pn =

n−1∏
k=1

(1− Pk) · (1−
N−1∑
0

exp (−n · λ
µ

) ·
(n · λµ )

k

k!
). (3)

The average number of observation intervals for the queue
length to reach the threshold N is as follows:

E(sidle) =

∞∑
i=1

i · Pi. (4)

The average queue length when the scheduler starts the
process of transmitting a packet is:

E(Qlen) =

K∑
i=N

i · P (Qlen = i)

=

K∑
i=N

i ·
∞∑
j=1

P (Qlen = i, s = j). (5)



where

P (Qlen = i, s = j)

=

N−1∑
k=0

P (k,∆t = (j − 1) · 1

µ
) · P ((i− k),∆t =

1

µ
)

=

N−1∑
k=0

exp−(j − 1) · λ
µ
·

[(j − 1) · λµ ]
k

k!
· exp−λ

µ
·
λ
µ

(i−k)

(i− k)!

=

N−1∑
k=0

exp (−j · λµ ) · λµ
i · (j − 1)

k

k! · (i− k)!
. (6)

For the active period, let the transition matrix be denoted
by P . The dimension of P is K × K and its elements are
given by

pij =


1, ifi = j = 0

0, if(i = 0 ∧ j 6= 0) ∨ (j < i− 1)

exp(−λµ )
λ
µ
j−i+1

(j−i+1)! , if (i− 1) ≤ j < K

1−
∑K−1
k=0 pik, otherwise

(7)
The initial distribution of queue length is denoted Pinit, the
dimension of which is 1×K. Pinit is given by

Pinit(i) =

∞∑
j=1

P (Qlen = i, s = j). (8)

The probability that the scheduler stops because the queue
becomes empty during the first observation interval is given
by

P1(0) = Pinit(0). (9)

Similarly,
Pi = P ′(i−1) · P (10)

where

P ′(i−1)(k) =

{
0, if k = 0

P(i−1)(k), otherwise.
(11)

The average number of steps for the active period within
one cycle is given by

E(sactive) =

∞∑
i=0

i · Pi(0). (12)

Let E(ArrivalN ) be the average amount of packets that arrive
during one cycle. Then,

E(ArrivalN ) = E(Qlen) +
λ

µ
· E(sactive). (13)

Let E(DepatlN ) be the average number of packets that depart
during one cycle. Then

E(DepartN ) = E(sactive). (14)

Let E(drop) be the expectation of the drop ratio for a running
cycle of queue length from 0 to 0. Then,

E(drop) = 1− E(sactive)

E(Qlen) + λ
µ · E(sactive)

. (15)

Finally, let E(latency) be the expectation of the latency for
a running cycle of queue length from 0 to 0. Then,

E(latency) =
E(sidle)

µ
+ (

1

µ
− 1

λ
) · E(sactive) + 1

2
. (16)

1) Model Jessica-simple: It is also intuitively simple to
reach the derivation that E(sidle) ≈ µ · Nλ . Suppose t is the
active period when the queue length changes from N to 0.
Then, we have

t · λ+N = t · µ (17)

which gives

t =
N

µ− λ
. (18)

Now, since tµ = E(sactive), we have

E(latency) =
N

λ
+ (

1

µ
− 1

λ
) ·

1 + N
µ−λ · µ
2

=
1

2 · µ
+
N − 1

2 · λ
.

(19)

Thus, so far two expressions for average packet latency are
attained. From the above revised model, we can then derive
the expected energy consumption of the node as

E(Energy) =
Poweron · E(tactive) + Poweroff · E(tidle)

E(tactive) + E(tidle)

=
Poweron · N

µ−λ + Poweroff · Nλ
N
µ−λ + N

λ

= Poweron · (1−
λ

µ
) + Poweroff ·

λ

µ
.

(20)
The expression above suggests that the average power con-
sumed is independent of the value of N . Firstly, this is counter-
intuitive and contrary to our intention of the design. Secondly,
our simulation results show that there are discernible variations
in the power consumption with changes in N . The counter-
intuitive analytic result is due to the approximations made in
the simplified model.

