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Abstract—A number of important characteristics of wireless
sensor networks such as the lifetime, connectivity and coverage
are determined the residual power levels of the nodes in the
network. This paper presents a general framework for modeling
the availability of power at sensor nodes as a function of time.
Models are developed for sensors with and without battery
recharging and expressions are derived for the network lifetime
as well as the distribution and moments of random variables
describing the number of sensors with different levels of residual
energy as a function of time. Finally, the effect of the packet
arrival rates and a sensor’s geographical location are modeled.

I. I NTRODUCTION

Wireless sensor nodes, due to their low cost of operation
coupled with the potential for remote deployment, have found
a plethora of applications ranging from monitoring air, soil and
water to seismic detection and military surveillance. A major
constraint in the design and deployment of sensor networks
is their limited battery capacity. The finite battery limitsthe
lifetime of the network, and may also cause the network to
become disconnected or lose coverage with time. To be able
to provide guarantees on the performance of a sensor network
and develop schemes to maximize the network lifetime, it is
important to be able to characterize the available battery power
at the sensors. In this paper, we present a general methodology
for modeling the lifetime and the residual battery power of
sensor nodes.

Existing research has primarily concentrated on developing
algorithms, be it distributed or centralized, to optimize network
longevity metrics. Works along the lines of actually building
network models for energy consumption are addressed in [3],
[8], [4] but these models fail to capture the interplay between a
node’s spatial location and it’s energy consumption. A model
for the network lifetime in a general form that is independent
of the underlying network is proposed in [5]. The node density
and the lifetime upper bound which ensures that a certain
portion of network area is covered is studied in [6]. The
effect of increasing the number of nodes on the network
lifetime is examined in [7]. However, the existing literature
fails to provide a unified framework for modeling the energy
consumption and residual battery levels of sensor networks
that simultaneously is capable of accounting for network and
device related factors such as battery recharging, the traffic
patterns, and the geographical location of the nodes. This paper
tries to address these issues.

In this paper, we develop an unifying framework to charac-
terize the lifetime and residual energy distribution of energy
constrained networks. In particular, we use techniques similar

to population models for biological systems to develop our
framework. Our model allows the computation of the distri-
bution of the network lifetime and its moments as well as
the distribution of the available power at the nodes in the
network and its moments. The proposed framework is general
enough to accommodate scenarios with and without battery
recharging. Our model also allows the inclusion of network
related parameters in the energy calculations. We consider
both spatial scenarios where a node’s power consumption
is governed by it’s position in space as well asnon-spatial
scenarios where the node’s location and power consumption
model are independent entities. Extensive simulation results
are presented to validate our results.

The rest of the paper is organized as follows. Our model for
the scenarios where the sensors are incapable of recharging
their batteries is presented in Section II while Section III
extends to model for sensors with rechargeable batteries.
Section V presents our simulation results and Section VI
presents the concluding remarks.

II. SENSORNETWORKS WITHOUTBATTERY RECHARGING

In this section, we develop the formulation of the analytical
framework to study the network lifetime and the distribution of
residual power in sensor networks. At any time, we categorize
each sensor in terms of its residual battery level.

To model the lifetime of energy constrained networks, we
propose a generalization of Leslie’s population matrix [1],
which is used to study populations structured by age. The
“age” of a node in our model corresponds to the amount of
the battery power consumed, with one unit of power expended
per packet transmitted, and the “age” of any node lies in one
of the m + 1 possible intervals;0, 1, · · · ,m. In other words,
we assume that each sensor has enough energy to transmitm
packets and the nodes in the network are structured based on
this value. Our model makes the following assumptions

1) The power is mainly expended to transmit packets
2) The network lifetime is discretized into “cycles” and

each cycle spans a communication round between nodes
3) The probability that a node receivesi packets (its own

and those it forwards),i = 0, 1, · · · ,m, to transmit is
same in all cycles and we denote this probability bypi.

Sleep-wake cycles used by many sensor networks to conserve
energy can be incorporated in our model by choosingp0 (the
probability that no energy is consumed in a slot) appropriately.
Further, the first assumption implies that the energy expended
in sensing the environment is not incorporated into the model.



This energy is independent of the node’s geographic location
and impacts all nodes in the network uniformly, and hence is
omitted. Additionally, the power consumption on communi-
cations dominates that for running the onboard circuitry [2].
Thus modeling the network lifetime based on the power spent
on communications serves as a good approximation.

