
1

SRAM and Generative Network-based Physical
Fingerprinting for Trust Management in the Internet

of Things
Varun Kohli†, Student Member, IEEE, Muhammad Naveed Aman‡, Senior Member, IEEE, Biplab Sikdar†, Senior

Member, IEEE
†Department of Electrical and Computer Engineering, National University of Singapore, Singapore.

‡School of Computing, University of Nebraska-Lincoln, USA.

Abstract—Recent advances in the Internet of Things (IoT),
machine learning, and edge computing have led to the devel-
opment of paradigms such as smart cities, smart grids, smart
healthcare, and intelligent transportation systems as efficient
and cost-effective solutions. Subsequently, there has also been an
increase in the number of connected devices, ranging from high-
power computers to low-power microcontrollers and sensors. The
multi-layered and complex structure of the IoT creates a vast
surface of vulnerabilities. Cyber threats such as proxy attacks are
prevalent in ubiquitous resource-constrained IoT devices giving
rise to the need for practical device fingerprinting algorithms.
Existing works are based on network activity deep learning-based
classification methods. However, attackers can mimic network
activity, and classification models must be retrained on the data
of new anomalies. This paper solves these issues by proposing
a lightweight, and intelligent physical fingerprinting algorithm
and the corresponding mutual authentication protocol using
initial power-up Static Random Access Memory (SRAM) states
and generative networks. A generative network is trained to
reconstruct SRAM fingerprints of an authorized device during
the registration phase and an anomaly threshold is selected.
The proposed technique reliably fingerprints registered devices,
and can detect proxy devices of identical architectures from the
same and different manufacturers with high accuracy. Since the
algorithm does not require attacker data during the training
phase, it is a self-sufficient and low-cost solution. The method
has a latency of 2.114 seconds per device and security analysis
of the proposed protocol proves its security against proxy and
de-synchronization attacks.

Index Terms—Internet of Things, Fingerprinting, Anomaly
Detection, Deep Learning, Trust Management

I. INTRODUCTION

The Internet of Things (IoT) is an aggregation of low
to high-power devices that collect, process, or share data
with each other via a communication network such as the
Internet. Various IoT paradigms including smart cities, smart
grids, smart healthcare, smart agriculture, smart industry, smart
supply chain, and intelligent transportation systems have been
enabled over the past decade by taking advantage of sensing

This research is supported by the National Research Foundation, Singapore
and Infocomm Media Development Authority under its Future Communica-
tions Research Development Programme, under grant FCP-NUS-RG-2022-
019. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore and Infocomm Media Development
Authority.

[1], processing technologies such as cloud and edge computing
[2], machine learning [3], and 5G/6G telecommunication [4]
to make processes cheaper, reliable and efficient [5]. How-
ever, due to their distributed, and multi-layered architecture,
IoT networks are prone to cyber attacks targetting network
availability, user privacy, and device or data integrity [6].

Threats to device integrity such as proxy attacks are preva-
lent in low-power, low-cost devices such as sensors and
microcontrollers, and timely detection of compromised nodes
is a difficult and important challenge. Although a few efficient
network-based fingerprinting algorithms have been developed
[7, 8], such methods are vulnerable to attacks that mimic the
device’s network activity to avoid detection. In such cases,
it is necessary to evaluate the devices at a much lower level
to achieve trust in the network. Distributed remote attestation
protocols using Physically Unclonable Functions (PUF) and
blockchain show promise in this regard [9]. A few other studies
propose PUF-based protocols for malware mitigation [10] and
mutual authentication [11]. The authors in [12] showed that
the uniqueness of initial SRAM states in RFID tags due to
manufacturing variability can be used to generate fingerprints.
Similarly, another study on radio frequency transmitters iden-
tifies a similar property for wireless transmitters and proposes
a deep learning-based classifier for a fixed number of devices
[13]. However, problems may arise when a new device is
introduced into the network. In this case, the singular detection
network must be retrained to accommodate the new device.
Furthermore, classification schemes are limited in their ability
to detect unknown anomalies owing to the necessity for prior
knowledge of the attack in the form of data. Studies on
intelligent low-cost anomaly detection in vehicular networks
solve this problem with a prior anomaly-data-less classification
scheme using generative networks and reconstruction error
thresholding to perform a ”one vs any” classification [14, 15].

