A Performance Guarantee for Maximal Schedulers
In Sensor Networks with Cooperative Relays

Huijiang Li and Biplab Sikdar
Department of ECSE, Rensselaer Polytechnic Institutey, T 12180

Abstract— This paper addresses the question of throughput
guarantees through distributed scheduling in wireless sensor
networks (WSNs) with relay based cooperative communications.
We prove that in a single frequency network with bidirectional,
equal power communication, low complexity distributed maxi-
mal scheduling attains a guaranteed fraction of the maximum
throughput region in arbitrary wireless networks. We also show
that the guarantees are tight in the sense that they cannot be

improved any further with maximal scheduling. Simulation re- . . “ . "
sults are also provided to show the performance of a distributed, decided by the maximum “conflict degree” of the network. The

maximal scheduling algorithm under different network settings. conflict degree of a transmitter-receiver pgir, v) is defined
as the number of transmitter-receiver pairs that interfeita
(u,v) but not with each other. Using this notion of conflict
The use of relays or cooperative communications for WSNggree, we prove that in a network with cooperative relayg, a
has received considerable attention in the recent padicpar distributed maximal scheduling algorithm can achieve astle
larly due to its ability to increase a WSN’s range and capacity' 10 of the maximum throughput region and this guarantee
[1]. Existing research has shown that cooperative diwersitannot be improved any further.
gains can be achieved in distributed WSNs where nodes helfThe rest of the paper is organized as follows. Section I
each other by relaying transmissions [2]. This paper fosose describes the network and conflict models and Section |l
the performance of thecheduling algorithmused to control presents a performance guarantee on maximal scheduling.
the channel access at the medium access control (MAC) lagimulation results showing the achieved throughput using
in WSNs with cooperative relays. We focus on the throughpmiaximal scheduling under different network scenarios are
guarantees that may be provided by distributed schedulgeresented in Section IV. Finally Section V concludes thespap
for WSNs with cooperative relays and prove that maximal
scheduler can achieve a guaranteed fraction of the maximum Il. NETWORK MODEL
throughput region in arbitrary wireless networks. In this paper, we consider a network where sensors share
The communication theory aspect of cooperative relaying,single frequency and have the same transmission range. We
such as energy efficiency, bit error rate, forwarding sgiiee consider a WSN with simple cooperative communication and
(e.g. decode and forward, amplify and forward) have beendiscrete memoryless three-terminal relay model as shown i
widely investigated [2], [3]. However, the performance oFig. 1. Every sessiod with a packet transmission involves
upper layer protocols, such as MAC layer schedulers, thatee nodes: the sourc® the destinatiorD and the relayR.
use cooperative relay based communication technologigs A&us a session may be represented as a 4-{Upl€ D, R).
not been investigated in detail. For wireless networks witfThe distance and channel gain between two nodesl j are
out cooperative relays, [4] presents the maximum achievalbepresented byi(i, j) and \; ; respectively.
throughput region and an algorithm for attaining it, altpbu A discrete slotted-time model is assumed where each time
the centralized nature and computational complexity of thghot is long enough so that a source node and a relay node can
scheduler limits its applicability. Instead, we focus wraxi- cooperatively transmit a single packet to the destinatidre
mal schedulingwhich is equivalent to solving th#aximal message exchanges among the source, relay and destination
Independent SetMIS) problem in graph theory. While it is are considered to be bi-directional; the source broaddthsts
known that a simple randomized distributed MIS algorithm fadata to the destination and the relay; the relay retransmits the
an arbitrary graph of size including exchange of messageslatato the destination, and the destination replies witiA&
can be done in tim&(log?n) [5], [6], their performance in if it successfully receives the packet. The decode-andeot
terms of the achievable throughput in cooperative relagtasrelay strategy is assumed in this paper [3].
WSNSs is unknown. We model a wireless network as a gra@gh= (V, E'), where
It has been shown in [7] that for wireless networks with” is the set of nodes (i.e. sensors in the network) ahas
direct transmissions (i.e. no cooperative communicajjonshe set of links. If sensorl is in the transmission range of
maximal scheduling is guaranteed to achieve a fraction ®f thensorB, then B is A’s neighbor By assuming bidirectional
maximum throughput region and the fraction (of valy@) is symmetric communicationd is B’s neighbor too. IfA and

d(s,D)

Fig. 1. Three-terminal relay model.