Let n(t) be a(m+1)-dimensional vector whosei-th element,
ni(t), denotes the number of nodes which have used upi
units of the total battery capacity ofm at time t. Note that
the time t is discretized and is measured in units of cycles.
Unlike biological population models where in each time step
the age of each individual increases by 1, our model allows for
arbitrary power consumption or increase in age in each time
step. Recall thatpi, 0 ≤ i ≤ m, denotes the probability that
a node consumesi units of energy in a time unit (we derive
expressions forpi in Section IV). Then, the number of nodes
at each energy level at an arbitrary time step is given by

n0(t+1) = p0n0(t)

n1(t+1) = p0n1(t) + p1n0(t)

...

nm−1(t+1) = p0nm−1(t) + p1nm−2(t) + · · · + pm−1n0(t)

nm(t+1) = nm(t) +
m

∑

i=1

pinm−1(t) +
m

∑

i=2

pinm−2(t)

+ · · · +
m

∑

i=m−1

pin1(t) + pmn0(t) (1)

The rationale behind the above formulation can be justified
as follows. A node with full power at timet (classn0) will
retain it’s entire battery reserve only if it receives no packets
to transmit for the duration of the cycle. The probability of
this event isp0, and since each node has the same probability
distributionpi, the expected of nodes who receive zero packets
is p0n0(t), which in turn is the count of nodes with full battery
power at timet + 1. Similarly the number of nodes in class
n1 at timet + 1 is the sum of nodes in classn1 who transmit
zero packets, and the nodes in classn0 that spend one unit of
energy at timet. For evaluating the number of nodes in class
m, note that a sensor in classni, i = 0, · · · ,m−1 will expend
all its energy if it transmits more thanm−i packets in a cycle
and the probability of this event is given by

∑m
k=(m−i) pi, i =

0, · · · ,m. Also, since batteries are not capable of recharging,
a sensor that had no battery power at timet will stay without
power at timet+1 and hence the equation fornm(t+1).

The above formulation can also be expressed in a vector-
matrix form. To this end, we first define the(m+1)×(m+1)-
dimensional “projection” matrixA as

A =















p0 0 0 0 . . . 0 0
p1 p0 0 0 . . . 0 0
p2 p1 p0 0 . . . 0 0
...

...
...

. ..
. . .

...
...

pm

∑m
m−1 pi

∑m
m−2 pi . . . . . .

∑m
1 pi 1















(2)

The model then can be expressed as the vector difference
equation

n(t + 1) = An(t) (3)

The recursive solution of this difference equation is givenby

n(t + 1) = At+1n(0) (4)

where n(0) is the initial distribution of nodes among the
various energy levels. In practical situations, it is reasonable
to assume that at timet = 0, all the nodes are fully powered,
i.e. ni(0) = 0 ∀i > 0 and n0(0) = N . What now remains
is determining the probabilities for the energy consumption
during a cycle and this is done in Section IV.

A. Network Lifetime

When the batteries at sensor nodes do not have the capabil-
ity to recharge, the network lifetime is an important quantity
of interest. In this section we characterize the expected net-
work lifetime using techniques that have been developed for
calculating the extinction dynamics in biological populations.

We start by modeling the impact of the initial battery states
on the network lifetime. From Eqn. (4), the dynamics of the
energy model in the interval 0 tot can be represented as
a product oft projection matricesA. Existing literature on
population dynamics [9] has shown that asymptotically

n(t) ≈ R(0, t)〈v0, n(0)〉u0 (5)

whereR(0, t) is a scalar representing the growth of the matrix
product,v0 andu0 are the dominant left and right eigenvectors
of the matrix product, normalized such that〈v0, u0〉 = 1 and
the notation〈c, d〉 is used to represent the scalar or dot product
of vectorsc andd. Consider the non-normalized dominant left
eigenvectorv of the matrixA. The impact of the initial battery
states on the longevity of the network is then given by

V0 = 〈v, n(0)〉 (6)

The rate at which the number of sensors without any remaining
energy increases in the network is dependent on the dominant
eigenvalue of the matrixA. In population studies, the size of
the species under consideration varies with time. In contrast,
the number of sensors in the network stays constant (in the
absence of new nodes being added). Now statem in the model
in Eqns. (2) and (3) corresponds to the state where a sensor has
no remaining battery power. This is an absorbing state since
the batteries do not have any recharging capability. Then we
may consider the model

n̂(t + 1) = Ân̂(t) (7)

where n̂(t) is a m-dimensional vector corresponding to the
number of sensors at timet in states 0 tom − 1 of the
original model in Eqns. (2) and (3) and̂A is a m×m matrix
obtained from the matrix A by eliminating its(m+1)-th row
and column. This modified model can now be used to evaluate
the network lifetime by treating the model in Eqn. (7) as a
population model and computing the extinction time of the
“species” n̂ modeled by the “population” projection matrix



