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Abstract— The increasing incidences of worm attacks in the
Internet and the resulting instabilities in the global routing
properties of the Border Gateway Protocol (BGP) routers pose a
serious threat to the connectivity and the ability of the Internet
to deliver data correctly. In this paper we propose a mechanism
to detect/predict the onset of such instabilities which can then
enable the timely execution of preventive strategies in order to
minimize the damage caused by the worm. Our technique is based
on online statistical methods relying on sequential change-point
and persistence filter based detection algorithms. Our technique
is validated using a year’s worth of real traces collected from
BGP routers in the Internet that we use to detect/predict the
global routing instabilities corresponding to the Code Red II,
Nimda and SQL Slammer worms.

I. INTRODUCTION

With BGP being the default inter-domain routing protocol
used in the Internet today, its stability and robustness is
critical for ensuring the delivery of packets and maintaining
connectivity. The dynamics of BGP also play an important role
in the end user’s perception of the network’s performance since
it controls the flow of inter-domain traffic. Recent analysis of
BGP routing data [2] has shown strong correlation between
instabilities in BGP routing tables and the propagation phases
of well known worms like Code Red II and Nimda. Such
large scale global routing instabilities result in widespread
degradation in the end-to-end utility and significant problems
at the links on the edges of the Internet. In the light of recent
and increasingly frequent worm attacks, developing techniques
for the early detection of impending instabilities caused by
such attacks is crucial for initiating corrective action and
thereby maintaining the health and operation of the Internet.
This paper proposes a technique for on-line detection of BGP
instabilities caused by worm attacks by using a statistical
change-point detection technique.

Existing work on anomaly detection in computer networks
has focused primarily on failure detection. The most common
methods employed are rule-based approaches, finite state ma-
chine models, pattern matching and statistical analysis. Rule-
based approaches are dependent on prior knowledge about
fault conditions on the network and thus cannot capture the
subtle nuances of evolving network environments [8]. Rule-
based systems can be improved by using adaptive learning
techniques [9]. However, this approach increases computation
time and complexity. Anomaly or fault detection using finite

state machines, models alarm sequences that occur during and
prior to fault events [7]. Given a cluster of alarms the objective
is to find the best explanation among them and no attempt is
made to generate the individual alarms themselves which is a
key component to any detection system. A pattern matching
technique to detect network anomalies has been proposed and
implemented in [10]. The efficiency of this approach depends
on the accuracy of the traffic profile generated. In the face of
evolving network topologies and traffic conditions, this method
may not scale gracefully.

In this paper we propose online learning and statistical
approaches using which, it is possible to continuously track
the behavior of the network. We use a sequential change-point
detection mechanism using non-parametric Cumulative Sum
method based on auto-regressive modelling to detect Internet
worm attacks and the instabilities they induce in BGP routers.
We provide a characterization of the data obtained from BGP
routers and highlight the distinguishing features that occur
during a worm attack. We also present the detection algorithm
and evaluate its effectiveness using real data traces obtained
from BGP routers on the Internet.

The rest of the paper is organized as follows. Section II
presents the relevant background information. Sections III and
IV formally describe the problem and present the detection
algorithm, respectively. Section V presents the results of our
algorithm when applied to real BGP traces. Finally, Section
VI presents the concluding remarks.

II. BACKGROUND

Since the Morris worm attack of 1988, active worm at-
tacks have made frequent appearances and in the recent past,
have increased both in their frequency, spread and extent of
damage caused. The most successful among these like the
Code Red II, Nimda and the SQL Slammer worm employ a
local scanning methodology to spread quickly and infect other
machines. When such a worm is introduced in a network,
it simultaneously scans many machines to find a vulnerable
machine to infect. Once such a machine is successfully found
and compromised, it executes a copy of the worm code and
now starts scanning new machines to infect. The spreading
rate of the virus depends on the scanning technique used, the
rate at which security patches are applied and the population
of vulnerable machines.
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Fig. 1. BGP update message volumes.

BGP is the default inter-domain routing protocol in the In-
ternet today and is based on the path vector routing mechanism
[3].

While the overwhelming majority of the existing worms
do not specifically target BGP routers, their impact on the
network has been shown to create long term instabilities in
BGP routers [2]. This is due to a number of direct and indirect
causes that include: (1) congestion-induced failures of BGP
sessions, (2) flow-diversity induced failures of BGP sessions
due to router CPU overloads, (3) proactive disconnection of
certain networks and (4) failures of other equipment at the
Internet edge such as DSL routers. Also, some of the inherent
features of BGP itself allow local connectivity dynamics to
propagate globally. In order to prevent or minimize the damage
caused by these worms on BGP routing, it is necessary to
detect their onset as soon as possible. In the next sections, we
develop a methodology for fast online detection of instabilities
in BGP routers due to worm attacks.

