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Abstract—A number of important characteristics of wireless to population models for biological systems to develop our
sensor networks such as the lifetime, connectivity and coverage framework. Our model allows the computation of the distri-
are determmed the residual power levels of the nodes |n.the bution of the network lifetime and its moments as well as
network. This paper presents a general framework for modeling the distribution of the available power at the nodes in the
the availability of power at sensor nodes as a function of time. : ”

Models are developed for sensors with and without battery N€twork and its moments. The proposed framework is general
recharging and expressions are derived for the network lifetime enough to accommodate scenarios with and without battery
as well as the distribution and moments of random variables recharging. Our model also allows the inclusion of network
describing the number of sensors with different levels of residual related parameters in the energy calculations. We consider
energy as a function of time. Finally, the effect of the packet both spatial scenarios where a node’s power consumption
arrival rates and a sensor’s geographical location are modeled. | ) o - .
is governed by it's position in space as well aan-spatial

l. INTRODUCTION scenarios where the node’s location and power consumption

Wireless sensor nodes, due to their low cost of operatiomodel are independent entities. Extensive simulationltesu
coupled with the potential for remote deployment, have éburare presented to validate our results.

a plethora of applications ranging from monitoring air,| smid The rest of the paper is organized as follows. Our model for
water to seismic detection and military surveillance. A onaj the scenarios where the sensors are incapable of recharging
constraint in the design and deployment of sensor networtkeir batteries is presented in Section Il while Section Il
is their limited battery capacity. The finite battery limitse extends to model for sensors with rechargeable batteries.
lifetime of the network, and may also cause the network fection V presents our simulation results and Section VI
become disconnected or lose coverage with time. To be aplesents the concluding remarks.

to provide guarantees on the performance of a sensor netw?lrk
and develop schemes to maximize the network lifetime, it is’ . ) ] .
important to be able to characterize the available battewep N this section, we develop the formulation of the analytica

at the sensors. In this paper, we present a general metmdmgar_nework to stgdy the network lifetime and_the distribatiaf _

for modeling the lifetime and the residual battery power dsidual power in sensor networks. At any time, we categoriz
sensor nodes. each sensor in terms of its residual battery level.

Existing research has primarily concentrated on devetppin 10 model the lifetime of energy constrained networks, we
algorithms, be it distributed or centralized, to optimizework PrOPose a generalization of Leslie’s population matrix, [1]
longevity metrics. Works along the lines of actually buiigi Which is used to study populations structured by age. The
network models for energy consumption are addressed in [$9€" 0f & node in our model corresponds to the amount of
[8], [4] but these models fail to capture the interplay beswe the battery power c_:onsumed, with one unit of power_exp_ended
node’s spatial location and it's energy consumption. A nodBEr packet transmitted, and the “age” of any node lies in one
for the network lifetime in a general form that is indepertde®f the m + 1 possible intervals)), 1, -- -, m. In other words,
of the underlying network is proposed in [5]. The node densitVe assume that each sensor has enough energy to transmit
and the lifetime upper bound which ensures that a certé?ﬁCketS and the nodes in the network are structureq based on
portion of network area is covered is studied in [6]. ThES value. Our model makes the following assumptions
effect of increasing the number of nodes on the network1) The power is mainly expended to transmit packets
lifetime is examined in [7]. However, the existing literegu  2) The network lifetime is discretized into “cycles” and
fails to provide a unified framework for modeling the energy ~ €ach cycle spans a communication round between nodes
consumption and residual battery levels of sensor networks3) The probability that a node receivépackets (its own
that simultaneously is capable of accounting for networt an ~ and those it forwards), = 0,1,--- ,m, to transmit is
device related factors such as battery recharging, théctraf same in all cycles and we denote this probabilityzhy
patterns, and the geographical location of the nodes. Hpsip Sleep-wake cycles used by many sensor networks to conserve
tries to address these issues. energy can be incorporated in our model by choogingthe