Â. In [10] it has been shown that the infinitesimal long-run
growth (or decay) rate of the populationµ and its infinitesimal
varianceσ2 are given by

µ ≈ lnλ0 −
σ2

2
(8)

σ2 ≈ 1

λ2
0

δT Cδ (9)

whereλ0 is the dominant eigenvalue of the projection matrix
Â and δ is a column vector of the sensitivity coefficients
∂λ0

∂âi,j
with âi,j being the(i, j)-th element ofÂ. The transpose

of δ is denoted byδT and the sensitivity coefficients are
given by ∂λ0

∂âi,j
= vi

0u
j
0 where vi

0 and uj
0 are the i-th and

j-th elements of the normalized left and right eigenvectors
of Â. The normalization is done such that

∑

i ui
0 = 1 and

〈v0, u0〉 = 1. Finally, C is the variance-covariance matrix of
the elements in̂A. Let x represent the natural logarithm of the
total population

∑

i n̂i representing the number of sensors in
states 0 tom−1 and letx0 = lnV0 be its adjusted initial value
at time t = 0. Let ̺ , ̺(x, t|x0) be the probability that the
log population size isx at time t, given that its initial value
wasx0. This probability̺ quickly approaches the solution of
the diffusion equation for the Weiner process ([11] p. 151)

∂̺

∂t
= −µ

∂̺

∂x
+

σ2

2

∂2̺

∂x2
(10)

with the initial condition ̺(x, 0|x0) = δ(x − x0) where
δ(x − x0) is the Dirac delta function atx0. Also, since the
population becomes extinct (i.e. all sensors move to statem)
when the population becomes less than one, we have the
boundary condition

̺(0, t|x0) = 0 (11)

To obtain the solution for Eqn. (10) subject to the above initial
and boundary conditions, we use the known solutions for
Weiner processes with absorbing barriers [12]. This requires
a linear transform of the coordinates and the solution to the
system in Eqns. (10) and (11) is given by

̺(x, t|x0) =
1√

2πσ2t

[

e−
(x−x0−µt)2

2σ2t − e−
2µx0

σ2 −
(x+x0−µt)2

2σ2t

]

(12)
Let g(t|x0) denote the probability that the population becomes
extinct in an intervalt andt+dt. Theng(t|x0) can be obtained
by taking the derivative of the total probability of the event
that the population is not extinct at timet:

g(t|x0) = − d

dt

∫ ∞

0

̺(x, t|x0)dx (13)

=
x0√

2πσ2t3
e−

(x0+µt)2

2σ2t (14)

From Eqns. (12) and (14), the cumulative probability that the
population is extinct before timet is then

G(t|x0) =

∫ t

0

g(t′|x0)dt′ (15)

= Φ

[

−x0 + µt

σ
√

t

]

+ e−
2µx0

σ2

[

1 − Φ

[

x0 − µt

σ
√

t

]]

(16)

whereΦ[a] is the standard normal probability integral

Φ[a] =
1√
2π

∫ a

−∞

e−
z2

2 dz (17)

Note that when nodes cannot recharge their batteries, we have
µ ≤ 0 and thusG(∞|x0) = 1, i.e. the network eventually
runs out of energy.

III. SENSORS WITHRECHARGEABLE BATTERIES

In this section we extend our model to accommodate sensors
with rechargeable batteries. We consider an arbitrary recharge
process governing the replenishing of the sensor batteries. We
denote byαi the probability that a sensor generatesi units of
energy in a cycle, withi = 0, 1, · · ·m. We assume that the
recharge energy generated or harvested in a cycle becomes
available for use at the end of the cycle. Also, the recharge
process is assumed to be independent of the traffic at the node.

