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Abstract. Physical Unclonable Functions (PUFs) are a promising, low-
cost entropy source and security primitive for Internet-of-Things (IoT)
applications, widely used in authentication, key generation and manage-
ment. As PUFs have been investigated further, they have often been
found to be vulnerable to machine-learning attacks (MLA). Despite nu-
merous attempts to fortify PUFs against such vulnerabilities by innovat-
ing with different structures and compositions — among which hybrid
PUFs were considered a promising approach — the security of these de-
signs against MLA largely remained untested. Specifically, this paper
targets the recently introduced hybrid PUFs, namely the heterogeneous
Feed-Forward PUFs [1] and OAX PUFs [28], which were claimed to be
secure against MLAs. Contrary to these claims, to the best of our knowl-
edge, we are the first to report that even these advanced PUF structures
are not immune to MLA. Furthermore, the paper delivers a compre-
hensive evaluation of the MLA resistance of hybrid PUF structures and
proposes the Transition Theorem , which provides a novel insight for
performing Hybrid PUF modelling. We successfully apply this theory
to three classic attack models, Ruhrmair2010 [18], Mursi2020 [16] and
Wisiol2022 [27], and enable them to successfully attack the earlier PUFs
modelling failures. This theory contributes to the effectiveness of cur-
rent strategies and lays the groundwork for future advancements in PUF
security.

Keywords: Machine-Learning Attack· Hybrid PUFs · Transition The-
orem.

1 Introduction

Internet-of-things (IoT) has spawned numerous lightweight applications and
schemes, such as smart homes, smart grids, lightweight authentication, and
real-time monitoring systems, facilitating enhanced connectivity and automation
across various sectors. However, as the IoT landscape expands, concerns have
arisen regarding whether these lightweight mechanisms can adequately protect
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privacy, provide confidentiality, and meet other security requirements. Physi-
cal Unclonable Functions (PUFs) are derived from the natural, uncontrollable
random variations that occur during the manufacturing process. Unclonable,
unique, and tamper-resistant, PUFs can be likened to a fingerprint, and when
given an input stimulus, PUFs output an unpredictable response. Beyond these
attributes, PUFs are lightweight and can be effectively implemented on IoT de-
vices, positioning them as a promising strategy for enhancing the security of IoT
devices.

1.1 Problem Statement & Related Work

However, PUFs are proven to be vulnerable to machine-learning attack (MLA)
methods, including Logistic Regression[18], Evolution Strategy [2], and
Neural Network [27] models. One of the most common countermeasures is to
combine several PUFs and add an XOR gate on all of the output responses to ob-
fuscate the interrelationship between the initial input and final output between
each individual PUF. The XOR Arbiter-PUF (XOR PUF) was first proposed
to combine several basic Arbiter PUFs with a final output XOR, which showed
strong resistance against a linear attack model [23]. The Feed-Forward PUF [13]
was proposed to introduce a more non-linear relationship into the basic PUF
component, increasing the training data requirements for an attacker. Addition-
ally, with the development of machine learning technologies, reliability-based at-
tacks [2] and other attacks which utilise additional side-channel information [3]
have been proposed and proved to be significant threats to the PUFs, even when
configured with unpractical large parameters. Thus, more complicated designs
such as the XOR-Feed-Forward PUF, Interpose PUF [17], OAX-PUF [28] and
MPUF [19] were proposed, and yet, each type found successful attacks against
them [26,27,20]. With a large configuring parameter, some complex PUFs have
not been attacked successfully without using side-channel information. However,
these PUFs are not practical in realistic scenarios due to issues with reliability
[2]. The more the numbers of PUF compositions involved in the PUF design,
the more unreliable the PUF is. As stated in [2], the smaller delay difference
causes unreliability in the response. Once the adversary sets this metric as the
indicator for the modelling, even 20-XOR PUFs can be broken. In [1], the homo-
geneous and heterogeneous Feed-Forward were proposed and were shown to be
theoretically secure against state-of-the-art MLA. This claim is proved in [27],
where a one loop 3-XOR-Feed-Forward Arbiter PUF with heterogeneous struc-
ture is demonstrated to be resistant against a neural network model, no matter
how much training data is provided, and the prediction accuracy is around 60%.
In [28], OR-AND-XOR PUFs are proposed to defend against reliability attacks.
We find that the hybrid design which combines several differently configured or
different types of PUFs together in one design can help to confuse the adversary
who uses both traditional MLA technologies and reliability-based attacks.