I. INTRODUCTION



that the distance between any two of these nodes is greater
thand,,, ...

Without loss of generality (wlog), we can assume that node
S; and D; lie on thex axis. For the sake of convenience, we
divide b(Sp)Ub(Dy)Ub(Ry) into 7 sub-areas, labeletirea#1
through Area#7 in Fig. 2. We usdlJ,, to denote the number
of nodes lying inArea#n.

To start with, we formulate the geometric facts, statements
and intermediate results proved in [7] as follows:
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Fig. 2. A session(1o, So, Do, Ro) in the Euclidean plane. Ur + U + Z Un <8,U1 + Z Un <38, Z Un<8 (2)
n=4 n=3 n=2

B are neighbors, there is a linf4, B) € E. We denote the 7 5
neighborhood of nodel as N4, defined as the set of nodeslU1 +Us+Us+Uz < 5,Us+» Uy <5, ) Up+Ur <5 (3)
that are inA’s transmission range. In addition, it is assumed n=>5 n=3
that each node has a single transceiver (transmittenesgei Ur+Uy <4,U2+Us <4 (4)
thus each node can only participate in one session at a time. Uy +Usg <4,Us+ Uy <4 (5
Then a sessioll;, S;, D;, R;) is successful when none of the Us+Us <4,U1 +Us <4 (6)

nodes in this session is participating in other sessaif ) ) )
none of the neighbors of;, D;, and R; transmit in this slot. Where Equation (2) is proved in Lemma 3 of [7] and states

The conflict setof session’; is then, that in the coverage area of any two-node session, there can
. be at most 8 nodes that are in conflict with the session but not
C(l;) = {1;: 1; shares a common node wif, with each other. Equation (3) follows the geometric argumen

(Sj,or R; or D;) € (Ns, UNp, UNg,)} (1) and Lemma 18 of [7] and states that at most 5 nodes can
be located in a circleb(Sy), b(Dy), or b(Rp)) such that the
distance between any two nodes is greater than the radius.
The two inequalities in Equation (4) are based on the fadt tha
lIl. M AXIMAL SCHEDULING PERFORMANCEGUARANTEE  0(S0) andb(Dy) intersect with each other with the distance
betweenS, and Dy satisfying|SyDo| < dima. and the region
b(Sp)\b(Dy) is covered by 4r/3 sectors. The same arguments
hold for b(Dy)\b(Sp). Also as shown in the proof of Lemma 3

in [7], the two equalities in Equation (4) can not be achieved

: . Do at the same time. Similar arguments hold for Equations (5)
in [7] that. forthe smglg freguency, b|-d|rect|onql, eqwanver, nd (6) as well. The rest of the proof proceeds in two steps.
two-terminal communication network model (i.e. no relaysja ] o

the performance of an arbitrary maximal scheduling alarit St€P 1:We prove by contradiction that the number of nodes

is guaranteed to achievi/K (A/) of maximum throughput MOt interfering with each other iMreasfl U Area#2 U
region. In this paper we extend this result for networks witfl”¢a#3 IS at most 8.
cooperative relays. Further, we show thaF for a three-teaimi Uy +Us+Us <8 *)
relay network, at leasti/10 of the maximum throughput
region is attained. We also show that this guarantee cannoAssumption:
be improved because there exist network topologies where at Uy+Us+Us=9 (A1)
most1/10 of the maximum throughput region is achieved.
Lemma 1:For any wireless networkV with relay usage, Definition 1: Consider a sessio(V;, S;, D;, I;). For each

if the same frequency and equa' power are used in nod§§§si0n |nC(I7) but not in conflict with each Othel’, choose
bi-directional communication is involved, theki(A/) < 10. one of its terminals that falls in the coverage area of sassio