We now develop an more elaborate model for the average
power consumption for a given threshold. Let the overall
observation timespan be t, the average busy steps per cycle
be BC and the average idle steps per cycle beIC. Then, on
average there would be m cycles, with

m =
t · µ

BC + IC
. (21)

We consider the power consumption of a node to comprise of
two components E1 and E2, with E = E1 + E2. E1 and E2

are given by

E1 = k · [Poweron ·BC + Poweroff · IC] (22)

and

E2 =

 Poweroff · β · (BC + IC) if β(BC + IC) ≤ IC
Poweroff · IC+ otherwise
[β(BC + IC)− IC]Poweron

(23)



Thus we have

Power =



k · (PoweronBC + PoweroffIC)

(k + β)(BC + IC)
if β ≤ α

+
Poweroff ·β·(BC+IC)

(k+β)·(BC+IC)
k

k + β

PoweronBC + PoweroffIC

BC + IC
otherwise

+ [β·(BC+IC)−IC]·Poweron
(k+β)·(BC+IC) +

Poweroff ·IC
(k+β)·(BC+IC)

(24)
with α = IC

BC+IC .
2) Threshold Value and Energy Consumption: We now

show that with N -policy, increasing the threshold dose not
necessarily lead to energy savings, when considering a fixed
time window and variable arrival rates. Consider a scenario
with fixed arrival and service rates, when the threshold is
increased from N1 to N2. It results into two different pairs
of (ki, βi). We can then have the following possibilities.

Case 1: β1 ≤ α and β2 ≤ α. In this case,

PN1 − PN2 =
P · k1 + Poff · β1

k1 + β1
− P · k2 + Poff · β2

k2 + β2

=
k1 · β2 − k2 · β1

(k1 + β1) · (k2 + β2)
· (P − Poff ) (25)

Let N1 = 17 and N2 = 26. Then, (k1, β1) = (5, 0.2) and
(k2, β2) = (3, 0.5), for t = 10, µ = 100 and λ = 10. We then
get PN1

> PN2
. Now, consider the case where N1 = 17 and

N2 = 29. Then we have (k1, β1) = (5, 0.2) and (k2, β2) =
(3, 0.1), for t = 10, µ = 100 and λ = 10. This results in
PN1 ≤ PN2 .

Case 2: β1 > α and β2 > α. In this case,

PN1
− PN2

=
(Pon − P ) · (β1 · k2 − β2 · k1)

(k1 + β1) · (k2 + β2)
+

α(Poff − Pon) · (k2 + β2 − k1 − β1)

(k1 + β1) · (k2 + β2)

=
α · (Pon − Poff ) · (β1 · k2 − β2 · k1)

(k1 + β1) · (k2 + β2)
+

α · (Pon − Poff ) · (−k2 − β2 + k1 + β1)

(k1 + β1) · (k2 + β2)
(26)

Using the same values as N1 and N2 as in Case 1, we again
reach the conclusion that PN1

> PN2
or PN1

≤ PN2
.

Case 3: β1 ≤ α and β2 > α. In this case,

PN1
− PN2

=
P · k1 + Pon · β1

k1 + β1
− P · k2 + Pon · β2

k2 + β2

−α · (Poff − Pon)

k2 + β2

= (Pon − Poff )
−k1β2α− β1k2(1− α)

(k1 + β1)(k2 + β2)

+(Pon − Poff )
[α(k1 + β1)− β1β2]

(k1 + β1)(k2 + β2)
(27)

If α = 0.6,(k1, β1) = (5, 0.1) and (k2, β2) = (1, 0.7), then
we have PN1

< PN2
. However, with (k1, β1) = (8, 0.1) and

(k2, β2) = (1, 0.7), we have PN1 > PN2 .

Case 4: β1 > α and β2 ≤ α. This same scenario as before
can be used for this case.

B. Model Takagi
A conventional method to model the above N -policy prob-

lem is to observe the system at time instant when either
the server ends its idle period or the server completes a
service. The average queue length at an arbitrary time instant
is obtained to calculate the average delay and also the drop
rate. This model uses mathematical notations from [2]. Details
of the model are as follows.

Let ξn be the n-th observation instance and

ξn =

{
0, a idle period ends
1, a service completes

. (28)

Let Ln be the queue length at n-th observation instance. Then

qk = lim
n→∞

Prob[ξn = 0, Ln = k], 0 ≤ k ≤ K (29)

πk = lim
n→∞

Prob[ξn = 1, Ln = k], 0 ≤ k ≤ K (30)

qk = π0 · Pinit(k), 0 ≤ k ≤ K (31)

πk =

k+1∑
i=1

(πi + qi) · ai,k, 0 ≤ k ≤ K (32)

ai,k =


exp(−λµ ) ·

λ
µ
k+1−i

(k+1−i)! , (i ≤ k − 1) and (k 6= K)

0, (i < k − 1) and (k 6= K)