MLA against PUFs is typically tackled as a supervised learning problem,
where the challenges are used as the input features and the responses are used
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as the labels. Then, the modelling task is trained as a binary classification prob-
lem (e.g., positive output predicts binary zero, negative output predicts binary
one). MLA on PUFs have been a significant pain point when developing so-
called Strong PUFs (categorised by a unique challenge/response pair (CRP)
space which grows exponentially with PUF size) almost since their conception.
MLA is carried out by adversaries collecting a subset of CRPs from an individ-
ual PUF’s total CRP space to use as an input to a sophisticated ML algorithm,
such that a mathematical model can be generated which learns correlative prop-
erties between different CRPs. Over the years, almost all Strong PUFs that have
been proposed are vulnerable to MLA using many different types of ML algo-
rithms, ranging from traditional ML, which is specifically tailored to a given PUF
design/logical structure, to deep learning methods. The first significant work ex-
posing the vulnerability of PUFs to MLA was demonstrated by Rührmair et
al. in [18], where the Logistic Regression and Covariance-Matrix Evolutionary
Strategy (CMA-ES) algorithms were exploited to model Arbiter PUFs, Ring Os-
cillator PUFs, XOR Arbiter PUFs, Lightweight Secure PUFs and Feed-Forward
Arbiter PUFs. These attacks required varying numbers of CRPs for training the
models, with the simple Arbiter PUFs, at a minimum, requiring just 640 CRPs
to break the PUF. The more obfuscated PUFs (XOR-Arbiter PUF and Feed-
Forward Arbiter PUF), however, generally required many more CRPs before
model convergence occurred, at up to 500,000 in most cases. While less efficient
than traditional MLA (on PUFs), deep learning-based modelling attacks can
learn latent representation without requiring knowledge of the underlying PUF
structure, broadening their use cases [20,10]. More extensively, obfuscated APUF
designs have shown improved defences against traditional ML attacks; however,
Feed-Forward Neural Networks (FNNs) have been shown to model up to 5-XOR
APUFs successfully, and (4,4)-iPUFs [20]. A large number of composed PUFs can
become a problem for MLAs such that it takes an unacceptable resource and
training time to conduct the attack [27]; however, large-scale PUF integration
leads to poor reliability and impracticality, reducing the practicality of deploying
these PUFs in real life. However, many error correction or noise-tolerant technolo-
gies have been proposed [9], though it remains a shortcoming for MLAs targeting
complicated PUFs, e.g., 20-XOR Arbiter PUFs. In this case, it requires an un-
acceptable order of magnitude, additional data, and time costs. Besides CRPs,
other side-channel information can be used to help model the PUFs. In [2], a
reliability-based machine learning attack using the divide-and-conquer scheme is
proposed. Evaluations on XOR PUFs show that with the increasing numbers of
XORs, the needed number of challenges increases linearly, which contradicts the
prevalent notion that the increase should be exponential. This paper focuses on
the traditional MLA based on CRPs, while we also take reliability, bias, and uni-
formity as important metrics. In [16], the neural network devised for attacking a
k-XOR Arbiter PUF is proposed, comprises of three fully connected hidden lay-
ers sized {2k−1, 2k, 2k}. It performs well on k-XOR-PUF, with k ranging from
2-9. In [27], a model sized {2k, 2k−1, 2k−1, 2k} is proposed targeting homoge-
neous XOR Feed-Forward PUFs. This model performs well with the number of
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loops ranging from 1-5 and k ranging from 2-8. However, the model fails on het-
erogeneous XOR Feed-Forward PUFs. Apparently, models in [16] and [27] are
designed for specific PUF instances. Additionally, other modelling methods such
as PAC learning[5] and evolution strategy[15] have been applied to model PUFs.
However, these methods are not gradient-learnable machine learning approaches
and thus fall outside the scope of this work.

1.2 Contributions

In this study, the focus is directed towards the hybrid architecture in the design of
PUFs, with a particular emphasis on conducting a thorough analysis of recently
proposed hybrid PUFs, such as heterogeneous Feed-Forward XOR PUFs and
OR-AND-XOR PUFs. This investigation includes successful attacks on these
systems and evaluates the capability of current models to represent such hybrid
PUF structures accurately. Through a detailed examination of these findings, we
introduce and define a novel concept called ‘Transition Theorem’ , which is
then applied to enhance the effectiveness of generic neural-network-based attack
methodologies for modelling hybrid PUFs. The contributions of this research are
multifaceted and can be summarized as follows:

1 This work shows the first successful demonstration of attacks against hetero-
geneous Feed-Forward XOR PUFs and OAX-PUFs, illustrating that neural-
network-based models, devoid of side-channel information, can achieve a high
degree of accuracy in attacking a variety of hybrid PUF configurations and
predicting the unseen CRPs.

2 This work identifies significant challenges in modelling hybrid PUFs, such
as issues arising from uncertain model structures and ambiguous PUF infor-
mation, which can lead to overfitting and convergence to local minima. The
study utilizes a Mixture-of-Experts structure to learn the hybrid information
in heterogeneous Feed-Forward PUFs, OAX PUFs, and other hybrid PUFs
using a manageable volume of training data. It provides a detailed analysis
of the model’s capability to model various PUFs, highlighting its potential
for broad application.

3 Based on the analysis of the modelling attacks and the mathematical frame-
work for hybrid PUFs, a Transition Theorem for neural-network-based
attack methods is proposed. This strategy offers guidance from an adversar-
ial perspective on determining appropriate model structures and settings,
demonstrating its applicability to other attack methodologies that previ-
ously could not conduct successful attacks.

4 This work undertakes a comprehensive evaluation of different instances of
hybrid PUFs, providing an exhaustive analysis that establishes a benchmark
for the design and assessment of hybrid PUF systems. All the codes and data
used in this paper are provided for the use of the research community.3

3 All the codes and datasets used in this paper are provided in
https://drive.google.com/drive/folders/1t6w-RR2FZKko_Ur3uWkRZHj009dtj0Ro?usp=drive_link

https://drive.google.com/drive/folders/1t6w-RR2FZKko_Ur3uWkRZHj009dtj0Ro?usp=drive_link
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1.3 Paper Organisation

The remainder of this paper is organized as follows. Section 2 introduces the
concept and details of Arbiter PUF and its compositions. In Section 3, we present
the attack model and operating scheme. Section 4 presents the experiment details
and analysis of hybrid designs. In Section 5, we conclude our observations and
analysis on enabling the model to process hybrid information.

2 Mathematical Representations of Hybrid PUFs

In this section, we present a formal analysis of mathematical models for different
hybrid PUFs. In this paper, we focus on the hybrid structures ending with XOR
gate, which combine the results from different basic PUF components using the
XOR operations. We first start with the basic XOR Arbiter PUFs, then introduce
the Feed-Forward PUFs and OAX-PUFs.