In this paper, we develop an unifying framework to chara@robability that no energy is consumed in a slot) approelyat
terize the lifetime and residual energy distribution of rggye Further, the first assumption implies that the energy exgend
constrained networks. In particular, we use techniquedaim in sensing the environment is not incorporated into the hode
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This energy is independent of the node’s geographic locatihe model then can be expressed as the vector difference
and impacts all nodes in the network uniformly, and hence égjuation
omitted. Additionally, the power consumption on communi- n(t+1) = An(t) (3)
cations dominates that for running the onboard circuitfy [2 ) . - S
Thus modeling the network lifetime based on the power spe-l:lt?e recursive solution of this difference equation is gibgn
on communications serves as a good approximation. n(t+1) = At+1n(0) (4)
Letn(t) be a(m+1)-dimensional vector whoseth element, . o R
ni(t), denotes the number of nodes which have used up)"’h?re n(0) is the initial d|str|put|on_ of_node; among the
units of the total battery capacity of, at timet. Note that Varous energy Ievgls. In practical situations, it is rewdie
the timet is discretized and is measured in units of cyclef0 @ssume that at time= 0, all the nodes are fully powered,
Unlike biological population models where in each time st 7:(0) = 0 Vi > 0 andng(0) = N. What now remains
the age of each individual increases by 1, our model allows f§ determining the probabilities for the energy consumptio
arbitrary power consumption or increase in age in each tirfl¥fing a cycle and this is done in Section IV.
step. Recall thap;, 0 < i < m, denotes the probability that oA Network Lifetime

a node consumesunits of energy in a time unit (we derive . .
expressions fop; in Section 1V). Then, the number of nodes When the batteries at sensor nodes do not have the capabil-

g : L ity to recharge, the network lifetime is an important quignti
at each energy level at an arbitrary time step is given b . . . .
9y y Pi1sg y of interest. In this section we characterize the expectdd ne

no(t+1) = pono(t) wolrk IIiftgtimteh usin? tei_chnic?ues t_hat _hak\)/_elbe_enldeveilﬁpsed for
calculating the extinction dynamics in biological popidas.
t+1 t t . . ..
m(t+1) = pom(t) + pino(t) We start by modeling the impact of the initial battery states
on the network lifetime. From Eqgn. (4), the dynamics of the
energy model in the interval 0 toé can be represented as
a product oft projection matricesA. Existing literature on

Nm—1 (t+1) = pOnm—l(t) +p1nm—2(t) +--- +pm—1n0(t)

N (t+1) = np(t) + memq(t) + Zpinm72(t) population dynamics [9] has shown that asymptotically
i = n(t) ~ R(0,){vo,n(0))uo (5)
+ed > pina(t) + pmno(t) (1) whereR(0, 1) is a scalar representing the growth of the matrix
i=m—1 product,vg andug are the dominant left and right eigenvectors

The rationale behind the above formulation can be justifi@ the matrix product, normalized such that, uo) = 1 and

as follows. A node with full power at time (classng) will the notation(c, d) is used to represent the scalar or dot product

retain it's entire battery reserve only if it receives no lets of vectorsc andd. Consider the non-normalized dominant left

to transmit for the duration of the cycle. The probability ofigenvectow of the matrixA. The impact of the initial battery

this event ispy, and since each node has the same probabilifates on the longevity of the network is then given by

distributionp;, the expected of nodes who receive zero packets Vo = (v,n(0)) ©6)

is pono(t), which in turn is the count of nodes with full battery ’

power at timet + 1. Similarly the number of nodes in classThe rate at which the number of sensors without any remaining

ny at timet+ 1 is the sum of nodes in classg who transmit energy increases in the network is dependent on the dominant

zero packets, and the nodes in clagsthat spend one unit of eigenvalue of the matrid. In population studies, the size of

energy at time. For evaluating the number of nodes in clasthe species under consideration varies with time. In cehtra

m, note that a sensor in clags, i = 0,--- ,m—1 will expend the number of sensors in the network stays constant (in the

all its energy if it transmits more tham—: packets in a cycle absence of new nodes being added). Now state the model

and the probability of this event is given @Z":(m_i p;, 4= In Egns. (2) and (3) corresponds to the state where a sensor ha