III. PROBLEM DESCRIPTION

Worm attacks on the Internet can lead to long term instabil-
ities in global routing [2]. These instabilities are characterized
by large and sustained exchanges of BGP routing updates, both
route announcements and withdrawals, as shown in Figure 1.
The figure shows the update messages received by a router in
Geneva from four of its peers (in four different ASes) over a
five day period: 17th-21st July 2001. The Code Red II worm
attacked the Internet on the 19th July and we see the sharp and
sustained increase in the message volume in this period (x-axis
values between 250-285). We note that the update message
volume can be rather noisy with random spikes. We also note
that the plot corresponding to one of the ASes in Figure 1 does
not show any variability at all. This is because this particular
AS was continuously resetting its connection, probably due to
a hardware problem. However, this highlights the need for a
detection algorithm which is robust against such nuances of
particular network specific conditions.

Close observation of the BGP data reveals that in general the
increase in the number of announcements is more than that of
the number of withdrawals. Furthermore, route withdrawals
are typically followed by new announcements. Under worm

attacks it is observed that the announcement and withdrawal
messages experience long periods (in terms of hours) of
sustained exponential growth. This growth phase was followed
by an exponential decay in route changes. This distinguishing
feature of the data in the presence of worm attacks can be
used to design robust detection algorithms that are insensitive
to changes inherent to the normal operation of the network.

In this work we propose that worm attacks can be modelled
as sustained correlated changes in the number of announce-
ments and withdrawal messages incident on a BGP router.
The changes in the individual variables are modelled using an
Auto-Regressive (AR) process [1]. The problem statement is
as follows:

Given a sequence of BGP update messages sampled at a
fixed interval, generate alarms that correspond to the onset of
a worm attack.

IV. ALGORITHM

The model of sustained correlated changes described above
is used to develop a detection scheme. The scheme is based on
modelling the onset of instabilities in BGP routers due to worm
attacks using correlated transient signals that are embedded in
the BGP update messages. These correlations appear in the
traces corresponding to the update message volumes across
the peers connected to a router and the transients manifest
themselves as abrupt and sustained as depicted in Figure
1. The temporal correlation between the update messages
from different peers connecting to a router distinguishes the
transients local to a peer and arising due to non-worm related
causes from those intrinsic to worm attacks.

In this paper, we model the BGP update message volumes
and the transients therein using auto-regressive processes of
order p. The model of sustained correlated changes described
above is used to develop a detection scheme following the
procedure outlined in [13]. The scheme involves three steps
which are described below:

Step(1): In the first step, statistical changes in the char-
acteristics of the BGP update messages are captured using
a hypothesis test based on the Generalized Likelihood Ratio
(GLR) test [12]. Changes are detected by comparing the
variance of the residuals obtained from two adjacent windows
of data which are referred to as the learning (L(t)) and test
(S(t)) window. Residuals are obtained by imposing an AR
model on the time series data in each of the windows. Consider
a learning window L(t) and test window S(t) of lengths NL

and NS respectively. Then the learning window L(t) can be
shown as:

L(t) = {l1(t), l2(t), · · · , lNL
(t)} (1)

Any li(t) in the equation above can be expressed as l̃i(t) where
l̃i(t) = li(t) − µ where µ is the mean of the segment L(t).
Now, l̃i(t) is modeled as an AR process of order p with a
residual error εi(t)

εi(t) =

p
∑

k=0

αk l̃i(t− k) (2)



where AL = {α1, α2, · · · , αp} and α0 = 1 are the AR
parameters. Assuming each residual time is drawn from an
N (0, σ2

L) distribution, the joint likelihood of the residual time
series is given by

p(εp+1, · · · , εNL
/α1, · · · , αp) =
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where σ2

L is the variance of the segment L(t), ŃL = NL −
p and σ̂2

L is the covariance estimate of σ2
L. Using a similar

expression for the test window S(t), the joint likelihood ν of
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where σ2

S is the variance of the segment S(t), ŃS = NS −
p and σ̂2

S is the covariance estimate of σ2
S . The expression

for ν is a sufficient statistic and is used to perform a binary
hypothesis test based on the Generalized Likelihood Ratio test.
Under the hypothesis H1 implying that a change is observed,
we have AL 6= AS and σ2

L 6= σ2
S implying that a change is

observed between the two windows. In order to obtain a value
for the generalized likelihood ratio η that is bounded between
0 and 1 and using the maximum likelihood estimates for the
variance terms, the likelihood ratio is given by

η =
σ̂−ŃL

L σ̂−ŃS

S

σ̂−ŃL

L σ̂−ŃS

S + σ̂
−(ŃL+ŃS)
P

. (5)

where σ̂2
P is the pooled variance of the learning and test

windows. Using this approach, we obtain a measure of the
likelihood of worm attacks for each of the peers. These
indicators, which are functions of system time are updated
every NS lags and the worm attack indicators thus obtained
from the individual peers are collected to form a change vector
~ψ(t). The change vector ~ψ(t) serves as a measure of the
deviations observed in normal network behavior.

