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Abstract— This paper develops a mechanism for detecting
session hijacking attacks in wireless networks. The proposed
scheme is based on detecting abrupt changes in the strength
of the received signal. We first develop a mathematical model to
describe the signal strength during a session hijacking: a step
function signal, which represents the abrupt jump in the signal
strength, imbedded in colored noise, which is caused by fading
wireless channels. An optimal filter is designed for the purpose
of detection. We show that using a Wavelet Transform (WT),
the colored noise with complex Power Spectral Density (PSD)
in our case can be approximately whitened. Since larger Signal
to Noise Ratio (SNR) increases the detection rate and decreases
the false alarm rate, we maximize the SNR by analyzing the
signal at specific ranges of frequency. We validate the detection
mechanism by simulation and experimental results.

I. INTRODUCTION

Among various risks wireless LANs are facing, session
hijacking attacks are common and serious ones. In a session
hijacking attack, an attacker forces a normal user to terminate
its connection to an AP by first masquerading the AP’s
MAC address. The attacker then associates with the AP by
masquerading the user’s MAC and takes over its session.
Current techniques for detecting session hijacking attacks
are mainly based on spoofable and predictable parameters
such as sequence numbers, which can be guessed by the
attackers also. To enhance the confidence of intrusion detection
systems, mechanisms that utilize the unspoofable PHY layer
characteristics are needed.

The authors of [1] propose a session hijacking attack detec-
tion mechanism by periodically monitoring the received signal
strength values for a particular MAC address at a monitor. If
an attacker B spoofs the MAC address of a normal user A
the monitor will observe a sudden change in signal strength
profile of A’s MAC address and raise an alarm. In [1], any
abrupt change in the nodes’ signal strength dynamic profile
can possibly be flagged as suspicious activity. However, the
received signal strength suffers from multipath fading and
shadow fading also, both of which may lead to abrupt changes
in both “normal” or “abnormal” network conditions. Multipath
fading can cause abrupt deep power loss in the received signal
strength even when the wireless user is stationary. Shadow
fading can cause at least 6db power loss for 10% of time when
the user suddenly enters a shadow region [2]. How to robustly
detect the abrupt changes in fading signal strength traces
caused by session hijacking requires further investigation.

In our work we first develop a mathematical model of the

signal strength time series under the hypothesis that there
exists a session hijacking attack. The abrupt change in the
signal strength caused by session hijacking is considered as
“signal” and the sum of multipath fading, shadow fading plus
path loss components is regarded as “noise”. Since the “noise”
is not white noise but has a complex Power Spectral Density
(PSD), the design and implementation of optimal matched
filter in traditional Fourier frequency domain is challenging.
We show that Wavelet Transform (WT) efficiently solves
the problem by presenting the signal at different time and
frequency (scale) resolutions. Working in the wavelet domain,
the optimal matched filter is designed by maximizing the SNR
at certain frequency ranges.

The rest of paper is organized as follows: Section II presents
the related work. Section III describes the proposed method-
ology. Section IV validates the method through experiments
and simulations. Section V gives the concluding remarks.

II. RELATED WORK

Multi-resolution wavelet signal analysis is an efficient tool
for detection of change-points. A change point detection
method is proposed in [3] based on the cumulative sum of
squared wavelet coefficients. Authors in [4] combine wavelet
based methods and extreme value theory to test the presence of
an arbitrary number of discontinuities in an unknown function
observed with noise, by checking the absolute peak value of
wavelet coefficients against a threshold. A wavelet based signal
processing method to extract a signal obscured by noise in
order to detect the pipeline leakages is proposed in [5]. In our
work, a thresholding mechanism using wavelet coefficients is
also employed. Our work focuses on the design of the optimal
wavelet and observation scale.