1−
∑K−1
n=0 ai,k otherwise

(33)
Let P = [π0, π1, . . . , πK ], P ′ = [q0, q1, . . . , qK ] and A be

a K × K matrix with Ai,j = ai,k, 0 ≤ i, j = k ≤ K − 1.
Then,

P ′ = π0Pinit = PXPinit (34)

Xi,j =

{
1, if i = j = 0

0, otherwise
(35)

A′ = TA (36)

Ti,j =

{
0, if (i 6= j) ∨ (i = j = 0)

1, otherwise
. (37)

It can be shown that

P = (P + P ′)A′

= P (TA+XPinitTA) (38)

Let B = TA+XPinitTA. Then

P = PB. (39)

From [2], we then have

E(drop) = 1− 1− π0
π0·N ·µ
λ + (1− π0)

(40)

E(latency) =

∑K−1
k=1 k · πk

(1− π0) · λ
+

K

λ
· (
π0 ·N + (1− π0) · λµ

1− π0
− 1)− 1

µ

(41)



IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
model. We first consider a scenario with µ = 1000, Pon =
24.75 mW and Poff = 0.015 mW. In Figures 1-3, we show the
delay for different values of N for the two proposed models
as well as the Takagi model. In addition, we also compare
the result based on [8] which is labeled “Jayaparvathy”. We
note that the Takagi model performs worse when the input
rate is low. The difference among the analytical models is
insignificant for higher arrival rates and match closely with
the simulations.

Fig. 1. Average delay when λ = 100.

Fig. 2. Average delay when λ = 300.

Next we compare the performance of the proposed model
with that by Byun and Yu [4] using the one-hop network
topology from [4]. The comparisons of both delay (Figure
4) and power (Figure 5 shows that the the proposed model
outperforms the one proposed in [4].

A. Adaptive Optimal Threshold Selection

Algorithm 1 shows our algorithm for obtaining the optimal
threshold for a given bound on the delay. Table I to IV show
the optimal threshold values obtained from our algorithm with
those from simulations. We observe that the analytic and
simulation results have a close match.

Next we consider the case where the traffic arrival rate
varies dynamically over time. When the traffic arrival rate

Fig. 3. Average delay when λ = 600.

Fig. 4. Cycle Control vs N-policy: Delay

Fig. 5. Cycle Control vs N-policy: Power

Algorithm 1: Optimal N-search Algorithm
Input: D:Expected Latency
Output: N : Optimal N

1 tempp ← Pon,optn ← 0,t← T
N ← b(D − 1

2·µ ) · 2 · λ+ 1c foreach n in N do
2 if Powern ≤ tempp then
3 tempp = Powern
4 optn = n

5 return optn



TABLE I
OPTIMAL THRESHOLD: λ = 10

D 0.5 1 1.5 2

ANA 8 16 27 32
SIM 7 17 25 39

TABLE II
OPTIMAL THRESHOLD: λ = 50

D 0.1 0.2 0.3 0.4

ANA 9 18 27 36
SIM 7 17 29 37

TABLE III
OPTIMAL THRESHOLD: λ = 100

D 0.1 0.2 0.05 0.01

ANA 19 38 7 1
SIM 17 38 8 2

TABLE IV
OPTIMAL THRESHOLD: λ = 600

D 0.01 0.02 0.03 0.035

ANA 7 23 33 42
SIM 11 18 35 38

Fig. 6. Delay Upper Bound=0.2

is high, it is expected that the server will wake from the
sleeping period sooner. Intuitively, the threshold N would
become smaller. The packet scheduler should thus change the
threshold value based on the packet input rate. The proposed
scheduler periodically monitors the arrival rate. Once there is
a change, the scheduler determines the optimal N based on
the current traffic information (straightforward metrics are the
arrival rate and flow timespan). We now compare the power
consumptions for the adaptive thresholding scheme and the
fixed (i.e. “original”) thresholding scheme, for a given delay
bound. Results are shown in Figure 6 and Figure 7. It is
noticeable that for the given delay upper bound (0.2 sec), the
adaptive scheme performs better than the original scheme.

Fig. 7. Delay Upper Bound=0.2

V. CONCLUSION

This paper presented an adaptive thresholding scheme for
sensor systems targeting a given upper bound on the delay
while minimizing the power consumption. This mechanism
is on our proposed analytical model. Simulation results have
been used to validate the model. Based on the analytical
model, an optimal threshold selection scheme has been devised
and shown to give results that match very closely with the
simulation results. The threshold selection scheme may be
used to adaptively change the threshold when the traffic arrival
rate varies. Simulation results show that changing the threshold
adaptively with the arrival rate can save energy compared with
a scheme that uses a fixed threshold.
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