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Abstract— This paper addresses the question of throughput
guarantees through distributed scheduling in wireless sensor
networks (WSNs) with relay based cooperative communications.
We prove that in a single frequency network with bidirectional,
equal power communication, low complexity distributed maxi-
mal scheduling attains a guaranteed fraction of the maximum
throughput region in arbitrary wireless networks. We also show
that the guarantees are tight in the sense that they cannot be
improved any further with maximal scheduling. Simulation re-
sults are also provided to show the performance of a distributed,
maximal scheduling algorithm under different network settings.

I. I NTRODUCTION

The use of relays or cooperative communications for WSNs
has received considerable attention in the recent past, particu-
larly due to its ability to increase a WSN’s range and capacity
[1]. Existing research has shown that cooperative diversity
gains can be achieved in distributed WSNs where nodes help
each other by relaying transmissions [2]. This paper focuses on
the performance of thescheduling algorithmused to control
the channel access at the medium access control (MAC) layer
in WSNs with cooperative relays. We focus on the throughput
guarantees that may be provided by distributed schedulers
for WSNs with cooperative relays and prove that maximal
scheduler can achieve a guaranteed fraction of the maximum
throughput region in arbitrary wireless networks.

The communication theory aspect of cooperative relaying,
such as energy efficiency, bit error rate, forwarding strategies
(e.g. decode and forward, amplify and forward) have been
widely investigated [2], [3]. However, the performance of
upper layer protocols, such as MAC layer schedulers, that
use cooperative relay based communication technologies has
not been investigated in detail. For wireless networks with-
out cooperative relays, [4] presents the maximum achievable
throughput region and an algorithm for attaining it, although
the centralized nature and computational complexity of the
scheduler limits its applicability. Instead, we focus onmaxi-
mal scheduling, which is equivalent to solving theMaximal
Independent Set(MIS) problem in graph theory. While it is
known that a simple randomized distributed MIS algorithm for
an arbitrary graph of sizen including exchange of messages
can be done in timeO(log2n) [5], [6], their performance in
terms of the achievable throughput in cooperative relay based
WSNs is unknown.

It has been shown in [7] that for wireless networks with
direct transmissions (i.e. no cooperative communications),
maximal scheduling is guaranteed to achieve a fraction of the
maximum throughput region and the fraction (of value1/8) is
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Fig. 1. Three-terminal relay model.

decided by the maximum “conflict degree” of the network. The
conflict degree of a transmitter-receiver pair(u, v) is defined
as the number of transmitter-receiver pairs that interferewith
(u, v) but not with each other. Using this notion of conflict
degree, we prove that in a network with cooperative relays, any
distributed maximal scheduling algorithm can achieve at least
1/10 of the maximum throughput region and this guarantee
cannot be improved any further.

The rest of the paper is organized as follows. Section II
describes the network and conflict models and Section III
presents a performance guarantee on maximal scheduling.
Simulation results showing the achieved throughput using
maximal scheduling under different network scenarios are
presented in Section IV. Finally Section V concludes the paper.

II. N ETWORK MODEL

In this paper, we consider a network where sensors share
a single frequency and have the same transmission range. We
consider a WSN with simple cooperative communication and
a discrete memoryless three-terminal relay model as shown in
Fig. 1. Every sessionI with a packet transmission involves
three nodes: the sourceS, the destinationD and the relayR.
Thus a session may be represented as a 4-tuple(I, S,D,R).
The distance and channel gain between two nodesi andj are
represented byd(i, j) andλi,j respectively.

A discrete slotted-time model is assumed where each time
slot is long enough so that a source node and a relay node can
cooperatively transmit a single packet to the destination.The
message exchanges among the source, relay and destination
are considered to be bi-directional; the source broadcaststhe
data to the destination and the relay; the relay retransmits the
datato the destination, and the destination replies with anACK
if it successfully receives the packet. The decode-and-forward
relay strategy is assumed in this paper [3].