It is apparent from the above discussion that the existing
techniques are vulnerable to cyber attacks that mimic network
activity, and threaten physical integrity. There are also prob-
lems when previously unknown devices enter the network.
To solve these issues, this paper proposes an intelligent fin-
gerprinting algorithm and the corresponding mutual authen-
tication protocol to manage the trustworthiness of resource-
constrained IoT devices. The fingerprinting algorithm is built

2

TABLE I: Notations used in this paper.

Notation Description
IDi Identity of IoT device i
GNi Generative network of IoT device i
Ti Anomaly threshold of IoT device i

Parami Algorithm parameters GNi and Ti

RE Reconstruction error
MSE Mean squared error

N Nonce
kAV Secret symmetric key between device A and V
Mk Message M is encrypted using key k

H(X) Hash of X
|| Concatenation operator
P Probability of brute force attack

on two underlying concepts: the unique pseudo-randomness of
the SRAM and the anomaly detection capability of generative
networks. Furthermore, it is a self-sufficient method since it
does not require anomalous device data prior to the testing
phase. The contributions of this paper are as below.

1) An intelligent and secure algorithm to verify resource-
constrained IoT devices using their initial power-up
SRAM states as a physical fingerprint. Given an SRAM
size, the proposed algorithm can decipher between de-
vices of identical architectures manufactured by the same
as well as different manufacturers. The algorithm consists
of simplistic two-layer generative networks and simple
mathematical operations.

2) A mutual authentication-based protocol is proposed.
3) Security analysis is conducted to verify the security of

the proposed algorithm and protocol.
4) Experimental evaluation of the proposed fingerprinting

technique on actual hardware.
Table I provides a short description of the notations used in

this paper. The remainder of the paper is organized as follows:
Section II discusses the bases of the proposed fingerprinting
algorithm. Section III describes the system model considered
in this paper. The proposed algorithm and protocol are pre-
sented in Sections IV and V, respectively. Section VI details
the experimental setup used following which the results are
presented in Section VII. Security analysis and the proof are
done in Section VIII and the paper is concluded in Section
IX.

II. BASES OF THE PROPOSED TECHNIQUE

The proposed algorithm discussed in Section V is built on
two underlying concepts: the unique initial pseudo-random
power-up SRAM states and the anomaly detection properties
of generative networks. This section discusses these two
concepts in detail.

A. Initial Pseudo-random Power-up SRAM States

Static Random Access Memory (SRAM) is a type of volatile
memory. Unlike Dynamic Random Access Memory (DRAM),
which must be periodically refreshed due to high volatility, an
SRAM retains data for as long as it is powered up because of

VDD

M6M5

M2 M4

M3M1

WL

BLBL

Q
Q

Fig. 1: A typical 6T SRAM cell.

its latched circuit design. Figure 1 shows a typical 6 transistor
(6T) SRAM cell which comprises 6 MOSFETs numbered
M1 −M6. M1 −M4 form two cross-coupled inverters that
store a single bit value, while M5 and M6 control access to
a storage cell for read and write operations. The World Line
(WL) controls the hold/read/write operations while the two
Bit Lines (BL and BL) carry the data. Q and Q form states
(QQ) driven by the inverters, which take on the values 00, 01,
or 10 for power off, data bit 0, and data bit 1, respectively.
States 01 and 10 are stable inverter states and either of the
two is selected based on a threshold mismatch occurring at
the time of manufacturing, thermal noise, and shot noise. In
the case of heavy threshold mismatch, the SRAM cell is biased
towards one of the two states and not affected by noise. When
the threshold mismatch is low, noise is sufficient to change the
state. These tendencies result in power-up SRAM states which
are unique to each device and cannot be feasibly replicated.
This is supported by a study conducted on RFID tags that
showed the applicability of initial SRAM states of RFID tags
as a physical fingerprint [12] and forms the first basis of this
paper.

Furthermore, the SRAM is divided into two broad sections:
.data and stack, based on the type of variables declared in
the firmware. The .data section occupies the initial bytes of
the SRAM and stores the global-initialized and uninitialized
variables, while the stack stores the run-time data including
local and dynamically allocated variables, and function and
interrupt return addresses. For a given firmware and device
type, the .data section is the same no matter what device it
is deployed on. Since the initial power-up SRAM state of a
device loaded with a certain code does not contain run-time
data, the pseudo-random initialization located in the stack must
be used instead. Thus, this paper exploits the SRAM stack for
the purpose of fingerprinting.