The authors in [6] propose a Continuous Wavelet Transform
(CWT) based method for detection of additive and multiplica-
tive abrupt jumps. With the assumption of white noise, an
optimal wavelet is given. In our work, we address the problem
of detection of abrupt jumps embedded in additive colored
noise, using Discrete Wavelet Transform (DWT) which is
computationally efficient to implement.

III. METHODOLOGY

A. Mathematical Model

In our work, we use the commonly used ITU recommended
channel model [7]. The ratio of the received and transmitted



powers, Pr and Pu respectively, in dBm is given by

L =
Pr

Pu
(dBm) = K + γ log10 d + ϕdBm + φdBm (1)

where γ log10 d models the path loss as a function of the
distance d between the transmitter and receiver. Also, γ is
the path loss exponent and K is a unitless constant. The
attenuation from shadowing, ϕdBm, is normally distributed
with zero mean and variance σ2

ϕ. The values of parameters γ,
K, σ2

ϕ depend on the propagation environment. Finally, φdBm
represents the variation caused by multipath fading and can be
modeled as a Raleigh or Rician distribution with appropriate
parameters which depends on the propagation environment as
well as the moving speed of the wireless users.

Next we develop a mathematical model for the event of
session hijacking. For convenience of analysis, continuous
time signal models are used. Although our final detection
algorithms are implemented using discrete signal models, the
discretization process has no effect on achieving the optimal
performance of the detector. We assume that both the wireless
user and attacker can be mobile or static. We denote the
distance from wireless user and the AP by d0(t) and the
distance from the attacker to the AP by d1(t). d0 and d1 are
continuous functions of time t. Unless the attacker has a move-
ment pattern that is symmetrically exact with the movement
pattern of the wireless user, d1(t) 6= d0(t). Suppose a session
hijacking attack occurs at time t0. Let d1(t0) = d0(t0) + ∆d.
We assume that the user and attacker are in environments
with propagation parameters [Ki, γi, ϕi, φi] where i = 0 for
the user and i = 1 for the attacker, respectively. Then the
monitored signal strength x(t) is given by

x(t) = N(t) + f(t)
= N(t) + ∆m · u(t− t0) (2)

where f(t) represents the signal and N(t) is the noise. u(t)
is the unit step located at unknown time instance t0. The
jump amplitude of f(t) at time t0 is ∆m = K1 − K0 +
γ1 log10 d1(t0)− γ0 log10 d0(t0), and

N(t) =
{

N1(t), t < t0;
N2(t), t ≥ t0. (3)

where N1(t) = K0 + γ0 log10 d0(t) + ϕ0 + φ0 and N2(t) =
K0 + γ0 log10 d0(t0) + γ1 log10

d1(t)
d1(t0)

+ ϕ1 + φ1.
The ITU-R model describes five types of propagation en-

vironments [7]: indoor office, outdoor to indoor pedestrian
test environments PED A and PED B, and vehicular test
environments VEH A and VEH B. In our work, we don’t
limit the user and attacker to be in the same environment.
For example, the user can be in indoor office and the attacker
can walk outside the building. In our work, we assume that
carrier frequency wc = 2.4× 109 Hz that is typically in IEEE
802.11 based WLANs. Velocity of both mobile wireless user
and the attacker is less than pedestrian speed v = 3 km/hour.
The corresponding maximum doppler frequency wm = 0.67
Hz. When both the user or the attacker are static, v = 0
and wm = 0. Although only walking speed is assumed in

our work, our detection mechanism can be extended to the
environments where either the wireless user or the attacker is
moving at vehicular speed. For the indoor test environment, 12
dB variance is assumed for fading signal strength in the ITU-R
model. For outdoor test environment, the variance is 10 dB. If
both the normal user and attacker are indoor, the fading signal
strength N(t) have the same statistical distribution before
and after the intrusion attack. If one of them is outdoor, the
variance of N(t) is smaller, which in turn makes the detection
of f(t) easier. In the following analysis, we assume that both
the wireless user and the attacker are in indoor environment
since it is the worst case for the session hijacking attack to be
detected. We then test the detection algorithms in the indoor,
PED A and PED B environments to validate the mechanism.