0,---,m. Also, since batteries are not capable of rechargingp remaining battery power. This is an absorbing state since

a sensor that had no battery power at titngill stay without the batteries do not have any recharging capability. Then we

power at timet+1 and hence the equation far,, (t+1). may consider the model

The above formulation can also be expressed in a vector- . A

matrix form. To this end, we first define tligr + 1) x (m+1)- At +1) = An(?) )

dimensional “projection” matrix4 as where 7(t) is a m-dimensional vector corresponding to the
number of sensors at time in states 0 tom — 1 of the

Po 0 0 0 . 00 original model in Egns. (2) and (3) andlis am x m matrix
b1 Po 0 0 ... 0 0 obtained from the matrix A by eliminating itsn+1)-th row
A= P2 P Po 0 . 0 0 and column. This modified model can now be used to evaluate
: : : R : : the network lifetime by treating the model in Eqn. (7) as a
Pm Do i Di Yo oDi oo oo dqpi 1 population model and computing the extinction time of the

(2) “species”n modeled by the “population” projection matrix



A. In [10] it has been shown that the infinitesimal long-rumhere®[a] is the standard normal probability integral
growth (or decay) rate of the populatipnand its infinitesimal

. ! 1 a 22
variancec? are given by ®lal = 7/ e~ dz 17
) ==/ a”)
no~ In)g— o (8)  Note that when nodes cannot recharge their batteries, wee hav
1 < 0 and thusG(co|zg) = 1, i.e. the network eventuall
0_2 s 725Tc5 (9) = ( | 0) y
A2 runs out of energy.
where )\ is the dominant eigenvalue of the projection matrix ||| SENSORS WITHRECHARGEABLE BATTERIES

A and ¢ is a column vector of the sensitivity coefficients ] ]
9o with 4, ; being the(i, j)-th element ofA. The transpose I this section we extend our model to accommodate sensors

g?é is denoted bys” and the sensitivity coefficients areWith rechargeat_)le batteries. We _consider an arbitraryargeh

given by 85)&50‘ _ véué where v} and ug are thei-th and Process governing the rgplenlshlng of the sensor bat.teNes

j-th elements of the normalized left and right eigenvectopsenote t.)yai the probgb}llty that a sensor generataits of

of A. The normalization is done such that, u) = 1 and €€y In a cycle, withi = 0,1,---m. We assume that the
recharge energy generated or harvested in a cycle becomes

eavailable for use at the end of the cycle. Also, the recharge

(vo, ug) = 1. Fiqally, C is the variance-covariance matrix of
the elements im. Let x represent the natural logarithm of th i . .

P J Rrocess is assumed to be independent of the traffic at the node
A sensor in statg at timet stays in the same state at time

total population) . 7; representing the number of sensors i
t+ 1 if the amount of energy it expends in time cyc¢lés the

states 0 tan—1 and letzy = In Vj be its adjusted initial value

at timet = 0. Let o = o(z,t|zo) be the probability that the _ X _
same as the amount of energy it generates. Since the traffic

fand energy generation processes are independent, thissoccu

log population size isc at timet, given that its initial value
wasxo. This probabilitye quickly approaches the solution of 2 o .

0 P yed y app with probability > °." ; p;c;. Along the same lines, a sensor
moves from statej to state: after a cycle,j < i < m, if

the diffusion equation for the Weiner process ([11] p. 151)

e — _M@ Uj@ (10) the energy consumed in the cycleiis- j units more than
ot Ox = 2 022 that generated in the cycle. The probability of this event is
with the initial condition o(z,0[z¢) = d(z — xo) where then} ;" ;prti—jou. Similarly, the probability that a node

d(x — x0) is the Dirac delta function at,. Also, since the in statej moves to staté after a cycle;i < j < m, is given
population becomes extinct (i.e. all sensors move to stgte by > "  proy4,—;. For the boundary conditions where we
when the population becomes less than one, we have tuhsider the transition to statesndm, additional events need
boundary condition to be considered while calculating the transition probdd.