A sensor in statej at timet stays in the same state at time
t+1 if the amount of energy it expends in time cyclet is the
same as the amount of energy it generates. Since the traffic
and energy generation processes are independent, this occurs
with probability

∑m
i=0 piαi. Along the same lines, a sensor

moves from statej to statei after a cycle,j < i < m, if
the energy consumed in the cycle isi − j units more than
that generated in the cycle. The probability of this event is
then

∑m
k=0 pk+i−jαk. Similarly, the probability that a node

in statej moves to statei after a cycle,i < j < m, is given
by

∑m
k=0 pkαk+j−i. For the boundary conditions where we

consider the transition to states0 andm, additional events need
to be considered while calculating the transition probabilities.
In particular, a sensor in statei at time t, 0 ≤ i < m, moves
to statem at timet + 1 if at leastm− i more units of energy
were consumed than generated in the time cycle. Similarly, a
sensor in statei at timet, 0 < i ≤ m, moves to state0 at time
t + 1 if at least i more units of energy were generated than
consumed in the cycle. Then, the number of nodes at each
energy level at an arbitrary time step is given by

n0(t+1) = n0(t)
m

∑

i=0

αi

i
∑

j=0

pj + n1(t)
m

∑

i=1

αi

i−1
∑

j=0

pj

+ · · · + nm−1(t)

m
∑

i=m−1

αi

i−m+1
∑

j=0

pj + nm(t)

m
∑

i=m

αi

i−m
∑

j=0

pj

n1(t+1) = n0(t)

m
∑

i=1

piαi−1 + n1(t)

m
∑

i=0

piαi

+ · · · + nm−1(t)
m

∑

i=0

piαi+m−2 + nm(t)
m

∑

i=0

piαi+m−1

...

nm−1(t+1) = n0(t)

m
∑

i=m−1

piαi−m+1 + n1(t)

m
∑

i=m−2

piαi−m+2

+ · · · + nm−1(t)

m
∑

i=0

piαi + nm(t)

m
∑

i=0

piαi+1



nm(t+1) = n0(t)

m
∑

i=m

pi

i−m
∑

j=0

αj + n1(t)

m
∑

i=m−1

pi

i−m+1
∑

j=0

αj

+ · · · + nm−1(t)

m
∑

i=1

pi

i−1
∑

j=0

αj + nm(t)

m
∑

i=0

pi

i
∑

j=0

αj

The formulation above can be expressed in the form of a(m+
1) × (m+1)-dimensional projection matrixA:

A =







































m
∑

i=0

αi

i
∑

j=0

pj

m
∑

i=1

αi

i−1
∑

j=0

pj · · ·
m

∑

i=m

αi

i−m
∑

j=0

pj

m
∑

i=1

piαi−1

m
∑

i=0

piαi · · ·
m

∑

i=0

piαi+m−1

...
. ..

.. .
...

m
∑

i=m−1

piαi−m+1

m
∑

i=m−2

piαi−m+2 · · ·
m

∑

i=0

piαi+1

m
∑

i=m

pi

i−m
∑

j=0

αj

m
∑

i=m−1

pi

i−m+1
∑

j=0

αj · · ·
m

∑

i=0

pi

i
∑

j=0

αj







































(18)
The model then can be expressed as the vector difference
equation

n(t + 1) = An(t) (19)

whose recursive solution in terms of the initial distribution of
nodes can again be written asn(t + 1) = At+1n(0).

A. Energy Distribution

In this section we characterize the distribution of the avail-
able energy at the sensors as a function of time. At each
cycle, a sensor in any statei transits to any other state or
stays in the same state according to the probabilities defined
in the i-th column ofA. In other words, the transition of a
sensor in statei at the end of a cycle is determined according
to a multinomial trial with m + 1 possible outcomes with
the probability of each outcome defined the entries in thei-
th column of the matrixA. Then at timet, we haveni(t)
multinomial trials corresponding to each sensor in classi
that determines their transition at the start of timet + 1. To
characterize the vectorn(t + 1), we start by evaluating the
probability Pr{n(t + 1) = θ(t + 1)|n(t)} whereθ(t + 1) is
a (m + 1)-dimensional vector of non-negative integers. Since
each sensor is assumed to operate independently, we have

Pr{n(t+1) = θ(t+1)|n(t)} =

m
∏

i=0

Pr{ni(t+1) = θi(t+1)|n(t)}

(20)
These conditional probabilities may be computed quite readily.
However unconditioning the expression to obtain the uncon-
ditional distribution is quite laborious. Thus we use a multi-
variate probability generating function (PGF) to characterize
the number of nodes at different power levels. We define

ρt(ν0, ν1, · · · , νm) = Pr{n(t) = {ν0, ν1, · · · , νm}} (21)

and

Ht(z) =
∑

ν0,ν1,··· ,νm

ρt(ν0, ν1, · · · , νm)zν0
0 zν1

1 · · · zνm
m (22)