B. Generative Networks, Reconstruction Error, and Anomaly
Thresholds

Generative networks (GN) are a class of unsupervised deep
neural networks that learn patterns in the input distribution and
generate an output distribution mapped to the input. A widely
known example of GNs is the Generator Adversarial Network
(GAN) [16], consisting of a generator and discriminator net-
work playing a two-player zero-sum minimax game. These
networks have been popular in anomaly detection studies [17].

3

Appliance SensingSecurity

MedicalUtility

Verifier (V)

Request

Response Internet

Adversary
Cloud

Trusted

Compromised

Fig. 2: System model.

However, in this paper, our goal is to use a generator network
to develop a lightweight solution that can be trained and
deployed on low-capability devices.

In the case of reconstruction, a single GN may recreate
the input data in the output. Therefore, the Reconstruction
Error (RE), defined as the Mean Squared Error (MSE) between
the original and reconstructed trace, measures the closeness
of a reconstructed trace to the original input. It also acts
as a simplified decision variable that can be analyzed to
give a decision on a possibly complicated input distribution.
Equations 1 and 2 are used for calculating the RE and MSE,
respectively.

RE(input) = MSE(input,GN(input)), (1)

MSE(x1, x2) =
1

n

n∑
i=1

(x1i − x2i)
2, (2)

where GN(input) is the reconstructed input , and x1 and x2

are two vectors of size n. Since the quality of reconstruction
is inversely proportionate to its RE, a GN is trained to
minimize its RE on the training distribution during the training
phase. Furthermore, the highest RE for the training distribution
corresponds to the maximum permissible error for the input
distribution and may be used as a threshold, which we can call
the anomaly threshold (T). It is mathematically represented as

T = argmax(REinput), (3)

where REinput is the set of RE values for all samples of the
input distribution derived from its trained GN. The significance
of this metric lies in its anomaly detection capability, i.e., when
the network faces an input belonging to another distribution,
the resulting RE should lie above T. However, when an

authentic sample is used, the resulting RE is expected to lie
below T. It thus enables us to do a ”one vs any” classification
statistically, without the need to train on the anomalous data,
making this approach self-sufficient. This has been shown in
recent studies on intrusion detection in vehicular networks
[14, 15] and is a handy observation constituting the second
basis of the proposed fingerprinting algorithm.

In the context of device fingerprinting, since the pseudo-
random power-up SRAM states of a device are unique to
itself, a GN trained on one device’s SRAM fingerprint should
have lower RE on samples from the same device, and higher
RE on samples from another device. RE is thus a simplified
decision variable derived from an SRAM trace that can be
used to fingerprint a device. As the results of this paper show,
an RE below the anomaly threshold is sufficient to fingerprint
a device, while one above the threshold is sufficient to show
an anomaly.

III. SYSTEM MODEL

Figure 2 shows the system model considered in this paper. It
is a typical IoT network comprising diferent types of devices
connected to a verifier over the internet. We assume that each
IoT device has a preshared secret key k with the verifier.
Furthermore, they also have a preshared set of emergency
nonces that are used in the event of synchronization errors
(discussed in Section V). The two overall entities in the
network are:

1) Prover: The prover (P) is a resource-constrained IoT de-
vice in the network that must be fingerprinted. Upon receiving
a fingerprint ”request” from the verifier, P sends its SRAM
fingerprint as a ”response” via a wireless or wired channel
depending on the device. A prover may be an authorized
registered device, or an unauthorized device (adversary).

4

2) Verifier: The verifier (V) is a secure and trusted com-
puter that sends fingerprinting requests to the provers via a
wireless or wired channel, collects their SRAM fingerprints,
and verifies them using the locally deployed fingerprinting
algorithm via the proposed protocol. To ensure trust in the
network, the verifier periodically initiates one run of the
protocol for each registered device. Once identified, it also
stores relevant information to mitigate the adversary’s effect
on the network.