Step(2): The spatial dependence between the changes in the
announcements and withdrawals obtained from different peers
are incorporated using a co-relator matrix A. The matrix A is
a M ×M matrix where M is the number of distinct update
message traces available from peers. A quadratic functional

f(~ψ(t)) = ~ψ(t)A
´~ψ(t), (6)

is used to generate a continuous scalar indicator of security
breaches. A value of 0 for this functional represents a healthy
network and a value of 1 represents a potentially compromised
network.

Step(3): The final step in the algorithm is to capture the
sustained changes in the BGP update messages. This is done
with the help of a persistence filter. It can be expressed as:

ta = inf{ti :
∑

i

I(f(~ψ(ti)) ≥ λ) ≥ L} (7)

where ta is the earliest time at which the functional f(~ψ(t))
exceeds the threshold λ for a sustained period of time L. Each
time the condition expressed in Equation (7) is satisfied we
declare the network to be compromised. This also means that
given an instance of an alarm condition if a second instance
of an alarm condition occurs within a specified interval of
(τ − 1) lags (say) then this indicates persistent abnormal
behavior. Thus, by incorporating persistence the occurrence
of false alarms can be significantly reduced.

The implementation of the change-point detection algorithm
depends on the size of the learning window NL, the size of
the test window NS and the order of the AR process p. A
higher order of the AR process will model the data in the
window more accurately but will require a large window size
since a minimum number of samples are necessary to be able
to estimate the AR parameters accurately. An increase in the
window size will result in a delay in the predication of an
impending fault. We experimentally optimize the two window
sizes based on these constraints.

V. EXPERIMENTAL RESULTS

Our detection algorithm was validated using year long traces
of BGP update messages collected by the RIPE Network
Coordination Center (NCC) [4]. We report on the performance
of our algorithm for the Code Red II (July 2001), the Nimda
(September 2001) and the SQL Slammer (January 2003) worm
attacks.

A. Overview of the Traces

The traces used for validation of our algorithm were col-
lected by the RIPE NCC. For the validation results presented
in this paper, we have used the update data for the relevant
periods from the data collected at site CIXP (CERN Internet
eXchange Point), Geneva starting April 2001. In the traces
from CIXP Geneva, routing updates were collected from seven
peers, each corresponding to a different AS. The seven peers
are AS513, AS559, AS2686, AS3303, AS6893, AS8327 and
AS12350. The traces have a time-stamp accuracy of a second.

In this paper we use the aggregated number of update mes-
sages (including announcements and withdrawal messages)
and the state change messages (session reset messages etc.)
of all the peers in bins of 15 minutes. We have also extracted
and analyzed traces per individual peer, again in bins of 15
minutes.

B. Validation Results

In Figure 2 we show the result of the change detection algo-
rithm (step 1 of Section IV) for the Code Red II worm when
applied to the withdrawal, announcement and the combined
(total) messages exchanged. The data set used corresponds to
the traces collected over the entire month of July 2001 where
the attack occurred on 19th of July. The x-axis is marked
in terms of the index of the 15 minute samples. The attack
location (19th of July) corresponds to values of 1780-1850
that are marked by the circles. For the results shown, we used
a learning window of 72, a test window of 36 and a persistence
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Fig. 2. Change point detection for BGP messages for the Code Red II worm
(July 2001).

value of 4. We note that while the traces show change-points
around the worm attack period, they also show many others
which are not related to it. Also, we note that the combined
trace shows change points at exactly the same instants as the
announcement messages. This is because the volume of the
announcements is much larger than those of the withdrawals
and thus effectively masks the variations in the withdrawals.
Since the combined trace adds no additional information as
compared to the announcements, in the subsequent results, we
only focus on the announcement and withdrawal messages.

The change-points not related to the worm attacks are
eliminated from the detection mechanism using the second
step of the algorithm in Section IV where we capture the corre-
lation between the spatial dependencies of the withdrawal and
announcement messages. The alarms obtained from comparing
these correlations for the July trace is shown in Figure 3. Note
that the co-relator amplifies only those changes that occur
in both the announcements and the withdrawals. Finally, the
result of incorporating the test for persistence in the changes
(step 3 of the algorithm) is shown in Figure 4(a) where we
plot the the final result of our fault detection algorithm (again,
circles are used to demarcate the onset of the attack period).
It is seen that our algorithm is able to detect and predict the
onset of instabilities in BGP routing tables as a result of the
worm attacks, thereby validating the proposed scheme.