We model a wireless network as a graphG = (V,E), where
V is the set of nodes (i.e. sensors in the network) andE is
the set of links. If sensorA is in the transmission range of
sensorB, thenB is A’s neighbor. By assuming bidirectional
symmetric communication,A is B’s neighbor too. IfA and
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Fig. 2. A session(I0, S0, D0, R0) in the Euclidean plane.

B are neighbors, there is a link(A,B) ∈ E. We denote the
neighborhood of nodeA as NA, defined as the set of nodes
that are inA’s transmission range. In addition, it is assumed
that each node has a single transceiver (transmitter/receiver),
thus each node can only participate in one session at a time.
Then a session(Ii, Si,Di, Ri) is successful when none of the
nodes in this session is participating in other sessionsand if
none of the neighbors ofSi, Di, andRi transmit in this slot.
The conflict setof sessionIi is then,

C(Ii) = {Ij : Ij shares a common node withIi,

(Sj , or Rj or Dj) ∈ (NSi
∪ NDi

∪ NRi
)} (1)

If Ij ∈ C(Ii) and Ii ∈ C(Ij), sessionsIi and Ij are also
defined asneighbors.

III. M AXIMAL SCHEDULING PERFORMANCEGUARANTEE

Let the number of sessions in conflict setC(Ii) that can
be scheduled at the same time (but not with sessionIi) be
defined as theconflict degreeof conflict setC(Ii). Denote the
maximum conflict degree in the network asK(N ). It is proved
in [7] that for the single frequency, bi-directional, equal-power,
two-terminal communication network model (i.e. no relays),
the performance of an arbitrary maximal scheduling algorithm
is guaranteed to achieve1/K(N ) of maximum throughput
region. In this paper we extend this result for networks with
cooperative relays. Further, we show that for a three-terminal
relay network, at least1/10 of the maximum throughput
region is attained. We also show that this guarantee cannot
be improved because there exist network topologies where at
most1/10 of the maximum throughput region is achieved.

Lemma 1:For any wireless networkN with relay usage,
if the same frequency and equal power are used in nodes,
bi-directional communication is involved, thenK(N ) ≤ 10.

Proof: Let the transmission range of each sensor in the
WSN be dmax. In a two-dimensional Euclidean plane, the
neighborhood area of a nodeA is equivalent to the closed
circle centered atA with radiusdmax, denoted asb(A). The
coverage areaof any session(I0, S0,D0, R0) is then the union
of the areasb(S0), b(D0) andb(Ri), as shown in Fig. 2. If a
sessionIj ∈ C(I0), at least one terminal of sessionIj falls in
the coverage area of session(I0, S0,D0, R0). Thus to find the
maximumK(N ), it is sufficient to find the maximum number
of nodes that can be contained inb(S0)∪ b(D0)∪ b(R0), such

that the distance between any two of these nodes is greater
thandmax.

Without loss of generality (wlog), we can assume that node
Si andDi lie on thex axis. For the sake of convenience, we
divide b(S0)∪b(D0)∪b(R0) into 7 sub-areas, labeledArea#1
throughArea#7 in Fig. 2. We useUn to denote the number
of nodes lying inArea#n.

To start with, we formulate the geometric facts, statements
and intermediate results proved in [7] as follows:

U1 + U2 +

7∑

n=4

Un ≤ 8, U1 +

7∑

n=3

Un ≤ 8,

7∑

n=2

Un ≤ 8 (2)

U1+U4+U6+U7 ≤ 5, U2+
7∑

n=5

Un ≤ 5,
5∑

n=3

Un+U7 ≤ 5 (3)

U1 + U4 ≤ 4, U2 + U5 ≤ 4 (4)

U2 + U6 ≤ 4, U3 + U4 ≤ 4 (5)

U3 + U5 ≤ 4, U1 + U6 ≤ 4 (6)

where Equation (2) is proved in Lemma 3 of [7] and states
that in the coverage area of any two-node session, there can
be at most 8 nodes that are in conflict with the session but not
with each other. Equation (3) follows the geometric argument
and Lemma 18 of [7] and states that at most 5 nodes can
be located in a circle (b(S0), b(D0), or b(R0)) such that the
distance between any two nodes is greater than the radius.
The two inequalities in Equation (4) are based on the fact that
b(S0) and b(D0) intersect with each other with the distance
betweenS0 andD0 satisfying|S0D0| < dmax and the region
b(S0)\b(D0) is covered by 4π/3 sectors. The same arguments
hold for b(D0)\b(S0). Also as shown in the proof of Lemma 3
in [7], the two equalities in Equation (4) can not be achieved
at the same time. Similar arguments hold for Equations (5)
and (6) as well. The rest of the proof proceeds in two steps.