2.1 XOR Arbiter PUF

PUFs utilize sequences of binary numbers as input and output, referred to as
challenge-response pairs [22]. Arbiter PUF[14] is one of the most common strong
PUFs. An Arbiter PUF is composed of a pair of parallel delay paths and an
arbiter at the end. For its operation, a signal is simulated from the beginning
of the paths. In general, the challenge determines the paths’ routine, which will
affect the propagation time of the signal, and the signal arriving time difference,
noted as ∆, will decide the response. If ∆ > 0, the response is 1, otherwise
it is 0. The mathematical formulation of Arbiter PUFs can be written as: r =
sign(

∑n
i ∆di

∏i
j cj). where ∆di is the delay difference between the upper and

lower delay paths at stage i, and ci is the i-th challenge bit. Here, we note parity
xi as

∏i
j Ci, thus: r = sign(

∑n
i ∆dixi). Then, we can write in the matrix format:

r = sign(D ×XT ). We can see from the expression that the basic relationship
between the input and output inside the Arbiter PUFs is linear, which makes it
vulnerable against MLA.

To add non-linearity to the PUF, [23] introduced XOR Arbiter PUFs, which
are composed of several Arbiter PUFs and an XOR gate. The same challenges are
fed to all the PUFs, then the signal goes through all the PUFs parallel, and each
PUF outputs a one-bit response. In the end, all the response bits are XORed to
generate a one-bit output. Assume a n-XOR Arbiter PUF, whose formulation
can be written as:

r =

n∏
k

sign(
n∑
i

∆dki xi) = sign

(
n∏
k

n∑
i

∆dki xi

)
. (1)

We can also write it in the matrix format:

r = sign(
n∏
k

Dk ×XT ). (2)
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If we look into the Equation 2, we can find that the only non-linearity to learn
is still solely the sign(·) function, while the linear part is more complicated than
the part of the Arbiter PUF.

2.2 OR-AND-XOR-PUF

According to [2], the structure of combining multiple identied PUFs and XORing
the output suffers from reliability-based attack or hybrid MLA. In [28], the OR-
AND-XOR PUF (OAX-PUF) is proposed. OAX-PUF utilizes MAX and MIN
(OR and AND) bitwise operators to improve the reliability and confuse the
adversary by covering some critical unreliability information. Take a (x, y, z)-
OAX-PUF as an example. It is composed of l = x+ y+ z Arbiter PUFs, among
which x Arbiter PUFs are connected to an OR gate, y Arbiter PUFs are con-
nected to an AND gate, and z Arbiter PUFs are connected to an XOR gate.
Each gate outputs a one-bit result, and then these bits will be fed to another
XOR gate which then outputs one final response bit. From the structure, we can
find a minimal structure is (2, 2, 1)-OAX PUF which introduces all the new fea-
tures. With the formulation of XOR PUF shown in Equation 2, we can present
a (x, y, z)-OAX-PUF as follow:

r =
(
sign

(
OR

(
sign(DO1 ×XT ), . . . , sign(DOx ×XT )

))
·
(
AND

(
sign(DA1 ×XT ), . . . , sign(DAy ×XT )

))
·

z∏
k

Dk ×XT
) (3)

We can find from the equation that, different from the PUFs with homogeneous
structures, in OAX-PUFs, not every PUF component contributes directly to
every CRP, e.g., the PUFs connected to the OR and AND gate. In [28], OAX-
PUFs are claimed to be more resistant than XOR PUFs against four powerful
attacks: logistic regression (LR), reliability assisted CMA-ES, multilayer percep-
tron (MLP), and hybrid LR-reliability. We conduct fair comparisons in Section
4.

2.3 Homogeneous and Heterogeneous Feed-Forward XOR Arbiter
PUF

The XOR PUF is composed of n basic Arbiter PUFs, the combined outputs of
which form the final output following an XOR operation. In [2], it was determined
that as n increases, the reliability decreases significantly. When n increases to 8,
the reliability is around 86.2%, making the PUF impractical without heavy er-
ror correction. Although efforts [8,9,6,25] have been devoted to creating reliable
PUFs, the trend of reliability decreasing makes a large number of XOR PUFs
unrealistic. Besides, a large number of basic PUFs consume high hardware re-
sources. To introduce more non-linearity and bypass the above-mentioned draw-
backs, the Feed-Forward PUF [13] was proposed, in which loops are introduced
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Fig. 1. Feed-Forward PUF

into the delay path of Arbiter PUFs. As shown in Figure 1, there is a loop that
begins from the end of stage f1, goes through an arbiter and then connects to the
input of stage f2. The output of the front delay paths can decide one challenge
bit of one posterior stage.

Here we analyze the mathematical model of Feed-Forward PUFs. Take a
n-stage (f1, f2)-Feed-Forward PUF as an example. Then we can write the for-
mulation as:

r =sign

sign(
f1∑
i=1

wi · xi) · (
n∑

i=f2

wi · xi) +

f2∑
i=1

wi · xi


=sign

 f2∑
i=1

wi · xi +

n∑
i=f2

sign(
f1∑
i=1

wi · xi) · wi · xi

 .

(4)

where the whole n-stage delay paths are divided into two parts, from 1 to f2
and from f2 to n. The first part’s first f1 stages contribute to the parity value
of the second part, which brings more non-linearity. If we turn the format into
a matrix:

r = sign
(
D[1,f2] ×X [1,f2]

+ sign(D[1,f1] ×X [1,f1]) · (D[f2,n] ×X [f2,n])
)
.

(5)

From Equation 5, we can find that Feed-Forward PUF contains a cascade
sign logic, which appears more complicated than Equation 2. In [23], an XOR-
Feed-Forward Arbiter PUF is proposed, which is constructed using an XOR gate
and several Feed-Forward PUFs, and all the PUF responses are fed to the XOR
gate and generate a one-bit response in the end. The formulation is given as
follows:

r =

n∏
k

sign
(
D[1,f2] ×X [1,f2]

+ sign(D[1,f1] ×X [1,f1]) · (D[f2,n] ×X [f2,n])
)
.