In order to further validate the performance of our algo-
rithm, in Figure 4(b) we show the predictive alarms generated
by our algorithm for the Nimda worm and for the SQL
Slammer worm in Figure 4(c). We used the month long trace
collected for September 2001 for the Nimda worm (which
took place during 18th-19th September)and for January 2003
for the SQL Slammer worm (the worm attack was on the
25th of January). In all these cases, we again see that our
algorithm is able to correctly detect and predict the onset of
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Fig. 3. Alarms obtained from correlating the change points in the withdrawal
and announcement messages for the Code Red II worm. (July 2001)

instabilities due to the worm attack. However, we note that
there are a couple of false alarms generated in the results for
the SQL slammer worm. This was mainly due to the worm
attack being detected sooner as compared to the older worms
as a result of which the increase in the message volumes was
not as sharp and sustained. This resulted in the selection of
parameters which are prone to infer non-worm attack related
transients in the traces as indications of worm attacks.

C. Results using Individual Peers

In this section, we present the results corresponding to
the flags obtained when only the data from individual peers
was considered instead of correlating them across peers. In
Figure 5 we plot the flags generated from the update messages
received from AS513 for the Code Red, the Nimda and the
SQL Slammer worms respectively. Similarly, Figure 6 shows
the corresponding results for AS559. The parameter settings
for these results are given in Table I for the Code Red, Nimda
and SQL Slammer worms, respectively.

From the results we can see that using just the information
from individual ASes results in a large number of false alarms.
These false alarms can be suppressed by correlating the flags
from across peers as was done in the Figures 4(a), 4(b) and
4(c). Also, we can see that the parameter values for the three
worms for a given AS lie in the same range. This suggests
that the optimal parameter values vary from peer to peer and a
system where different parameter settings are used for different
peers would perform better than a system using a constant set
of parameters across peers. We also note that different peers
give better results for different worms indicating that some
ASes might have been more affected by a particular worm
than others. Also, we note that the value of the persistence
filter depends on the worm. This is because different worms
cause different levels of instabilities and thus to detect ones
with low levels of activity, the persistence thresholds have to
be lower.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a mechanism to detect and
predict instabilities arising in BGP routers as a result of
worm attacks on the Internet. BGP being responsible for the
inter-domain routing and determining the fate of a bulk of
the data in the Internet coupled with the sharp increase in
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Fig. 4. Flags corresponding to the different worm attacks across all the peers.

Value Code Red II Worm Nimda Worm SQL Slammer Worm
Attack Location Attack Location Attack Location

1780-1850 1680-1780 2165-2260
all-peers AS513 AS559 all-peers AS513 AS559 all-peers AS513 AS559

Learning Window Size 72 76 76 64 72 72 68 76 76
Test Window Size 36 40 36 28 40 40 40 32 48

Persistence 4 6 5 11 9 8 9 12 8

TABLE I

THE PARAMETER SETTING VALUES FOR THE DIFFERENT DATA-SETS FOR THE DIFFERENT WORMS.(SEP 2001)
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Fig. 5. Flags corresponding to peer AS513 for the different worms
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Fig. 6. Flags corresponding to peer AS559 for the different worms

the number of worm attacks, makes detecting the onset of
such instabilities at their earliest of critical importance for
maintaining the connectivity and desired performance of the
Internet. In this paper, we proposed a sequential change-point
detection mechanism to detect and predict the onset of such
instabilities. Our method uses the volume count of BGP update
messages exchanged by the routers as an input. A test based

on generalized likelihood ratios is used to generate change
indicators for each peer. These indicators are then correlated
across peers and passed through a persistence filter to generate
alarm flags.

The proposed algorithm was tested using real data traces
collected at various routers in the Internet over a one year pe-
riod in 2001, 2002 and 2003. We showed that our technique is



able to correctly detect and predict global routing instabilities
from a number of Internet worms including the Code Red II,
Nimda and SQL Slammer worms. Our results also showed the
effectiveness of exploiting the correlations in changes in the
BGP update message volumes across peers in the presence of
worm attacks.

REFERENCES

[1] M. Basseville and I. Nikiforov, Detection of Abrupt Changes, Theory and
Application, Prentice Hall, 1993.

[2] J. Cowie, A. Ogielski, B. Premore and Y. Yuan, “Global routing instabili-
ties during Code Red II and Nimda worm propagation,” Technical Report,
Renesys Corporation, December 2001.

[3] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771,
IETF, March 1995.
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