Now consider the conditional PGFHt+1|t(z). Recall that at
time t, the state transition of each sensor in classi occurs as
per a multinomial trial. The PGF of the resulting vector from
the multinomial trials on theni(t) members of classi at time
t is given by

(a0,iz0+a1,iz1+· · ·+am,izm)ni(t) =

[

m
∑

k=0

ak,izk

]ni(t)

(23)

Now, the number of sensors in classk at time t + 1 is the
sum of the number of sensors that move to classk from each
of the m other classes at the end of timet as well as the
sensors of classk that do not change their state. Since we are
working with the transforms of the probability mass functions,
the resulting PGF is the product of the individual PGFs. Thus
we have

Ht+1|t(z) =

m
∏

i=0

[

m
∑

k=0

ak,izk

]ni(t)

(24)

Unconditioning ont, we have

Ht+1(z) =
∑

n0(t),··· ,nm(t)

ρt(n0(t), · · · , nm(t))Ht+1|t(z)

=
∑

n(t)

ρt(n(t))

m
∏

i=0

[

m
∑

k=0

ak,izk

]ni(t)

(25)

= Ht(ξ0, ξ1, · · · , ξm) (26)

where

ξi =

m
∑

k=0

ak,izk (27)

Then given a starting state vectorn(0), we can recursively
build the PGF ofn(t) and use it to obtain the exact distribu-
tions and its confidence intervals. As an illustration, we have

H0(z) = z
n0(0)
0 z

n1(0)
1 · · · znm(0)

m =

m
∏

i=0

z
ni(0)
i (28)

and

H1(z) = H0(ξ) =
m
∏

i=0

[

m
∑

k=0

ak,izk

]ni(0)

(29)

and so on.

IV. I MPACT OF NETWORK PARAMETERS

In this section we highlight and investigate the interplay
between a node’s geographical co-ordinates in space and it’s
power consumption under the aegis of shortest path routing
by considering two scenarios: (1) a spatial model and (2) a
non-spatial model.



A. Spatial Network

To consider the impact of a node’s spatial location on its
energy consumption rates and node lifetime, we consider a
deployment scenario where the sensor nodes are placed at
the vertices of a finite grid. The co-ordinates of nodei,
i = 1, · · · , N in the grid (xi, yi) is determined as follows:
xi = (i − 1)/

√
N and yi = (i − 1)%

√
N . The following

probabilities are assumed known:ps, the probability that in a
given cycle a sensor node (sayi) has a new packet to send to
another node (sayj) in the grid andpc, the probability that
any two given nodes in the grid communicate. The probability
that a nodei has a packet to transmit during a cycle is the
probability of the union of two mutually exclusive events:
the event of a node initiating a communication session and
the event where it receives a routing request. The probability
of the latter,pri, can be obtained by using the conditional
probability of it receiving a packet given two nodes in the
network communicate. Mathematically, for nodei

pri = 2

[

N−1
∑

j=1

j 6=i

N
∑

k=1

k 6=i,k>j

Pr{session forj-k is throughi}
×Pr{j andk communicate}

]

(30)
Note that, for each pair (j,k), the expression for (k,j) com-
municating through nodei has the same numerical value
since the grid is symmetric and hence the summation in Eqn
(30) is multiplied by a factor of two. Now, the probabil-
ity that two particular nodes sayj and k communicate is:
Pr{j andk communicate} = 1−(1−ps)2

(N−1
2 )

. In other words, the

pair (j,k) can be selected from(N − 1) nodes (since node
i is not a candidate) in

(

N−1
2

)

ways and for nodesj and
k to communicate, it is sufficient if either initiates a ses-
sion. The expression forPr{session forj andk is throughi}
is derived as follows. Let(xi, yi), (xj , yj), (xk, yk) denote
the co-ordinates of nodesi, j and k respectively. Defining,
∆xi,j

∆
= |xi − xj | and ∆yi,j

∆
= |yi − yj |, we obtain:

ri,j = ∆xi,j + ∆yi,j . Similar values forrj,k and rk,i can
be obtained using the previous definition. Now,

Pr{sessionj-k is throughi} =

{

Lj,k,i

Lj,k
if ri,k + ri,j = rj,k

0 otherwise
(31)

where

Lj,k,i =

(

ri,j

∆xi,j

)(

ri,k

∆xi,k

)

and Lj,k =

(

rj,k

∆xj,k

)