(6)

2.4 Other Hybrid PUFs

To resist MLA, more complicated designs have been proposed. In [17], the Inter-
pose PUF is proposed, and it is claimed to be secure against developed MLAs,
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including reliability-based attacks. In [26], the divide-and-conquer technique is
proposed to analyze the two building blocks of the Interpose PUF separately. For
a (kup, kdown)-Interpose PUF, the security level is downgraded to a max{kup}-
XOR Arbiter PUF. In [1], the concept of homogeneous and heterogeneous XOR-
Feed-Forward PUFs is proposed. The homogeneous XOR-Feed-Forward PUF is
the traditional one, where all the settings, e.g., the position of loops, are the
same for all the component PUFs. The heterogeneous XOR-Feed-Forward PUF,
however, has different settings for all the component PUFs, which introduce
more complexity without extra resource consumption. In [1,27], the MLA resis-
tance of the heterogeneous XOR-Feed-Forward PUF has been evaluated and it
is shown that even a 3-stage 1-loop heterogeneous XOR-Feed-Forward PUF can
hardly be broken. Overall, the delay-based PUF and the compositions are still
vulnerable against MLAs, with the concern of limited entropy contained in the
physical structures. If we go inside the equation of the PUFs, we can find that
the parameters to model are solely the delay matrix D, which contains at most
n × k parameters. From MLAs, we learn that D can be learned easily if the
structure is simple or known and modelled easily by the adversary. Thus, the
designers need to design a complex enough structure to cover the relationship
between the challenges and responses. In the meantime, we need to be careful
with the balance between reliability and structure complexity.

2.5 State-of-Art Modelling Structures

In [18,16,27], general attack models against k-XOR Arbiter PUFs and n-bit XOR
Feed-Forward Arbiter PUFs are proposed. In [16], a {2k−1, 2k, 2k−1} multilayer
perception model is proposed with k ranging from 5 to 9. In [27] a {n, n

2 ,
n
2 , n}

multilayer perception model is proposed with n = 64. In this paper, we choose
these three models as the benchmark, as they achieve good performance when
modelling XOR PUFs and Feed-Forward XOR PUFs using CRPs, and the model
hyper-parameters are determined according to the PUFs structure. We denote
them as Ruhrmair2010, Mursi2020 and Wisiol2022. However, it should be
noted that none of these models can attack OAX-PUFs and het-
erogeneous Feed-Forward PUFs. In Table 1, the hyperparameters used in
[18,16,27] are listed. They both use tanh as the activation function, since for
the arbiter PUFs, using tanh instead of relu can guarantee the data normaliza-
tion between the layers, i.e., with zero mean[12]. It should be noted that the
structures of Mursi2020 and Wisiol2022 are slightly different regarding different
PUFs, even from the same category. For Mursi2020, the number of neurons is
determined by the stages of XOR PUFs.

3 Methodology

In this section, we first formally analyse the problem encountered when modelling
PUFs using a machine learning model. Then, we present the Mixture of the PUF-
Expert (MoPE) structure and the technical design from the perspective of PUF
modelling.
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Table 1. Hyperparameter Value Used in Ruhrmair[18], Mursi2020[16]
and Wisiol2022[27].

Hyper Parameters Ruhrmair2010 Mursi2020 Wisiol2022

Architecture Logistic Regression (2k−1, 2k, 2k−1) (n, n
2
, n
2
, n)

Kernel Initializer Normal dist. Normal dist. Normal dist.
Optimizer Adam[11] Adam Adam

Hid. Lay. active. - tanh tanh
Learning rate Adaptive Adaptive Adaptive
Loss function BCELoss BCELoss BCELoss

3.1 Local Minima Problem

The local minima problem is a common problem in machine learning, which
will stop the optimisation with a low accuracy performance. The issue arises
when an optimization algorithm, tasked with minimizing a loss function that
measures the discrepancy between the predicted and actual PUF responses, be-
comes trapped in a local minimum point of the overall feature space, where the
function value is lower than at neighbouring points but not necessarily the lowest
possible value globally. This scenario is especially prevalent in high-dimensional
spaces common to PUF modelling, where the landscape of the loss function is
riddled with numerous local minima. Local minima hinder the modelling pro-
cess by preventing convergence to the global minimum, where the most accurate
model resides. This results in suboptimal PUF models that fail to capture the
intricate mappings between challenges and responses accurately. The ramifica-
tions are twofold: firstly, the reliability of PUF-based security systems may be
compromised due to inaccuracies in authentication or key generation processes.
Secondly, the resilience of PUFs against modelling attacks, wherein an adversary
attempts to construct a predictive model of the PUF, may be overstated if the
models used for evaluation are themselves trapped in local minima and thus are
not representative of the best possible modelling efforts.

Several strategies have been proposed to mitigate the local minima problem
in modelling. These include the use of advanced optimization techniques such
as simulated annealing, genetic algorithms, or gradient-based methods with mo-
mentum terms that can potentially escape shallow local minima [7]. Addition-
ally, employing regularization methods to simplify the model or initializing the
optimization process from multiple random starting points can also increase
the likelihood of converging to a global minimum [21]. Furthermore, hybrid ap-
proaches that combine machine learning models with domain-specific knowledge
about the PUF architecture and behaviour have shown promise in enhancing
model accuracy and robustness [1]. Thus, the problem of local minima repre-
sents a significant challenge in the modelling of PUFs. Overcoming this hurdle is
essential for the development of reliable and secure PUF-based systems. Contin-
ued research into sophisticated optimization methods and model architectures
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is critical for advancing the state-of-the-art in PUF modelling and ensuring the
security and integrity of hardware-based cryptographic systems.