Step 1: We prove by contradiction that the number of nodes
not interfering with each other inArea#1 ∪ Area#2 ∪
Area#3 is at most 8.

U1 + U2 + U3 ≤ 8 (*)

Assumption:
U1 + U2 + U3 = 9 (A1)

Definition 1: Consider a session(Ii, Si,Di, Ri). For each
session inC(Ii) but not in conflict with each other, choose
one of its terminals that falls in the coverage area of session
Ii. Denote the set of chosen nodes byU , and letU = |U|.
Given a nodeA ∈ U , A ∈ b(x) and A /∈ b(y) with x, y =
{Si,Di, Ri} and x 6= y, define thedistance from A to b(y)
asmin{|AB| : B ∈ U , B ∈ b(y), y /∈ b(x)}. The smaller the
distance, thecloser nodeA is to Disk b(y).

Since0 ≤ Un ≤ 4 for n = 1, 2, 3, at least two areas have
3 or more nodes. Because of symmetry, we can assume that
Area#1 and#2 are the two areas with 3 or more nodes. Then
we divideb(S0) andb(D0) into 6 π/3 sectors respectively as
shown in Figure 3 with the dashed lines.
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Fig. 3. Topology showing the source, relay and destination nodes
(S0, R0, D0)), the sectorization ofb(S0) and b(D0), and the location of
other nodes.

case (i): U1 = U2 = 3. Thus U3 = 3 by assumption A1.
Let S1, S2, S3 be the nodes onArea#1, with S1 being the
closestto b(D0) andS3 being theclosestto b(R0). Similarly,
let D1,D2,D3 be the nodes onArea#2, with D1 being the
closestto b(S0) and D3 being theclosestto b(R0). Finally,
let R1, R2, R3 be the nodes onArea#3, with R1 being the
closestto b(S0) andR2 being theclosestto b(D0). Note that
the distance between any two nodes is greater thandmax and
the angle subtended atS0 or D0 by any two nodes in adjacent
sectors is greater thanπ/3. Then S3 can only be on either
sectorW3S0W4 or sectorW4S0W5 and D3 can only be on
sectorU3D0U4 or sectorU4D0U5.

To obtain the maximum value ofU1 + U2 + U3, we can
assume thatS1 is on sectorW1S0W2 (Argument: SinceU1 =
3 andArea#1 is covered by 4π/3 sectors, whatever be the
spread of the three nodesS1, S2, S3, at least one node falls on
either sectorW1S0W2 or sectorW4S0W5. Due to symmetry,
we can assume that there is one node on sectorW1S0W2.).

Now, choose the pointSp1 to makeS0S1Sp1D0 a parallel-
ogram, chooseRp1 to makeS0R0R1Rp1 a parallelogram, and
chooseRp2 to makeD0R0R2Rp2 a parallelogram. First we
claim that,

∠Sp1D0D2 > π/3,∠Rp1S0S2 > π/3,∠Rp2D0D2 > π/3 (7)

∠S1S0W1 + U1D0Sp1 = π/3 (8)

To see these,wlog, we can assume thatD1 has a smallery-
coordinate thanS1. If nodeD1 lies outside the parallelogram
or on the lineSp1D0, ∠Sp1D0D2 > ∠D1D0D2 > π/3. If
not, nodeD1 must lie inside the parallelogramS0S1Sp1D0,
and it is proved in [7] that∠Sp1D0D2 > π/3. Therefore,
∠Sp1D0D2 > π/3.