Proof: Let the transmission range of each sensor in tHe- Denote the set of chosen nodes &y and letU = |i|.
WSN be d,nas. In a two-dimensional Euclidean plane, thésiven a noded € U, A € b(z) and A ¢ b(y) with z,y =
neighborhood area of a nodé is equivalent to the closed {Si Di, Ri} andxz # y, define thedistance from A to b(y)
circle centered atl with radiusd,,.., denoted a$(A). The asmin{|[AB|: B €U, B € b(y),y ¢ b(x)}. The smaller the
coverage areaf any sessiofily, So, Do, Ro) is then the union distance, thecloser node A is to Disk b(y).
of the area$(5y), b(Dy) andb(R;), as shown in Fig. 2. Ifa  Since0 < U,, < 4 for n = 1,2,3, at least two areas have
session/; € C(Iy), at least one terminal of sessidpfalls in 3 or more nodes. Because of symmetry, we can assume that
the coverage area of sessiiy, Sy, Do, Ry). Thus to find the Area#1 and#2 are the two areas with 3 or more nodes. Then
maximumK (N), it is sufficient to find the maximum numberwe divide b(Sy) andb(Dy) into 6 /3 sectors respectively as
of nodes that can be containediifS,) Ub(Dg) Ub(Ry), such shown in Figure 3 with the dashed lines.

If I; € C(I;) andI; € C(I;), sessionsl; and I; are also
defined ameighbors

Let the number of sessions in conflict S€{7;) that can
be scheduled at the same time (but not with sesgiprbe
defined as theonflict degreeof conflict setC'(1;). Denote the
maximum conflict degree in the network BSN). It is proved




Fig. 3. Topology showing the source, relay and destinatiaues
(S0, Ro, Do)), the sectorization ob(Sp) and b(Dy), and the location of
other nodes.

case (i) Uy = U, 3. Thus Us 3 by assumption Al.
Let S1, 55,53 be the nodes oMrea#1, with S; being the
closestto b(Dy) and.S; being theclosestto b(Ry). Similarly,
let Dy, Dy, D3 be the nodes omlrea#2, with D; being the
closestto b(Sy) and D3 being theclosestto b(Ry). Finally,
let Ry, Ro, R3 be the nodes omrea#3, with R, being the
closestto b(Sy) and Rs being theclosestto b(Dy). Note that
the distance between any two nodes is greater than and

the angle subtended &t or Dy by any two nodes in adjacent
sectors is greater tham/3. Then S3 can only be on either

sectorWs3.SoW, or sectoriV,SoWs and D3 can only be on
sectorUs DyUy or sectorUyDyUs.

To obtain the maximum value d¥; + Us + Uz, we can
assume tha; is on sectoi?’; SoWs (Argument: Sincd/; =

3 and Area#1 is covered by 4r/3 sectors, whatever be the
spread of the three nodés, S», S3, at least one node falls on

either sectol?;.SoWs or sectoriV,S,Ws. Due to symmetry,
we can assume that there is one node on sdétof,1Vs.).

To see this, extend the ling, Ry to point £; and line Dy R
to point E5. Then,
ZR1RyRy = ZR1RoEhW + LEsRogRy — ZESRoE,
= LR SoE + LE2 Dy Ry — £SoRo Do
= ZRp1S0Ro + LRy So Doy + £SoDo Ry
+ ZRyDoRpys —

=71 — /W3SoRp1 — ZRp2DoUs (10)

To show/ZR, RyRs < 27/3, it is enough to show that
4W350Rp1 + ZRPQD()U?, > 71'/3 (11)

Since ZR,15052 > w/3 (from Eqn.(7)), pointR, can
only lie in sectorW3S,W, or sectorWW,SoWs. If it is in
sectorWySoWs, ZW3SoR,1 > /3, and we have Eqn. (11).
Similarly, if R, is in sectorUsDyUs, we have Eqn. (11).