There are two main factors contributing to local minimal in PUF modelling
attacks:

1. First, the inappropriate structure of the model. For example, in [16], to
model k-XOR-PUF, the model structure is {2k, 2k−1, 2k}, which can ensure
a high training accuracy and test accuracy. However, if the middle hidden
layer is removed and the model structure is {2k, 2k}, it is hard to conduct
a successful attack even on 2-XOR-PUF such that the training accuracy
might vary from 60% − 99%, and the test accuracy gets trapped around
60%, regardless of how much data is used for training. This is a classic local
minima problem resulting in overfitting or failures in training.

2. Second, the insufficient amount of training data. From many MLA work
[18,27,16,10], a necessary amount of training data is required to conduct a
successful attack. If less training data is supplied, the model does not work.
We also observe that the performance of one type of PUF fluctuates with
different set-up random seeds and different choices of CRPs have a significant
influence on the success of modelling. Thus we argue that we should not
evaluate the performance of one type of PUF. The problem arises when the
adversary tries to attack a new PUF, without knowing the ideal amount of
training data or model structure. The training accuracy will still increase to
a certain value, e.g., 70% and 75%, with training; however, the test accuracy
is stuck at 50%. The model is stuck in the local minimum point and fails to
complete the task. In this case the wrong judgement on the MLA resistance
would be given.

Finding the global minimal loss for the model instead of the local minimal
loss is an important question when modelling PUFs, especially for increasingly
complicated designs, e.g., Feed-Forward PUF, Interpose PUF, and OAX-PUF.
This kind of hybrid structure makes it harder to deal with. Based on the afore-
mentioned two factors, we need to first, find the most suitable model structure
for the specific PUFs. Second, we need to find the most appropriate training
data for it.

3.2 Modelling PUFs using Miture-of-Experts
We incorporate the generic model, which utilizes an MoE structure [24] to attack
multiple types of PUFs without modifying any hyperparameters. This idea is
presented in the left part of Figure 2, where different experts are trained to
learn different involved PUFs in the hybrid PUF. In the right part of Figure 2,
the model accepts a challenge as input and produces the predicted response as
output. Challenges are processed by an input layer connected to three experts.
These experts are tailored to handle the distinct features of CRPs. Each expert
comprises of two hidden layers, each with 32 neurons. The first layer is directly
connected to the input layer, while the second links to the gate function. The
gate function assigns weights to the experts, amalgamates their outputs, and



Optimal Machine-Learning Attacks on Hybrid PUFs 11

Fig. 2. Generic Model for a Hybrid PUF.

channels them to the tower. Initially, the challenge bits CN are converted (where
N represents the PUF stages) into the feature vector XN , aligning with the
structure of the arbiter-based PUF, xi =

∏n
j=i cj . This transformation aids the

model in perceiving the decision boundary as a hyperplane. The response r serves
as the label and is adjusted to the range 0, 1, if not already within it, to align with
the activation function. Post-feature engineering, the input layer is structured to
accommodate these features. In the MoPE layer, we establish K experts, with
the count being adaptable based on the complexity of targeted PUFs. Normally,
we set k = 5. The expert structure remains consistent across all PUF types, as
two hidden layers equipped with non-linear activation functions are believed to
model any function, given sufficient parameters. The k−th expert, denoted as
fk(·), is designed to extract specific insights or features from the input. Each
expert delivers their unique interpretation of the input: hk(X) = fk(X

n).
To harness the expertise of various experts without overburdening the model

with excessive parameters, the gate function g(x) is introduced. This function
evaluates the features and determines the weight. The softmax(·) activation
function posts the N ×K kernel Wgk to distribute weights among experts and
ensure the model prioritises the most apt one. Consequently, weights are com-
puted as: g(X) = softmax(WNK(X)). The weight assigned to the k-th ex-
pert is represented as gk(X), ensuring that

∑K
k=1 g

k(X) = 1. Subsequently, the
MoE layer’s output is derived by amalgamating the outputs of the experts:
MoPE(X) =

∑K
i=1 g

i(X)hi(X). Then, the tower layer, T (·), is established,
tasked with processing the composite information supplied by the experts. This
layer then connects to the output layer, which employs the sigmoid(·) activa-
tion function to restrict the prediction output to the range {0, 1}. The MoPE
structure’s inherent flexibility allows the gate function to integrate multiple ex-
perts, facilitating network scalability to accommodate the diverse complexities
inherent to PUFs.

3.3 Routine Algorithm

In the mixture-of-experts (MoPE) architecture, the routing algorithm plays a
crucial role in determining which experts are activated for a given input. This
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selection process is typically governed by a trainable gating network, which eval-
uates the input and allocates weights to each expert based on their relevance to
the current task. The gating network, often implemented as a softmax layer, pro-
duces a distribution over the experts, where the weights reflect the confidence in
each expert’s ability to contribute to the task at hand. This mechanism enables
the MoPE model to dynamically allocate computation across different experts,
allowing it to leverage specialized knowledge and improve overall performance.
The choice of experts is thus data-driven, guided by the learning process where
the gating network adjusts its parameters through backpropagation, optimiz-
ing the allocation of inputs to experts based on the loss minimization criterion.
This approach ensures that the MoPE architecture can adaptively focus on the
most relevant experts for processing diverse and complex inputs, enhancing the
model’s flexibility and efficiency. The benefits of selecting the most suitable ex-
perts can be comprehended through the top-1 strategy [4], where only one of
the most suitable experts will be used for the modelling task. However, for the
experts’ structure being fixed as 32× 32, it is hard for such a structure to model
complex PUFs, e.g., 7-XOR-PUF. In [24], 2.4 million training data are used for
a successful attack. However, the modelling fails when the number of used ex-
perts is fixed as 1. This indicates that only one expert is insufficient to model
complex PUFs, for they contain complicated information that requires multiple
experts to work together. Thus, in this paper, we argue that multiple experts
can learn different parts of the information contained in the PUF. Thus, for PUF
modelling, the routine gate does not only perform as an optimization-selector of
experts but also as a structure-information learner who can learn the structure
information contained in the hybrid design.