B. Matched Filter

Our aim is to develop a robust detection algorithm for the
step signal f(t) = ∆m · u(t − t0) embedded in noise N(t).
The detection consists of determining the jump instance t0.
The hypothesis test is given as follows:
• H0[null]: x(t) = N(t)
• H1[alternate]: x(t) = f(t) + N(t)

where x(t) is our observed signal strength. H0 corresponds to
the “normal” network condition where no session hijacking
attack occurs. H1 corresponds to the “abnormal” network
condition when there exists an attack. Note that f(t) is a
deterministic signal for a given ∆m and t0, while N(t) is
a stochastic signal. For the purpose of detection, we pass x(t)
through a Linear Time Invariant (LTI) system H(w). H(w) is
chosen to maximize the output SNR at time t0 under H1. The
output SNR γ0 is given by,

γ0 =
| 1
2π

∫ +∞
−∞ F (w)H(w)ejwt0dw|2

1
2π

∫ +∞
−∞ SN (w)|H(w)|2dw

≤
1
2π

∫ +∞
−∞ |F (w)|2dw

∫ +∞
−∞ |H(w)|2dw

1
2π

∫ +∞
−∞ SN (w)|H(w)|2dw

(4)

where F (w) and H(w) are the Fourier transforms of f(t)
and LTI system impulse response h(t) respectively. SN (w)
is the PSD function of noise N(t). In the simple case, i.e.,
if SN (w) = N0

2 where N0 is a constant over range of w,
Equation (4) can be simplified as,

γ0 ≤
∫ +∞
−∞ |F (w)|2dw

N0/2
(5)

and the optimal h(t) that maximizes γ0 is then the matched
filter given by Equation (6), where A is a constant.

hopt(t) = Af(t0 − t) (6)

In our work, N(t) is the sum of multipath fading, shadow
fading and path loss, and SN (w) has much more complex PSD
than white noise. We analyze SN (w) at different frequency
ranges in order to simplify γ0 in Equation (4) and find the
optimal h(t). Note that multipath fading causes variation in
the received signal strength within the order of one wavelength



and is therefore a high frequency component. Shadow fading
causes variation in the order of tens of wavelength. Path loss
is caused by spatial movements in the order of hundreds of
wavelengths and corresponds to the low frequency component.
This motivates us to divide the whole frequency domain of
N(t) into three frequency subsets as w = w1 ∪ w2 ∪ w3,
where w1, w2 and w3 are the frequency ranges of multipath
fading component N1(t), shadow fading component N2(t)
and path loss component N3(t), respectively. Since N(t) =
N1(t) + N2(t) + N3(t) and N1(t), N2(t), N3(t) are mutually
independent, SN (w) = SN1(w)+SN2(w)+SN3(w). We will
show later that SN (w) can be assumed constant for specific
ranges of frequency. Then we can claim that hopt(t) given in
Equation (6) is the matched filter for the detection of jump
step signal f(t), working on a certain frequency range. This
motivates us to work in the wavelet domain.

C. Optimal Wavelet

Wavelet transform is an efficient tool for signal detection
since it provides a way to represent a signal at different time
and frequency (scale) resolutions. A larger scale j corresponds
to lower observation frequency. In our strategy, we use the
wavelet transform defined as dx(j, k) =< x, ψj,k > where
dx(j, k) is the wavelet detail coefficient of x(t) at scale j at
time k and can be interpreted as detail of x(t) at the scale j,
and < x1, x2 > represents the inner product of x1(t), x2(t).
ψj,k(t) = 2−

j
2 ψ(2−jt−k) is the wavelet function transformed

from the mother wavelet function ψ(t).
To detect a step function embedded in the noise in our case,

the Haar wavelet ψ(t) given in Equation (7) is the matched
filter and is therefore the optimal wavelet [6],