In the same way, we have∠Rp1S0S2 > π/3 and
∠Rp2D0D2 > π/3. Then, since∠S1S0W1 = ∠Sp1D0U2

and∠U1D0Sp1 + ∠Sp1D0U2 = π/3, we have Equation (8).
Next, we claim that,

∠R1R0R2 < 2π/3 (9)

To see this, extend the lineS0R0 to point E1 and lineD0R)

to point E2. Then,

∠R1R0R2 = ∠R1R0E1 + ∠E2R0R2 − ∠E2R0E1

= ∠Rp1S0E1 + ∠E2D0Rp2 − ∠S0R0D0

= ∠Rp1S0R0 + ∠R0S0D0 + ∠S0D0R0

+ ∠R0D0Rp2 − π

= π − ∠W3S0Rp1 − ∠Rp2D0U3 (10)

To show∠R1R0R2 < 2π/3, it is enough to show that

∠W3S0Rp1 + ∠Rp2D0U3 > π/3 (11)

Since ∠Rp1S0S2 > π/3 (from Eqn.(7)), point Rp1 can
only lie in sectorW3S0W4 or sectorW4S0W5. If it is in
sectorW4S0W5, ∠W3S0Rp1 > π/3, and we have Eqn. (11).
Similarly, if Rp2 is in sectorU4D0U5, we have Eqn. (11).

On the other hand, ifRp1 lies in sectorW3S0W4 andRp2

lies in sectorU3D0U4, since∠S1S0S2 > π/3 and∠Rp1S0S2

> π/3, we have∠Rp1S0W4 + ∠S1S0W1 < π/3. Thus,

∠W3S0Rp1 = π/3 − ∠Rp1S0W4 > ∠S1S0W1. (12)

Additionally, since ∠S1S0S2 > π/3, we have∠W3S2 +
∠S1S0W1 ≤ π/3. Since∠S3S0S2 = S3S0W3 + W3S0S2 >
π/3, we have

∠W3S0S3 > ∠S1S0W1.

Likewise, we have

∠U3D0Rp2 = π/3 − ∠Rp2D0U4 > ∠U1D0Sp1. (13)

∠U3D0D3 > ∠U1D0Sp1. (14)

Combining Equations (12), (13) and (8), we have

∠W3S0Rp1 + ∠U3D0Rp2 > ∠S1S0W1 + ∠U1D0Sp1 = π/3.
(15)

However, by assumption we must haveU3 = 3. Thus
there is a third node, sayR3, in Area#3, which satisfies
∠R1R0R3 > π/3 and ∠R3R0R2 > π/3 at the same time.
However, this is a contradiction with Equation (9). Thus, if
U1 = U2 = 3, U3 ≤ 2 andU1 + U2 + U3 ≤ 8.

Case (ii): U1 = 3, U2 = 4. Let S1, S2 andS3 be the nodes in
Area#1 with positions as defined for case (i). SinceU2 = 4
andArea#2 is covered by four sectors, each sector contains
exactly one node. LetD1 be on sectorU1D0U2, D2 be on
sectorU2D0U3, D3 be on sectorU3D0U4 andD4 be on sector
U4D0U5. Similar to Equation (7) we then have,

∠Rp2D0D3 > π/3 (16)

From Equations (14) and (16),

∠U3D0Rp2 = ∠U3D0D3 + ∠D3D0Rp2 > ∠U1D0Sp1 + π/3
(17)

Substituting Eqns. (12), (17) and (8) into Eqn. (10), we have

∠R1R0R2 < π/3 (18)
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However, based on our assumption,|R1R2| > dmax, which
contradicts Equation (18). Thus, ifU1 = 3 andU2 = 4, U3 ≤
1 andU1 + U2 + U3 ≤ 8.

Since the equalities in Equation (4) cannot be achieved
at the same time (i.e.b(S0)\b(D0) and b(D0)\b(S0) cannot
each contain 4 nodes at the same time), there is no case where
U1 = U2 = 4. Therefore, for any case,U1+U2+U3 ≤ 8 holds.

Step 2: Following Equation (*) and constrains in Equations
(2) to (6), we now traverse the cases forU1 to show that
K(N ) ≤ 10 always holds.
Case (i): U1 = 4. ThenU7 ≤ 1 by Equation (3),U4 = U6 = 0
by Equation (4) andU2 + U3 ≤ 4 by Equation (*). Then we
have the following scenarios:

1) If U2 ≤ 1, K ≤ 10 sinceU3 + U4 + U5 + U7 ≤ 5 from
Equation (3).