0(0,t|z0) = 0 (11) In particular, a sensor.in stateat timgt, 0<q < m, moves

to statem at timet + 1 if at leastm — i more units of energy

To obtain the solution for Eqn. (10) subject to the abovedahit were consumed than generated in the time cycle. Similarly, a
and boundary conditions, we use the known solutions feensor in staté at timet, 0 < i < m, moves to staté at time
Weiner processes with absorbing barriers [12]. This reguirt + 1 if at least: more units of energy were generated than
a linear transform of the coordinates and the solution to t@nsumed in the cycle. Then, the number of nodes at each

system in Eqgns. (10) and (11) is given by energy level at an arbitrary time step is given by
olx,t|lxg) = — |e 202t —e o 204t
2mo?t () no(t+1) = mno(t) Z o ij + ny(t) Z o ij
i=0  j=0 i=1  j=0
Let g(t|z¢) denote the probability that the population becomes m i—ma1 m iem
extinct in an intervat andt+dt. Theng(t|zo) can be obtained ... (3 o , , .
m— k3 p + Uz (t) (673 P
by taking the derivative of the total probability of the even i:%:_l ]Z:O ! ;m Jz_:o !
that the population is not extinct at tinte m m
d [ ni(t+1) = nO(t)sz’ai—l +n1(t)Zp¢ozi
g(tlrg) = _ﬁ/ o(z, t|zo)dx (13) i=1 i=0
0 m m
Zo _ (mg+ut)? Ce t v t v
= ——— ¢ 202¢ (]_4) + + nm—l( ) szaz+m—2 + nm( ) szaz-l—m—l
V2mo2t3 i=0 i=0

From Egns. (12) and (14), the cumulative probability that th
population is extinct before timeis then
2

Gltlan) = [ ottleo)ar (15)

) |:_W:| +e” zﬁ‘S“ |:1 — P |:.’E() - ;U/t:| :|(16) +.- 4+ ’er_l(t) Zpioq, =+ n,m(t) Zpif%’—&-l
oVt oVt ; i=0

m m
N1 (1) = 1o(t) Y pictimipr +11(6) > picti—mio
i=m— e

=m—1




i—m m 1—m—+1

m and
N (t+1) = ng(t) E Di E aj +na(t) Z Di Z Qj
i=m 7=0 i=m—1 j=0 Ht(Z) = E pt(V07 Viy«-- ’Vm)z(’;()zl’/l e Zrunm (22)

vo,V1, s Vm

m 1—1 m 7
ot 1 ()P o+t pi Yo . N

=1 j=0 i=0 =0 Now consider the conditional PGH,;(z). Recall that at
time ¢, the state transition of each sensor in claggcurs as

The formulation above can be expressed in the form@fi&  per a multinomial trial. The PGF of the resulting vector from

1) x (m+1)-dimensional projection matrid: the multinomial trials on the:;(¢) members of class at time
r m i m i—1 m i—m T t iS given by
Do p D@ pi o Y i) P m 20
i:7(r)L J=0 2-:1m g=0 l:w?zn =0 (aO,iZO+al,izl+' ‘ '+am,izm)nl(t) = [Z Ok,iZk (23)
Zpiai—l Dt o Zpiai-&-m—l h=0
i=1 =0 i=0 Now, the number of sensors in classat timet¢ + 1 is the
A= : : sum of the number of sensors that move to clagom each
m m m of the m other classes at the end of timeas well as the
Zpiamm Zpiai—fm-iﬂ e Zpiai-H sensors of clask that do not change their state. Since we are
i=m-1 i=m-2 o =0 working with the transforms of the probability mass funaoto
SIS S < - the resulting PGF is the product of the individual PGFs. Thus
Zpizaj Zpizaj Zpizaj we have
L i=m ;=0 i=m—1 j5=0 1=0 7=0 _ m m n; (t)
(18)
The model then can be expressed as the vector difference Hypa(2) = H Zakﬂ’z’f (24)
equation =0 Lk=0
n(t+1) = An(t) (19) Unconditioning ont, we have
whose recursive solution in terms of the initial distrilutiof ~ Hi+1(2) = S o), (£) Hygre(2)
nodes can again be written agt + 1) = A**'n(0). no(t), - 1m ()
m m n; (1)
A. Energy Distribution = > o) ]] [Z akﬂ‘zk} (25)
In this section we characterize the distribution of the lavai ®) =0 Lh=0
able energy at the sensors as a function of time. At each = Hio, &m0 2 &m) (26)
cycle, a sensor in any statetransits to any other state or here
stays in the same state according to the probabilities dkfine m
in the i-th column of A. In other words, the transition of a &= Zak’izk (27)
sensor in staté at the end of a cycle is determined according k=0