ψ(t) =





1, if 0 ≤ t < 1
2 ;

−1, if 1
2 ≤ t < 1;

0, otherwise.
(7)

Owing to the wavelet transform linearity, the wavelet trans-
form of x(t) = N(t) + f(t) can be expressed by,

dx(j, k) = dN (j, k) + df (j, k) (8)

where df (j, k) are the wavelet detail coefficients of the step
function f(t) = ∆m ·u(t− t0). Let Iψ(t) =

∫ t

−∞ ψ(u)du. We
then have

df (j, k) = −∆m · 2 j
2 Iψ(t02−j − k) (9)

Note that df (j, k) are deterministic. dN (j, k) are the wavelet
coefficients of stochastic process N(t) and are thus stochastic.

The signal to noise ratio SNR at time t0 observed at scale
j in wavelet domain is then given by [6],

γ(j) =
|df (j, k)|2

var(dN (j, k))

=
∆m22j |Iψ(t02−j − k)|2

var(dN (j, k))

=
∆m22j |Iψ(0)|2
var(dN (j, k))

(10)

where t0 = 2jk and var(·) represents the variance of a
stochastic signal.

Our aim is to maximize the SNR. We can see from Equation
(10) that SNR of our detector is proportional to ∆m2. Note
that ∆m = K1 − K0 + γ1 log10 d1(t0) − γ0 log10 d0(t0).
For any given environment, K1,K0, γ1, γ0 is given. We can
conclude that farther the attacker is from the normal user,
usually the easier it can be detected. Compared to the SNR
in Equation (4) which is for the whole frequency domain,
Equation (10) is a function of observation scale j. In our
work, we further investigate how to robustly detect f(t), by
maximizing the SNR as a function of j. Since the numerator
in Equation (10) is proportional to 2j , this motivates us to
work on the high scales, which corresponds to large j, in the
time-scale plane. We will show later that the denominator in
Equation (10) can be assumed a constant for j large enough.

D. Optimal Scale

In this section, we calculate var(dN (j, k)) and derive it as
a function of octave j. Since N(t0) = N1(t0) + N2(t0) +
N3(t0) is the sum of three mutually independent components:
multipath fading, shadow fading and path loss, we have the
following,

var(dN (j, k)) = var(dN1(j, k)) + var(dN2(j, k))
+ var(dN3(j, k)) (11)

where dN1(j, k), dN2(j, k), dN3(j, k) represents the detail
coefficients of N1(t), N2(t), N3(t) at scale j, respectively. The
wavelet coefficients dNi(j, k), i = 1, 2, 3 can be assumed to
be zero mean stationary process. At a given time t0 and scale
j, var(dNi(j, k)) represents the energy of noise Ni(t) around
frequency 2−jw0, where w0 is the maximum frequency of
N(t), and is given by,

var(dNi(j, k)) =
∫

SNi(w)2j |Ψ(2jw)|2dw (12)

where Ψ(w) is the Fourier transform of mother wavelet ψ(t).
Scale j = 1, · · · , J and SNi(w) is the PSD of Ni at time t0
for i = 1, 2, 3.

1) Energy of Noise Caused by Multipath Fading: Accord-
ing to the ITU-R model [7], for outdoor environments, the
Doppler Spectrum of narrow band multipath fading channels
can be modeled as follows, given by Clark and Jake,

SN1(w) =
1

πwm

√
1− (wc−w

wm
)2

(13)

where wc−wm < w < wc+wm, wc is the carrier frequency of
the propagated waveform, and wm is the maximum doppler
frequency shift. The U-shaped PSD SN1(w) approaches the
constant 1

πwm
where w approaches wc.