2) If 3 ≤ U2 ≤ 4, U3 ≤ 1. ThenK ≤ 9 from Equation (2).
3) If U2 = 2, U3 ≤ 2 and U5 ≤ 1 since the equalities in

Equation (4) cannot be achieved at the same time. Thus
K ≤ 4 + 2 + 2 + 1 + 1 = 10.

Case (ii): U1 = 3. ThenU4 + U6 + U7 ≤ 2 by Equation (3),
andU2+U3 ≤ 5 by Equation (*). ThusK ≤ 3+2+5 = 10.
Case (iii): 0 ≤ U1 ≤ 2. Since

∑7
n=2 Un ≤ 8 by Equation (2),

K ≤ 2 + 8 = 10.
In conclusion,max K(N ) ≤ 10 for all possible cases.
Next we show that the performance guarantee is tight by

demonstrating the existence of a network withK(N ) = 10.
Lemma 2:There exists a wireless network with relay usage

that uses a single frequency with equal power in all nodes and
bi-directional communication such thatK(N ) = 10.

Proof: We prove the result using construction. An
example network withK(N ) = 10 is shown in Fig. 4. To
construct the network, consider a session(I, S,D,R) with
|SD| = |SR| = |DR| = dmax, dmax being the transmission

range. Let Bi, Ai,Mi, i = 1, · · · , 10 be the transmitter,
receiver, and relay respectively of sessionIi.

The nodesBi, i = 1, · · · , 10) are located respectively at
the edge ofb(Si)∪ b(Di)∪ b(Ri) as shown. Thus,Ii ∈ C(I).
Specifically,∠B1SD = 117◦ and ∠B1SB2 = ∠B2SB3 =
∠B3SR = 61◦. Thus, |B1B2| = |B2B3| > dmax. Also, we
have∠B4RS = 120◦ and∠B4RB5 = 61◦. Thus, |B4B5| >
dmax. Finally, we have∠B8DS = 116◦, ∠B8DB7 =
∠B7DB6 = 61◦ and∠B6DR = 62◦. Thus,|B8B1| > dmax,
|B8B7| = |B7B6| > dmax.

We now show that|B3B4| > dmax and |B5B6| > dmax.
Denote one of the intersection points ofb(S) andb(R) asK1

(the other isD from the initial condition). ThenSRB4K1 is a
parallelogram and|B4K1| = dmax. Thus in triangleK1B3B4,
∠B4K1B3 > π/2 and |B4B3| > |B4K1| = dmax. Similarly,
|B5B6| > dmax.

Next, supposeb(B1) and b(B8) intersect with each other
at point K2 as shown. ChooseA10, B10 and M10 such that
none of them is inb(B1) or b(B8). More specifically, let
A10 and B10 lie on the lineK2R with |A10K2| = ǫ1 and
|A10B10| = ǫ2. Then we have|B1A10| > dmax, |B8A10| >
dmax, |B1B10| > dmax, |B8B10| > dmax, |B1C10| > dmax

and |B8C10| > dmax.
In the same way, constructA9, B9 andM9. Let |B9R| = ǫ3

and |A9R| = ǫ4. Chooseǫ1, ǫ2, ǫ3 and ǫ4 small enough such
that that|B10B9| > dmax.

Thus,Ii, i = 1, · · · , 10 do not conflict with each other and
can be scheduled at the same time, but all are in the conflict
set of sessionI, so K(N ) = 10.

IV. SIMULATION AND RESULTS

In this section we present simulation results to evaluate the
throughput achieved by maximal scheduling. The simulations
were done using a simulator written in C. All simulations were
run for a duration of 10000 time units and each result shown is
the average of 10 simulation runs. For our simulations, we used
a simple, distributed collision-free maximal scheduler based on
the well known solution for maximal independent sets [6], as
shown in Algorithm 1. For a graph of sizen, the algorithm
has a time complexityO(log2n) [6].