3.4 Proposed Transition Theorem

In this section, we consider the mathematical models of hybrid PUFs, and eval-
uate the relationship between the modelling resistance and structures.

Theorem 1 (Transition Theorem: OR, AND). The OR and AND gate
compress multiple PUFs into one stable PUF. Thus, a {x, y, z}-OAX PUF, is
equivalent to (z + 2)-XOR PUFs.

Proof. As shown in Equation (3), the number of multiplication factors equals
the number of XOR PUFs plus two from the AND gate and OR gate. We can
understand the OR operation as the MAX operation. Thus, we can get the
following:

OR
(
sign(DO1 ×XT ), . . . , sign(DOx ×XT )

)
= MAX

(
sign(DO1 ×XT ), . . . , sign(DOx ×XT )

)
= MAX

(
sign(DO1 , . . . , sign(DOx)

)
×XT

= sign(Dmax ×XT ).

(7)
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Consider the following relation:

MAX(A×X,B ×X)

=MAX(

n∑
i

ai · xi,

n∑
i

bi · xi)
(8)

Here we create a matrix C = [c0, c1, . . . , cn], where

ci =

{
max(ai, bi), if xi = 1

min(ai, bi), if xi = −1
(9)

We can find that the representation collapses into a single arbiter PUF.

Theorem 2 (Transition Theorem: Feed-Forward Loop). For every addi-
tional loop added to the PUF, the complexity increases approximately two times.

Proof. From Equation (5), we can find that the original delay path is divided
into two parts, D[1,f2] and D[1,f2]; the first represents the delay path from the
start to the loop point f2. The second represents the dot result of the front and
back two parts, where the format is similar to the mathematical representation of
XOR PUFs (sign(D[1,f1]×X [1,f1]) · (D[f2,n]×X [f2,n])). To summarize, the total
delay added up is from one delay path of normal Arbiter PUF with the length
of f2 and an XOR PUF with different challenge input to different PUFs. Thus,
we argue that the complexity introduced by the loop is between the arbiter PUF
and XOR PUF since the length of the delay path is shorter than the original
one.

Theorem 3 (Transition Theorem: Heterogeneous Feed-Forward XOR
PUFs). A {n, k}-Heterogeneous Feed-Forward XOR PUF, is equivalent to {n ∗
2k}-XOR PUF.

Proof. For a heterogeneous Feed-Forward XOR PUF, the loop positions are
different for every involved PUF. Thus, no information can be shared between
modelling the basic PUFs, and they can be considered to be independent of each
other. For every additional loop, the delay path is divided into two parts one
time further. Thus in total, we can view a {n, k}-Heterogeneous Feed-Forward
XOR PUF as an XOR PUF with {n ∗ 2k} PUFs involved.

4 Experiments and Evaluation

In this section, we evaluate the results of modelling different hybrid PUFs using
MoPE. Based on the results of the successful attack, we then analyse how the
modelling capability can be achieved and turn it into a modelling attack targeting
new PUFs. We analyse the mathematical model of the instance of the hybrid
PUF and evaluate the proposed transition theorem . We apply the theorem to
other modelling attack strategies that can not break certain PUFs. We show that
with the help of modifications, they can break previously unbreakable PUFs.
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Table 2. Modelling results for hybrid PUFs using the generic model.

OAX
PUF

Or, And, XOR crp time acc

(4, 4, 0) 24k <1min >93%
(0, 4, 4) 240k <1min >96%
(4, 0, 4) 240k <1min >96%
(4, 4, 4) 300k <1min >96%

Type k Loops crp time acc

Homogeneous
FF-PUF

1

1 20k <2min >94%
2 120k <1min >97%
3 250k <1min >98%
4 500k <1min >98%
5 1M <4min >94%

3 1 120k <1min >90%
2 400k <5min >93%

Heterogeneous
FF-PUF

2 1 160k <1min >98%
3 1 640k <5min >98%
2 2 400k <1min >95%

4.1 Modelling Hybrid PUFs using the Generic Model

In this section, we present the modelling results on hybrid PUFs using the generic
model proposed in Section 3. Avvaru et al. introduced the homogeneous and
heterogeneous Feed-Forward XOR PUFs in [1]. Subsequent to their work, a mul-
titude of machine learning models were proposed to target FF-APUFs [27]. A
large portion of these models capitalize on the inconsistent reliability of PUF
designs, focusing particularly on homogeneous XOR FF PUFs with uniform loop
positions. In contrast, heterogeneous XOR-FF-APUFs are largely considered re-
silient against modelling attacks. As evidenced in Table 2, we successfully mod-
elled 2−loop FF PUFs with 2 XOR stages and 1−loop FF PUFs with 3 XOR
stages, achieving accuracy exceeding 95% and 98%, respectively. As shown in
Table 2, the homogeneous/heterogeneous Feed-Forward XOR PUFs and OAX
PUFs are modelled with high accuracy beyond 90%, which is a successful attack.
From the results, by comparing the cost of training data, we observe that the
cost of heterogeneous Feed-Forward PUFs has parameter-related similarity with
XOR PUFs. For the generic model, it consumes 80k and 240k CPRs for 4-XOR-
PUFs and 5-XOR-PUFs separately, and 160k CRPs for a {2, 1}-heterogeneous
Feed-Forward PUF. Since the model is generic and fixed, and it does not need
any prior knowledge of the PUFs, we can reach an easy observation that the
modelling resistance of {2, 1}-heterogeneous Feed-Forward PUF is between the
4-XOR-PUFs and 5-XOR-PUFs. For the same reason, we can say the modelling
resistance of {2, 2}-heterogeneous Feed-Forward and {3, 1}-heterogeneous Feed-
Forward PUF are between the 5-XOR-PUFs and 6-XOR-PUFs. We can find that
the observations match our analysis of the mathematical representation in Sec-
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Table 3. Transition details for Ruhrmair2010, Mursi2020 and Wilsiol2022.