For indoor channels, the Doppler spectrum is nearly flat,

SN1(w) =
1

πwm
(14)

where wc−wm < w < wc+wm. In both cases, we can assume
that SN1(w) ∼= C1 for w ∈ w1. C1 = 1

πwm
is a constant and



w1 = [wc −∆w,wc + ∆w], where 0 < ∆w < wm. var(dN1
j )

is then given by,

var(dN1(j, k)) = C1

∫
|2jΨ(2jw)|2dw (15)

where w is around frequency 2−jw0 and w0 equals the
maximum frequency wc+wm. Since multipath fading belongs
to high frequency noise in signal strength x(t), w ∈ w1

therefore corresponds to small scales in the wavelet domain.
var(dN1(j, k)) 6= 0 is valid only for those j where 2−jw0 ∈
[wc −∆w,wc + ∆w]. i.e. wc+wm

2j > wc −∆w > wc − wm.
The noise energy caused by multipath fading can be assumed
zero for scales j > log2(

wc+wm

wc−wm
). When wc = 2.4 × 109

and wm = 0.67, var(dN1(j, k)) 6= 0 only for j = 0 and
var(dN1(j, k)) ∼= 0 for j ≥ 1.

2) Energy of Noise Caused by Shadow Fading: Shadow
fading N2(t) can be modeled as a correlated log-normal dis-
tributed noise, according to the ITU-R model, with normalized
correlation function given by,

R(∆x) = e−
∆x

dcor
ln2 (16)

where dcor is the de-correlation length [7]. For both indoor,
PED A and PED B test environments, dcor = 5 meters. The
PSD of N2(t) is then given by,

SN2(w) = σ2 2α

α2 + w2
(17)

where σ2 is the variation of log-normal shadow fading, and
α = ln2

dcor
. For scale j large enough, w is small enough such

that α À w, and SN2(w) ∼= 2
α is approximately a constant

function. By solving 2−jw0 ¿ α, we can obtain that j ≥ 4.
Therefore, for scales j ≥ 4, var(dN2(j, k)) is given by,

var(dN2(j, k)) = C2

∫
|2jΨ(2jw)|2dw (18)

where C2 = 2σ2

α = 2σ2dcor

ln2 .
3) Energy of Noise Caused by Path Loss: At time t,

path loss N3(t) is determined by the distance from the
wireless user to the AP. At time t0, N3(t0) is a deterministic
function and dN3(j, k) is a deterministic process. Therefore,
var(dN3(j, k)) = 0 for all j. So far we can rewrite var(dN

j )
as follows,

var(dN (j, k)) = C2

∫
|2jΨ(2jw)|2dw (19)

From Equation (4) we have γ(j) for j ≥ 4 given by,

γ(j) ≤
1
2π

∫ |F (w)|2dw
∫ |2jΨ(2jw)|2dw

1
2π

∫
C2|2jΨ(2jw)|2dw

=
∫ |F (w)|2dw

C2

=
∆m22j |Iψ(0)|2ln2

2σ2dcor
(20)

The optimal scale j to maximize γ(j) is thus j → ∞. To
implement our mechanism, x(t) are sampled into discrete
time series x[n], due to the discrete sampling in the signal

strength measurements. A sliding window of size M is defined
that consists of the last M signal strength measurements,
x = [x1, · · · , xM ]. The scale j is a discrete value and is
limited by 0 ≤ j ≤ JMAX , where JMAX = blog2(M)c is
the maximum decomposition scale and is determined by the
length, M , of the time series. The optimal scale to maximize
the SNR is thus j = JMAX = blog2(M)c.
E. Bayesian Hypothesis Test

Our detection problem in wavelet domain can be summa-
rized as follows. Let the observed wavelet detail coefficient y
transformed from x(t) at time k = t02j and scale j(≥ 4) have
the form y = s+n, where s = ∆m2

j
2 |Iψ(0)| and n ∼ η(0, Σ),

with Σ = C2. The noise n has Gaussian distribution because
it has approximately constant power lever C2 when j ≥ 4.
Our aim is to detect signal s from Gaussian noise n. The
hypotheses to be tested are:
• H0[null] : Y ∼ η0(0,Σ)
• H1[alternative] : Y ∼ η1(s,Σ)