to a multinomial trial withm 4 1 possible outcomes with
the probability of each outcome defined the entries inithe
th column of the matrixA. Then at timet, we haven;(t)
multinomial trials corresponding to each sensor in class
that determines their transition at the start of time 1. To
characterize the vectot(t + 1), we start by evaluating the
probability Pr{n(t + 1) = (¢t + 1)|n(t)} wheref(t + 1) is
a (m + 1)-dimensional vector of non-negative integers. Sincend

Then given a starting state vectaf0), we can recursively
build the PGF ofn(t) and use it to obtain the exact distribu-
tions and its confidence intervals. As an illustration, weeha

H()(Z) _ ZSO(O)Z;LI(O) . Z:}{”(O) _ H Z:M:(O) (28)
=0

each sensor is assumed to operate independently, we have m [ m n:(0)
m Hi(z) = Ho(§) =[] lzak,izk] (29)
Pr{n(t+1) = 0(t+1)[n(t)} = [[ Pr{ni(t+1) = 6:(t-+1)n(t)} =0 k=0
i=0 and so on.
(20)
These conditional probabilities may be computed quiteihgad IV. |MPACT OF NETWORK PARAMETERS

However unconditioning the expression to obtain the uncon- _ _ o . . _
ditional distribution is quite laborious. Thus we use a fault N this section we highlight and investigate the interplay
variate probability generating function (PGF) to charezee between a node’s geographical co-ordinates in space and it

the number of nodes at different power levels. We define Power consumption under the aegis of shortest path routing
by considering two scenarios: (1) a spatial model and (2) a

pe(vo,v1,+ vm) = Pr{n(t) = {vo, 11, - ,vm}} (21) non-spatial model.



A. Spatial Network routing packets and does not initiate a session or starts a

To consider the impact of a node’s spatial location on igMmmunication session and receives 1 routing requests.
energy consumption rates and node lifetime, we considef™our model we limit the number of communication sessions

deployment scenario where the sensor nodes are placedCafVps, though theoretically the upper bound i§. The
the vertices of a finite grid. The co-ordinates of noge Simulations validate our intuition that the expected numbe

i =1,---,N in the grid (z;,;) is determined as follows: 900d approximation of the underlying communication preces
zi = (i—1)/VN andy; = (i — 1)%VN. The following The energy consumption probabilities can then be expressed
probabilities are assumed knowpy, the probability that in a 8S

given cycle a sensor node (sgyhas a new packet to send to

another n_ode (say) ir_1 the gri_d andp., th_e probability that__ (1—ps)(1 _prk)Nps}pk i=0
any two given nodes in the grid communicate. The probability _ .
. . . . (1 _ )(Nps> i (1 _ )Nps iy
that a nodei has a packet to transmit during a cycle is th‘fbi _ Ps)\ 7 )Prk Prk
probability of the union of two mutually exclusive events: ps (VP Hpl P (1 *prk)NpSﬂ}Pk 0 <4< Nps
the event of a node initiating a communication session and 0 otherwise

the event where it receives a routing request. The prolabili (33)
of the _Iiatter,p,.,i, can t.)e obtained by_ using the Cond'.tlona}klso, the evaluation ofr{node id = K has two possibilities:
probability of it receiving a packet given two nodes in th%ne where the choice of a node is equally likely amongXhe
network communicate. Mathematically, for nodle

nodes present and the second, where the selection of the node
is governed by it's location. Assuming shortest path raytin