Target PUF Ruhrmair2010 Before Transition Ruhrmair2010 After Transition

(x, y, z)-OAX PUF LR LR based on Equation (3)
(k, lloop)-Homo. FF-PUF LR LR based on Equation (6)

Target PUF Mursi2020 Before Transition Mursi2020 After Transition

(x, y, z)-OAX PUF - (2k+1, 2k+2, 2k+1)
(k, lloop)-Homo. FF-PUF (2k−1, 2k, 2k−1) (2(k−1)∗lloop , 2k∗lloop , 2(k−1)∗lloop)
(k, lloop)-Hete. FF-PUF (2k−1, 2k, 2k−1) (2(k−1)∗2lloop , 2k∗2

lloop
, 2(k−1)∗2lloop )

Target PUF Wilsio2022 Before Transition Wilsiol2022 After Transition

(x, y, z)-OAX PUF - (2(x+y+z), 2(x+y+z−1), 2(x+y+z−1), 2(x+y+z))
(k, lloop)-Homo. FF-PUF (n, n

2
, n
2
, n) (2k∗lloop , 2(k−1)∗lloop , 2(k−1)∗lloop , 2k∗lloop)

(k, lloop)-Hete. FF-PUF (n, n
2
, n
2
, n) (2k∗lloop , 2(k−1)∗lloop , 2(k−1)∗lloop , 2k∗lloop)

*LR: Logistic Regression

tion 2 and the theorems proposed in Section 3. In the next section, we present
the performance of Ruhrmair2010, Mursi2020 and Wilsiol2022 after applying the
transition theorem.

4.2 Modelling Hybrid PUFs Using the Proposed Transition
Theorem

As discussed in Section 3, Ruhrmair2010, Mursi2020 and Wisiol2022 were ini-
tially proposed for modelling XOR PUFs and homogeneous Feed-Forward XOR
PUFs at the first beginning. In [27], Wisiols et al. have shown the capability
of neural networks to model PUFs. However, they failed to model heteroge-
neous Feed-Forward XOR PUFs and claimed a major modification of the model
structure is needed. We argue that the major problem is the structure mismatch
between the models and the PUFs, especially for hybrid PUFs. The hybrid PUFs
introduce complicated structure designs into the PUFs, which confuses the ad-
versary. In [13], it has been evaluated that the basic Feed-Forward PUF is harder
to model compared to the basic Arbiter PUF; thus, when combining them to-
gether into an XOR construction, we cannot simply consider Feed-Forward XOR
PUF to be the same as XOR Arbiter PUFs. From the experiments, we notice the
local minimal problem occurs when the accuracy gets stuck at around 60%, or
the overfitting problem occurs when the test accuracy does not match the train-
ing accuracy. According to the observations in Section 4.1 and the transition
theorem, we optimize the structure for Mursi2020 and Wisiol2022 to fit them
for the hybrid PUFs modelling tasks, as shown in Table 3. Specially, when mod-
elling homogeneous Feed-Forward XOR PUF, we modify the structure according
to the proposed theorem and treat a (k, lloop)-homogeneous Feed-Forward XOR
PUF as a k∗ lloop-XOR PUF, a (k, lloop)-heterogeneous Feed-Forward XOR PUF
as a k ∗ 2lloop-XOR PUF, a (x, y, z)-OAX PUF as a (x + y + z)-XOR PUF. As
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Table 4. Modelling results using OPTIMIZED Ruhrmair2010 [18], Mursi2020 [16] and
Wisiol2022 [27] after Applying the Transition Theorem .

Type k Loops crp time acc

Homo.
FF-PUF

2

1 30k†, 120k††, 120k‡ <1min†, 1min††, 1min‡ >97%†, 95%††, 95%‡
3 240k†, 360k††, 360k‡ <1min†, 1min††, 1min‡ >97%†, 97%††, 96%‡
4 700k†, 720k††, 720k‡ <5min†, 2min††, 2min‡ >98%†, 99%††, 98%‡
5 1.4M†, 1.4M††, 1.4M‡ <10min†, 5min††, 5min‡ >97%†, 98%††, 97%‡

3 1 240k†, 240k††, 240k‡ <1min†, 1min††, 1min‡ >95%†, 98%††, 96%‡
2 480k†, 480k††, 480k‡ <2min†, 2min††, 2min‡ >95%†, 93%††, 93%‡

Hete.
FF-PUF

2 1 200k††, 200k‡ < 2min††, min‡ > 98%††, 97%‡
3 1 640k††, 640k‡ < 5min††, 5min‡ > 98%††, 98%‡
2 2 400k††, 400k‡ < 1min††, 1min‡ > 95%††, 95%‡

OAX
PUF

Or, And, XOR crp time acc
(4, 4, 0) 20k†, 20k††, 20k‡ <1min†, 1min††, 1min‡ >97%†, 95%††, 95%‡
(0, 4, 4) 20k†, 20k††, 20k‡ <1min†, 1min††, 1min‡ >97%†, 95%††, 95%‡
(4, 0, 4) 240k†, 240k††, 300k‡ <2min†, 2min††, 2min‡ >98%†, 97%††, 97%‡
(4, 4, 4) 1M†, 800k††, 800k‡ <3min†, 3min††, 3min‡ >97%†, 98%††, 98%‡

† Ruhrmair2010[18]; †† Mursi2020 [16]; ‡ Wisiol2022 [27].

shown in 4, we can find that these two models achieve good accuracy beyond
90% for all the hybrid PUFs, which are MLA-resistant before the modifications.
From the successful attacks and cost of CRPs, we find that consumption gener-
ally follows the transition theorem. For example, a (4, 0, 0)-OAX PUF costs 24k
CRPs, similar to a 2-XOR PUF. For a (3, 1)-heterogeneous FF-PUF, it costs
640k CRPs, which is similar to a 6-XOR PUF. Therefore, we conclude that the
transition theorem is feasible on the two neural network-based attacks.