On the other hand, i?,; lies in sectorVsSoW, and Ry,
lies in sectoV/s DUy, sinceZ£S15052 > w/3 and £LR,,1.505
> /3, we haveZR,1 SoWy + £51SoW1 < w/3. Thus,

ZWgS()Rpl = 7T/3 — ZRMSOW4 > 45150W1. (12)

Additionally, since £515,52 > w/3, we have /W3Sy +
£S51SoW7 < 71'/3. Since /535059 = S3S0W3 + W35¢Sy >
/3, we have

LW350S53 > £51SoWh.
Likewise, we have

ZU3D0RP2 = 7T/3 — ZRp2DOU4 > ZULD()Spl.
ZUgDng > 4U1D05p1.

(13)
(14)
Combining Equations (12), (13) and (8), we have

ZWgSORpl + ZU3D0RZ,2 > £51SoW1 + ZUlD()Spl = 71'/3.
(15)

However, by assumption we must havé 3. Thus
there is a third node, says, in Area#3, which satisfies

Now, choose the poin$,; to makeSyS15,1 Dy a parallel- /RiRoRs > 7/3 and ZR3RyR, > 7/3 at the same time.
ogram, choosét,, to makeS, o2, i, a parallelogram, and powever, this is a contradiction with Equation (9). Thus, if
chooseR,; to make DoRoRy Ry, a parallelogram. First we 17 — 7, — 3, 17, < 2 and U} + Uy + Us < 8.
claim that, N N

£8p1DoDa > /3, LRy SoSa > m/3, LRy DoD2 > /3 (7) cage (i) Uy = 3,U, = 4. Let Sy, S, and S5 be the nodes in
£8518oW1 + U1 DoSp1 = m/3  (8) Area#t1 with positions as defined for case (i). Sintle = 4

and Area#2 is covered by four sectors, each sector contains

exactly one node. LeD; be on sectot/; DqUs, Do be on

sectorlUs DoUs, D3 be on sectot/s DU, and D, be on sector

UsDoUs. Similar to Equation (7) we then have,

ZRPQDQD:; > 7T/3
From Equations (14) and (16),

LU3sDy Ry = LUsDoD3 + £D3DoRye > ZU1 Do Sp1 +7/3
17
Substituting Egns. (12), (17) and (8) into Eqgn. (10), we have

ZRi1RyRy < 7T/3 (18)

To see thesewlog, we can assume thdd; has a smalley-
coordinate tharb;. If node D, lies outside the parallelogram
or on the lineS,1 Dy, £S,1DgDy > £D1DgDy > /3. If
not, nodeD; must lie inside the parallelogratsiS1.5,1 Do,
and it is proved in [7] thatZS,; DyD, > m/3. Therefore,
ASplDODQ > 71'/3

In the same way, we have/R,;S,S, > =/3 and
ZRp2DoDy > /3. Then, since£S1SoW1 = £Sp1DoUs
and ZU,DySp1 + £5,1DoUs = /3, we have Equation (8).

Next, we claim that,

(16)

ZR1RoRy < 21/3 9



range. LetB;, A;,M;, i = 1,---,10 be the transmitter,
receiver, and relay respectively of sessign

The nodesB;, i = 1,---,10) are located respectively at
the edge ob(S;) Ub(D;) Ub(R;) as shown. Thusl; € C(I).
Specifically, /B1SD = 117° and /B1SBy = /BySBs =
/B3SR = 61°. Thus, |B;Bs| = |B2Bs| > dyas- Also, we
have /B,RS = 120° and ZB4RB5 = 61°. Thus,|B4Bs| >
dmaz- Finally, we have Z/BgDS = 116°, /BsDB; =
/B7;DBg = 61° and ZBgDR = 62°. Thus,|BsB1| > dmaz,
|BgB7‘ = |B7B6| > dma-