. Pr{session forj-k is throughi} we approximate the likelihood of the node being chosen by
Pri =2 Z Z x Pr{j and k communicat¢ the number of shortest paths it lies on. That is
i kAR
(30) N-1 N
Notg th:_:lt, for each palrg(k), the expression forlo(g.) com- Z Z T{rig +rij =7k}
municating through node has the same numerical value P
since the grid is symmetric and hence the summation in Eqn py{node id = K = 7k _j#k
(30) is multiplied by a factor of two. Now, the probabil- NN N
ity that two particular nodes say and k& communicate is: Z Z Z T{rig +rijj =ik}
Pr{j andk communicatg = -=2=2) |n other words, the R (34)
2

pair (j,k) can be selected froMiN — 1) nodes (since node where T{ri s + riy = 154} = 1if rip + 1y = 7500 0

i is not a candidate) i, ') ways and for nodeg and :
. SN2 ) R S otherwise.
k to communicate, it is sufficient if either initiates a ses-
sion. The expression fdPr{session forj andk is throughi} B. Non-spatial Homogeneous Networks

is derived as follows. Let(z;,y), (x;,4;), (xx, yx) denote  |n the case of scenarios where the sensor network is
the co-ordinates of nodes;j and k respectively. Defining, homogeneous and is either assumed to span an extremely

A A 2 heol
Azij = |z; — x| and Ay;; = |y; — y;|, we obtain: (ideally infinitely) large space or to be very densely deplby
rij = Awij + Ay, ;. Similar values forr;, andr;; can the traffic conditions at each node can be approximated to
be obtained using the previous definition. Now, be statistically identical. To qualitatively evaluate thede

Liki if oy by =g lifetimes in these scenariog, we consider a model_where_the

Pr{sessionj-k is throughi} = { Liok LR PE number of packets transmitted by each node during a time
0 otherwise cycle follows a Poisson distribution with mean irrespective

GD ofits geographical location. The power consumption proba-

bilities p; in this case are given byy; = eff”.

il
Ti,j Tik T,k
Ljg:= and L, =
3.k, (Al'i,j) <A$zk> .k (ij,k> V. RESULTS
. . . In thi ion, we eval h r f the pr
Given the probability of a sensor to initiate a sessipnp, this section, we evaluate the accuracy of the proposed

each cycle sees an average Aib, sessions. To obtain theframework by comparing the analytic results against simula
Y . ge /ops , ' . ~tions. The simulation results were generated using a custom
energy consumption probabilities;, i = 0,--- , m, we again

condition on the node’s aeoaranhic location: built simulator written in C that, unlike existing simulaii
geograp ' tools such ass-2, allows the use of rechargeable batteries at

where

N . . ) nodes. Results are presented only for non-spatial or random
pi = ZPT{Z packets transmittgdode id = K x P (32) networks. The results and those for spatial networks are
k=1 similar. For each simulation result, ten runs of the siniatat

where P, denotesPr{node id = K. Note that node; trans- were conducted with different seeds and the average of these
mits 4,7 > 0 packets during a cycle if it either receivés runs is presented in the figures.
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Fig. 2. The residual power distribution at different timesaimandom network: Analytic versus simulation results.

‘ ‘ ‘ progresses, the number of nodes with lower residual energy
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and analytic results.
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VI. CONCLUSION

In this paper we have motivated the need and importance of
analyzing the network lifetime as a function of time and ggyer
consumption. Using the work on population dynamics as the
basis, we developed a general model for evaluating theualsid
battery power levels in networks with and without battery
recharging. Expressions were derived for the networkitifet
in the absence of battery recharging and the distribution
and moments of the state occupancy of the sensors for the
other cases. The impact of packet arrival rate at the sensor
nodes and a sensor node’s geographic location on the energy
consumption was modeled.

Network Lifetime

Fig. 1. Network Lifetime: Analysis versus simulation results
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