We assume that there exists an a priori probability associated
with the hypothesis: P (H0) = π and P (H1) = 1 − π. For
simplicity, we assume that the risk of hypotheses test has
uniform cost. The likelihood ratio test between H0 and H1

is L(y) = p1(y)
p0(y) . Thus the corresponding Bayesian decision

rule is:

δB(y) =
{

1, if L(y) ≥ τ
0, if L(y) < τ

(21)

The rule above can be proved to have a form as follows,

δB(y) =
{

1, if y ≥ s
2

0, if y < s
2

(22)

Given a signal strength trace x[n] = [x1, · · · , xM ], our
detection algorithm is described as the following steps,

1) step1: Use Discrete Wavelet Transform (DWT) to ob-
tain detail coefficients d(k, j) at maximum scale J ≤
blog2(M)c, where k = 1, · · · , M

2
2) step2: Compare d(k, j) with threshold Thrj = s

2
3) step3: Generate alarm if d(j, k) > Thrj for some k.

The threshold Thrj = s
2 = min∆m2

j
2−1|Iψ(0)| for scale

j where |Iψ(0)| = 0.5. The value of min∆m is obtained
empirically for each environment and is given in Table I.

IV. SIMULATION AND EXPERIMENTAL RESULTS

We first validate the detection mechanism for indoor envi-
ronment. The signal strength measurements were conducted
in the building of Johnsson Engineering Center of RPI which
primarily consists of rooms for faculty and space for lab-
oratories, using a LINKSYS Wireless-G Broadband Router
as the access point (AP) and IBM T42 laptop, with built in
PH12127-E IBM 802.11a/b/g Wireless LAN Mini PCI adapter
as receiver. To simulate a session hijacking attack where
both the wireless user and attacker are moving at pedestrian
speed on the aisles of Johnsson Engineering Center, we first
collected the signal strength measurements N [n] for wireless
user that was moving with a random pattern. At time n0, a



session hijacking attack occurred. Signal strength trace N [n],
where n = [n0, · · · ,M ] was obtained by the signal strength
measurements for the attacker that was moving with some
other pattern. Several traces of N [n] were collected to validate
the detection mechanism.

In our work, DWT is employed to decompose x[n] into its
approximation at any scale J where 1 ≤ J ≤ JMAX where
JMAX ≤ log2(M) is the maximum decomposition scale, plus
all the details at lower scales j, 1 ≤ j ≤ J . Figure 1 shows
the detail coefficients dj of x[n] at scales j = 1, 2 · · · , 7,
when JMAX = 7. We detect signal f [n] = ∆u[n − n0] by
thresholding the wavelet coefficients dj . If dj(k) > Thrj , an
alarm is generated. For one of our measured signal strength
trace, its wavelet detail coefficients and corresponding detec-
tion threshold Thrj are shown in Figure 1 (a). The session
hijacking attack occurred at n0 = 2000. For scales j = 5, 6, 7,
the peak value of dj located at time n0 exceeds Thrj and the
corresponding session hijacking attack event is detected. The
session hijacking intrusion attack can be accurately detected at
all scales j = 5, 6, 7 with a false alarm rate of zero. However,
the detected intrusion time k will be more ambiguous as j
increases, which lead to a larger delay of detection time.
Therefore, j = 5 is chosen for the purpose of accurately
locating the attack time for the indoor environment. Similar
results were obtained for all the traces that we collected.