Algorithm 1 Maximal Scheduling Algorithm
1: loop
2: {comment: at each time slot, one single phase}
3: Each undecided sessionIi chooses a random number

r(Ii) ∈ (0, 1) and sends it to all its neighbors.
4: If r(Ii) < r(Ij) for all sessions inC(Ii), sessionIi is

picked to be scheduled and informs all its neighbors.
5: If one of Ii’s neighbor is scheduled,Ii decides not to

transmit.
6: If all sessions reach their decisions, the scheduling is

done. Otherwise, enter the next phase.
7: end loop



A. Bit Error Rate Evaluation

To evaluate the throughput, for each packet we first check
if the transmission was successful or not by using the bit error
rate (BER) associated with the transmission. For every session,
we assume that the channels between the sensors are mutually
independent Rayleigh fading channels with average channel
powersλS,D, λS,R andλR,D. Assuming that the signal at the
destination is combined by using maximal ratio combining, we
use the closed form expressions for the BER of Decode-and-
Forward relaying for phase-shift keying (PSK) or quadrature
amplitude modulation (QAM) given in [3] to evaluate the
probability that a packet is successfully delivered.

The Log-distance Path Loss model is used to formulate
the path loss between a transmitter and a receiver [8]. Using
a path loss exponentα, the path loss can be expressed as
P (receiver) = P (transmitter)/dα, whered is the distance
between the transmitter and the receiver. In our simulations,
α was set to3. Finally, we assume equal power allocation
between the source and the relay. If the power budget for a
transmission isPmW , then we assume that the source and
the relay each consumeP/2mW .

B. Results

We simulate a network where nodes are randomly dis-
tributed in a2000m × 2000m square region. We report the
results for nodes that have at least two neighbors, i.e. withat
least one potential relay. We assume that the packet length is
64 bytes, 16-QAM is used, noise levelN0 is −90dBm, and
transmission rangedmax = 100m. We also assume that each
node always has a packet to send in each slot.

Figure 5 shows the per node throughput per slot for two
networks with 200 and 300 randomly distributed nodes. If
a source has multiple relays to choose from, it picks one
randomly in each slot. The results are shown as a function
of the total transmission power as it is varied in the range
−10dBm to 20dBm. We observe that as the node density
increases, the throughput per node decreases due to higher
channel contention. We also note that as the transmission
power increases, the per node throughput saturates and higher
node densities lead to lower throughput.

Figure 6 compares the performance of two different strate-
gies for picking the relay in a network with 400 nodes. In
addition to the random relay selection policy, we consider
another policy where the source always chooses the relay that
has the the smallest calculated BER. While choosing the relay
with the lowest BER increases the throughput, it also leads to a
faster battery consumption in the selected relays, as compared
to random relay selection.

Figure 7 shows the impact of the packet size on the per
node throughput in a 200 node network. At relatively smaller
transmission powers, the throughput per node decreases as the
packet size increases due to the higher packet error rate. When
the transmission power is high enough, the packet error rateis
negligible for all packet sizes and the throughput is limited by
the requirement to pick conflict-free sessions for transmission.

V. CONCLUSIONS

This paper considers the problem of the achievable max-
imum throughput region of maximal schedulers in WSNs
with cooperative relays. We show that distributed maximal
scheduling algorithms can achieve a guaranteed fraction ofthe
maximum throughput region in arbitrary wireless networks.It
was also shown that the guarantees are tight in the sense that
they cannot be improved any further with maximal scheduling.
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Fig. 5. Per node throughput in networks with 200
and 400 nodes.
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Fig. 6. Per node throughput in for two different
relay selection policies in a network with 400 nodes.

−10 −5 0 5 10 15 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Total transmission power in dBm

T
h

ro
u

g
h

p
u

t
(p

e
r 

n
o

d
e

 p
e

r 
sl

o
t)

 

 

64 bytes per packet
1024 bytes per packet
2048 bytes per packet
4096 bytes per packet
5600 bytes per packet
8000 bytes per packet
11520 bytes per packet

Fig. 7. Per node throughput for different packet
lengths in a network with 200 nodes.