Given the probability of a sensor to initiate a session,ps,
each cycle sees an average ofNps sessions. To obtain the
energy consumption probabilities,pi, i = 0, · · · ,m, we again
condition on the node’s geographic location:

pi =

N
∑

k=1

Pr{i packets transmitted|node id = k} × Pk (32)

wherePk denotesPr{node id = k}. Note that nodek trans-
mits i, i > 0 packets during a cycle if it either receivesi

routing packets and does not initiate a session or starts a
communication session and receivesi − 1 routing requests.
In our model we limit the number of communication sessions
to Nps, though theoretically the upper bound isN . The
simulations validate our intuition that the expected number is a
good approximation of the underlying communication process.
The energy consumption probabilities can then be expressed
as

pi =



























{

(1 − ps)(1 − prk)
Nps

}

Pk i = 0
{

(1 − ps)
(

Nps

i

)

pi
rk(1 − prk)

Nps−i
+

ps

(

Nps−1
i−1

)

p
(i−1)
rk (1 − prk)

Nps−i
}

Pk 0 < i ≤ Nps

0 otherwise
(33)

Also, the evaluation ofPr{node id = k} has two possibilities:
one where the choice of a node is equally likely among theN
nodes present and the second, where the selection of the node
is governed by it’s location. Assuming shortest path routing,
we approximate the likelihood of the node being chosen by
the number of shortest paths it lies on. That is

Pr{node id = k} =

N−1
∑

i=1

i6=k

N
∑

j=i+1

j 6=k

I{ri,k + ri,j = rj,k}

N
∑

k=1

N−1
∑

i=1

i6=k

N
∑

j=i+1

j 6=k

I{ri,k + ri,j = rj,k}

(34)
where I{ri,k + ri,j = rj,k} = 1 if ri,k + ri,j = rj,k, 0
otherwise.

B. Non-spatial Homogeneous Networks

In the case of scenarios where the sensor network is
homogeneous and is either assumed to span an extremely
(ideally infinitely) large space or to be very densely deployed,
the traffic conditions at each node can be approximated to
be statistically identical. To qualitatively evaluate thenode
lifetimes in these scenarios, we consider a model where the
number of packets transmitted by each node during a time
cycle follows a Poisson distribution with meanλ, irrespective
of its geographical location. The power consumption proba-
bilities pi in this case are given by:pi = e−λλi

i! .

V. RESULTS

In this section, we evaluate the accuracy of the proposed
framework by comparing the analytic results against simula-
tions. The simulation results were generated using a custom
built simulator written in C that, unlike existing simulation
tools such asns-2, allows the use of rechargeable batteries at
nodes. Results are presented only for non-spatial or random
networks. The results and those for spatial networks are
similar. For each simulation result, ten runs of the simulation
were conducted with different seeds and the average of these
runs is presented in the figures.
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Fig. 2. The residual power distribution at different times ina random network: Analytic versus simulation results.
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Fig. 1. Network Lifetime: Analysis versus simulation results.

We first consider the model in Section II where batteries
do not have the capability to recharge. For this scenario, Fig.
1 shows the analytic and simulation values of the expected
network lifetime (i.e. the time when all nodes run out of
energy). The figure 1(b) shows the network lifetime for a non-
spatial network where 100 nodes are distributed randomly in
the network and the packet arrival process at each node is
modeled according to a Poisson process. In this figure, the
x-axis represents the parameterλ of the Poisson process. The
analytic and simulation results match closely.

We next consider the model in Section III where each node
has some capability to recharge its battery. For the results
presented here we assume a simple model where a node
generates a single unit of energy in a cycle with probability
0.25 and does not generate any energy with probability 0.75.
The initial battery level of each sensor was kept at 100.

In Figure 2 we compare the analytic and simulation results
for the number of sensors at different residual power levels
after 25, 50 and 75 cycles of operation in a random network,
with λ = 1.0. Results are presented for the case when there
are 100 and 200 nodes in the network. We see that as time

progresses, the number of nodes with lower residual energy
increases. Also, there is a close match between the simulation
and analytic results.

VI. CONCLUSION

In this paper we have motivated the need and importance of
analyzing the network lifetime as a function of time and energy
consumption. Using the work on population dynamics as the
basis, we developed a general model for evaluating the residual
battery power levels in networks with and without battery
recharging. Expressions were derived for the network lifetime
in the absence of battery recharging and the distribution
and moments of the state occupancy of the sensors for the
other cases. The impact of packet arrival rate at the sensor
nodes and a sensor node’s geographic location on the energy
consumption was modeled.
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