We now show that B3 B4| > da. @nd |BsBg| > dias-
Denote one of the intersection pointsigf) andb(R) as K
(the other isD from the initial condition). Therb RB4 K is a
parallelogram andlB, K| = d;,q.. Thus in triangleK; Bs By,
/ByK{B3 > 71'/2 and |B4B3| > |B4K1‘ = dpmaz- Slmllarly,
|B5B6‘ > dmag-

Next, supposeé(B;) and b(Bsg) intersect with each other
at point Ky as shown. Choosd,, By and My such that
none of them is inb(B;) or b(Bg). More specifically, let
Ajo and By lie on the line Kx R with |4190K2| = ¢ and
|A10B10| = €9. Then we have}BlA10| > dmaz, |BSA10| >
However, based on our assumptioR; Ry| > dpaz, Which  dmaz: [BiBiol > dimazs [BsBio| > dmazs [B1Crol > dimaa
contradicts Equation (18). Thus, if, = 3 andUs = 4, U < and[BsCio| > dmaa-

1 andU; + Uy + Us < 8. In the same way, construety, By andMy. Let |BoR| = €3

Since the equalities in Equation (4) cannot be achievé@ld|A9R| = e4. Choosexy, €2, €3 ande, small enough such
at the same time (i.ea(So)\b(Do) and b(Dy)\b(Sy) cannot that that|Bio B[ > dimas-

Fig. 4. Example of a network witti (N') = 10.

each contain 4 nodes at the same time), there is no case wherghus, ;, i = 1,--- , 10 do not conflict with each other and
U, = U, = 4. Therefore, for any case&, +U,+Us < 8 holds. can be scheduled at the same time, but all are in the conflict
set of sessiord, so K (N) = 10. [ |

Step 2: Following Equation (*) and constrains in Equations

(2) to (6), we now traverse the cases f0f to show that IV. SIMULATION AND RESULTS

K(N) <10 always holds.

Case (i) U1 = 4. ThenU; < 1 by Equation (3)[/y; = Us =0 In this section we present simulation results to evaluage th

by Equation (4) and/, + Us < 4 by Equation (*). Then we throughput achieved by maximal scheduling. The simulation

have the following scenarios: were done using a simulator written in C. All simulations @er
1) If Uy <1, K < 10 sinceUs + Uy + Us + Uy < 5 from  Fun for a duration of 10000 time units and e_ach rgsult shown is

Equation (3). the average of 10 simulation runs. For our simulations, veelus

2) If 3< U, <4, Us <1. Thenk < 9 from Equation (2). @ Simple, distributed collision-free maximal scheduleséshon
3) If Uy = 2, Us < 2 and Us < 1 since the equalities in the well known solution for maximal independent sets [6], as

Equation (4) cannot be achieved at the same time. ThEfs®Wn in Algorithm 1. For a graph of size, the algorithm
K<4+2+2+1+1=10. has a time complexity)(log®n) [6].

Case (i) Uy = 3. ThenU, + Us + U7 < 2 by Equation (3),
andU2+ Uz < 5 by Equation (*). ThusK < 3+2+5 = 10.
Case (i} 0 < U; < 2. Since>." _, U,, < 8 by Equation (2),
K <2+48=10.

In conclusion,max K (N') < 10 for all possible cases. ® 5

Next we show that the performance guarantee is tight by’
demonstrating the existence of a network witA\") = 10. _

Lemma 2: There exists a wireless network with relay usage
that uses a single frequency with equal power in all nodes ang[
bi-directional communication such that(\) = 10. '

Proof: We prove the result using construction. An

example network withK (N) = 10 is shown in Fig. 4. To
construct the network, consider a sessidnsS, D, R) with
|SD| = |SR| = |DR| = dnaz, dmas being the transmission

Algorithm 1 Maximal Scheduling Algorithm

1: loop
{comment: at each time slot, one single phase
Each undecided sessidip chooses a random number
r(I;) € (0,1) and sends it to all its neighbors.
If r(1;) < r(I;) for all sessions irC'(I;), session/; is
picked to be scheduled and informs all its neighbors.
If one of I;’s neighbor is scheduled, decides not to
transmit.
If all sessions reach their decisions, the scheduling is
done. Otherwise, enter the next phase.
7: end loop