To further validate our detection mechanism in diverse
propagation environments, we generate multipath fading signal
strength traces N1[n] and shadow fading signal strength traces
N2[n], n = 1, 2, · · ·M , by simulation using the ITU-R model.
Three different sets of N1[n], N2[n] are generated for three
different environments: indoor office environment, PED A,
PED B [7]. To simulate path loss of signal strength N3[n],
we observe the patterns of random movements of the wireless
users in both indoor and outdoor environments. At any time
instance n, since we know the distance between user and
AP, path loss N3[n] can be estimated according to ITU-
R models. The signal strength traces are then obtained by
N [n] = N1[n] + N2[n] + N3[n]. For one of our simulated
signal strength trace, where the wireless user is in indoor
office environment and the attacker is in PED A environment,
the wavelet detail coefficients and corresponding detection
threshold Thrj are shown in Figure 1(b). The simulated
session hijacking attack occurred at n0 = 1000. For scales
j = 4, 5, 6, 7, the peak value of dj located at time n0 exceeds
Thrj and the corresponding session hijacking attack event is
detected. No other alarm is generated besides at time n0. j = 4
is chosen for the purpose of accurately locating the attack time
for the scenario where the wireless user is indoors and the
attacker is in PED A environment.

The detection results for the experimental and simulated
signal strength traces are summarized in Table I. For each
test environment, several traces are obtained where the time
instances of session hijacking attacks are randomly located.
For some signal strength traces, the jump amplitude ∆m is so
small that it is totally embedded in noise, which lead to false
alarms (false positive) and missed detections (false negative).
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Fig. 1. Detection Results

The minimum value of ∆m (dB) is obtained and the number
of missed detections is recorded for each test environment. In
our test, the false alarm rate is approximately the same as miss
detection rate. Therefore, only miss detection rate is given in
the tables. Detection delay is obtained by comparing the time
of attack with the time when alarm is raised.

TABLE I
DETECTION RESULTS

Experiments
user attacker detection rate min ∆m delay (seconds)

indoor indoor 0.88 4 0.32
Simulation

indoor indoor 0.83 4 0.32
indoor PED A 0.90 3 0.16
indoor PED B 0.88 3 0.16
PED A PED B 0.91 2 0.16

V. CONCLUSIONS

In this paper, we develop a robust algorithm to detect
session hijacking in wireless networks using received signal
strength. We show that a session hijacking attack event can
be represented as a step signal embedded in colored noise. A
wavelet based optimal filter is designed to detect the signal.
The detection mechanism is validated through experimental
and simulation results.

REFERENCES

[1] R. Gill, J. Smith and J. A. Clark, “Detecting Session Hijacking Attacks in
IEEE 802.11 Networks,” Proceedings of Fourth Australasian Information
Security Workshop, pp. 221-230, vol.54, January 2006.

[2] M. Flament and M. Unbehaun, “Impact of shadow fading in a mm-
wave band wireless network,” The 3rd Symposium on Wireless Personal
Multimedia Communications IEEE, Bangkok, Thailand, November 2000.

[3] T. Odgen and O. Parzen, “Change-Point Approach to Data Aalytic
Thresholding,” Transanctions of Statistics and Computing, pp. 93-99,
vol. 6, no. 2, November 2004.

[4] M. Raimondo and N. Tajvidi, “A Peaks Over Threshold Model For
Change-Point Detection By Wavelets,” Statistica Sinica, pp. 395C412,
vol. 14, part. 2, 2004.

[5] X. Lu, Y. Sang, J. Zhang, Y. Fa, “A Pipeline Leakage Detection
Technology Based on Wavelet Transform Theory,” Proceedings of IEEE
Information Acquisition, pp. 1432-1437, vol.20, August 2006.

[6] M. Chabert, J.-Y.Tourneret, F. Castanie, “Additive and Multiplicative
Abrupt Jump Detection Using The Continuous Wavelet Transform,”
Proceedings of IEEE Acoustics, Speech, and Signal Processing, pp. 3002-
3005, vol.5, May 1996.

[7] Recommendation ITU-R M.1225, “ Guidelines for Evaluation of Radio
Transmission Technologies for IMT-2000”.