Acknowledgments. This research is supported by the National Research Foundation,
Singapore and Infocomm Media Development Authority under its Future Communica-
tions Research Development Programme, under grant FCP-NUS-RG-2022- 019. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of the National Research Foundation,
Singapore and Infocomm Media Development Authority. The work of Prosanta Gope
was supported by The Royal Society Research Grant under grant RGS\R1\221183.

5 Conclusion

In this study, we critically assess the strategy of integrating diverse PUF com-
ponents into Hybrid PUFs. To the best of our knowledge, our investigation
presents the first achievement in modelling two widely recognized PUFs: the
heterogeneous Feed-Forward (FF) XOR PUF and the OAX PUFs. Furthermore,
we introduce the transition theorem based on the mathematical representations.
Our analysis suggests that incorporating a FF loops and OR/AND logic both
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reduce the overall PUF complexity, rendering the design more susceptible to ma-
chine learning attacks. We apply the transition theorem to two prominent attack
frameworks, Mursi2020[16] and Wilsol2022[27], which were previously ineffective
against these PUFs. By modifying their structures with transition theorem, we
successfully executed attacks against these PUFs, confirming it’s validity. We
not only offer insights into the design of novel Hybrid PUFs but also underscore
vulnerabilities in PUFs previously deemed secure, suggesting a key contribution
to both the development and security analysis of PUF technologies.

A Transition Theorem and Proofs

We present the full analysis and proofs of the transition theorem.

A.1 OAX-PUF

Theorem 1 (Transition Theorem: OR, AND). The OR and AND gate
compress multiple PUFs into one stable PUF. Thus for a {x, y, z}-OAX PUF,
it is equivalent to (z + 2)-XOR PUFs.

The Theorem 1 argues that, for a hybrid PUF composed of multiple basic
Arbiter PUFs and an OR or AND gate, it is equal to one Arbiter PUF. Figure
3 shows an example how to convert a 2-OR PUF into an Arbiter PUF.

Fig. 3. Convert a 2-OR PUF into an Arbiter PUF

Proof.

r = OR
(
sign(DO1 ×XT ), . . . , sign(DOx ×XT )

)
(1) The formation of OR PUF.

= MAX
(
sign(DO1 ×XT ), . . . , sign(DOx ×XT )

)
(2) OR and MAX are equivalent

in boolean fields.
= MAX

(
sign

(∑n
i d

O1
i · xi

)
, . . . ,

(∑n
i d

Ox
i · xi

))
(3) DO1 ×XT =

∑n
i d

Ox
i · xi

= sign
(
MAX

(∑n
i d

O1
i · xi

)
, . . . ,

(∑n
i d

Ox
i · xi

))
(4) The MAX and sign(·) satisfy

the law of commutation.
= sign

(∑n
i MAX

(
dO1
i · xi, . . . , d

Ox
i · xi

))
(5) Put MAX inside.
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Since all the d
Oj

i are fixed for any i, j, we can write Equation (5) as:

r = sign

(
n∑
i

ci · xi

)
(6)

where

ci =

max
(
dO1
i , . . . , dOx

i

)
, if xi = 1

min
(
dO1
i , . . . , dOx

i

)
, if xi = −1

(7)

We can find Equation 6 is the same as the formulation of the arbiter PUF that
r = C×XT . For the AND gate, we analyse in a similar way with OR gate, that
we only need to change the MAX logic in Equation (2-5) to MIN logic.
Thus for a {x, y, z}-OAX PUF, the x-OR-PUF and y-AND-PUF can be treated
as two Arbiter PUFs. Thus the {x, y, z}-OAX PUF is in fact equivalent to (z+2)-
XOR PUFs.

B Feed-Forward PUF

Theorem 2 (Transition Theorem: Feed-Forward Loop). For every addi-
tional loop added to the PUF, an XOR composition is added to the delay path
and the complexity increases approximately two times.

The Theorem 2 argues that, for a Feed-Forward PUF, the Feed-Forward loop
derives an XOR-PUF from the original delay path. Figure 4 shows an example
of converting a 1-Feed-Forward-loop-PUF into a combination of an Arbiter PUF
and a 2-XOR PUF.

Fig. 4. Convert a Feed-Forward PUF into an Arbiter PUF

Proof. The Feed-Forward PUF can be formulated as:

r =sign
(
D[1,f2] ×X [1,f2]

+sign
(
D[1,f1] ×X [1,f1]

)
·
(
D[f2,n] ×X [f2,n]

)) (8)
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We can find that the original delay path is divided into two parts, D[1,f2] and
D[1,f2]; the first represents the delay path from the start to the loop point f2. The
second represents the dot result of the front and back two parts, where the for-
mat is similar to the mathematical representation of XOR PUFs (sign(D[1,f1] ×
X [1,f1]) ·(D[f2,n]×X [f2,n])). To summarize, the total delay added up is from one
delay path of normal Arbiter PUF with the length of f2 and an XOR PUF with
different challenge input to different PUFs. Thus, we argue that the complexity
introduced by the loop is between the arbiter PUF and XOR PUF since the
length of the delay path is shorter than the original one.
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