A. Bit Error Rate Evaluation V. CONCLUSIONS

To evaluate the throughput, for each packet we first checkThis paper considers the problem of the achievable max-
if the transmission was successful or not by using the bitrerdmum throughput region of maximal schedulers in WSNs
rate (BER) associated with the transmission. For everyiagss With cooperative relays. We show that distributed maximal
we assume that the channels between the sensors are mut$&figduling algorithms can achieve a guaranteed fractiomeof
independent Rayleigh fading channels with average chanfigdximum throughput region in arbitrary wireless netwoiks.
powersis p, As.z and Az p. Assuming that the signal at thewas also shown that the guarantees are tight in the sense that
destination is combined by using maximal ratio combining, wthey cannot be improved any further with maximal scheduling
use the closed form expressions for the BER of Decode-and-
Forward relaying for phase-shift keying (PSK) or quadratur _ o
amplitude modulation (QAM) given in [3] to evaluate the [1] E. C. van der Meulen, “Three-terminal communication chashé\dv.

. - . Appl. Prob.,vol. 3, pp. 120-154, 1971.

probability that a packet is successfully delivered. [2] J.N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperatiixersity

The Log-distance Path Loss model is used to formulate in wireless networks: Efficient protocols and outage betvaVviEEE

. . . Trans. Inf. Theoryyol. 50, no. 12, pp. 3062-3080, December 2004.

the path loss between a transmitter and a receiver [8]. Usi 9 1. Lee, D. Kim, “BER Analysis for Decode-and-Forward Reilag in
a path loss exponent, the path loss can be expressed as  Dissimilar Rayleigh Fading ChanneldEEE Communications letters,
P(receiver) = P(transmitter)/d®, whered is the distance " \IIOILI'lll'nIO' 1, PS-EZ'EMH Ja”_-a 2007S-t il e ahstrained

. P . - . Tassiulas and A. Ephremides, “Stability properties aafnstraine:

between the tran;mmer and the receiver. In our S|mulat!on queuieing systems and scheduling policies for maximal throufgip
a was set to3. Finally, we assume equal power allocation  multihop radio networks IEEE Transactions on Automatic Control,

between the source and the relay. If the power budget for a Vvol.37,n0.12, pp. 19361948, December 1992.

e . 5] M. Luby, “A simple parallel algorithm for the maximal indepeent set
transmission isPmW, then we assume that the source an problem” Proc. ACM STOCpp. 1-10, 1985.
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64 bytes, 16-QAM is used, noise leval, is —90dBm, and
transmission rang€,,., = 100m. We also assume that each
node always has a packet to send in each slot.
Figure 5 shows the per node throughput per slot for two
networks with 200 and 300 randomly distributed nodes. If
a source has multiple relays to choose from, it picks one
randomly in each slot. The results are shown as a function
of the total transmission power as it is varied in the range
—10dBm to 20dBm. We observe that as the node density
increases, the throughput per node decreases due to higher
channel contention. We also note that as the transmission
power increases, the per node throughput saturates anerhigh
node densities lead to lower throughput.
Figure 6 compares the performance of two different strate-
gies for picking the relay in a network with 400 nodes. In
addition to the random relay selection policy, we consider
another policy where the source always chooses the relay tha
has the the smallest calculated BER. While choosing the relay
with the lowest BER increases the throughput, it also leads t
faster battery consumption in the selected relays, as cadpa
to random relay selection.
Figure 7 shows the impact of the packet size on the per
node throughput in a 200 node network. At relatively smaller
transmission powers, the throughput per node decreasis as t
packet size increases due to the higher packet error raten Whe
the transmission power is high enough, the packet erroiigate
negligible for all packet sizes and the throughput is limhilbsy
the requirement to pick conflict-free sessions for transiois
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