IV. PROPOSED FINGERPRINTING ALGORITHM

The proposed fingerprinting technique comprises of two
phases: registration and authentication.

A. Registration phase

An IoT network may consist of a number of IoT devices
that must first be registered on the fingerprinting algorithm
through the registration phase as depicted in Figure 3. The goal
of this phase is to obtain the trainable GN weight parameters
(GNi) and the anomaly threshold (Ti) for a device IDi. These
parameters are collectively called the algorithm parameters
(Parami) of the device. To register a device, the verifier first
creates a fingerprinting dataset by sampling a number of initial
power-up SRAM states. The dataset is preprocessed and used
to train the reconstruction network GNi which is then used
to select Ti using Equation 3. The resulting parameters are

Verifier

GN training

Preprocessing

Trained GNi
parameters

Threshold selection

Ti

Data collection

Shape: (200,32,64)

Shape: (200,1864)

Fingerprinting dataset

Parami

Save

IoT Device (IDi)

Fig. 3: Registration phase.

Prover (IDA)

Preprocessing

array([0.929, 0.278, ..., 0.709, 0, 0.356])

Shape: (1,32,64)

Shape: (1,1864)

GNA

array([0.488, 0.273, ..., 0.711, 0, 0.374])

MSE

1 if (RE< TA)
else 0

Binary decision

Shape: (1,1864)

Compare

Shape: (1,1)

Reconstruct

Verifier Data collection

SRAM trace (ST)

Fig. 4: Authentication phase (ParamA).

saved in the verifier’s memory as Parami along with IDi.
This concludes the registration process for IDi and the process
is repeated for all authorized devices in the network. In this
way, the verifier stores a list of IDs of all authorized IoT
devices, their corresponding algorithm parameters, and a list
of randomly generated nonces LR. Note that LR is also stored
in the IoT device.

B. Authentication phase

Figure 4 shows the authentication phase. During this phase,
the verifier collects one SRAM trace (ST) from a prover
(IDA) and forwards it to the trained GNA network for
reconstruction. The RE is evaluated and compared to TA. If
the resultant RE lies below TA, the prover is verified as IDA

(binary 1), else it is labeled as unauthorized (binary 0). The

5

Verifier (IDV)Prover (IDA)

Read nonce N1
m1 = {IDA, IDV, N1}kAV

I1 = H(IDA || IDV || m1 || N1 || kAV)

Decrypt m1 = {IDA, IDV, N1}
Verify N1, I1

Read SRAM ST
Generate nonce N2

m2 = {ST, N2}kAV
I2 = H(IDA || m2 || N1 || N2 || kAV)

Decrypt m2 = {ST, N2}
Verify I2

Evaluate ParamA(ST)
Generate nonce N3

Update nonce N1 with N3
m3 = {IDA, IDV, N3}kAV

I3 = H(IDA || IDV || m3 || N2 || N3 || kAV)

Decrypt m3 = {IDA, IDV, N3}
Verify I3

Save nonce N3

IDV, m1, I1

m2, I2

m3, I3

1

2

3

4

Fig. 5: The proposed fingerprinting protocol.

verifier fingerprints the prover by evaluating ParamA(ST)
using the equation below.

Param(ST) =

{
0, RE(ST) > TA

1, otherwise
, (4)

where RE is evaluated using Equation 1 and TA is the
anomaly threshold of the authorized device IDA. The authen-
tication phase is deployed in Step-2 of the proposed protocol,
discussed in the next section.

V. PROPOSED PROTOCOL

To identify compromised nodes in the IoT, the verifier
periodically authenticates the IoT devices based on the fin-
gerprinting algorithm. Figure 5 shows the proposed protocol.
To verify the identity of a prover, the verifier must initiate one
run of the protocol which involves the following four steps.

1) The verifier (IDV) first attempts to establish a secure
connection with a previously registered device in the

network, say IDA, and sends an SRAM fingerprint
request. The first connection to an IoT device happens
using one of the reserved nonces shared by the device
and the verifier, represented by N1. Subsequently, the
nonce generated in step 3 is used. The verifier encrypts
IDA, IDV , and N1 into message m1 using their shared
secret key kAV and creates an authentication parameter
I1 = H(IDA||IDV ||N1||kAS). IDV , m1 and I1 are
then sent to the prover.

2) The prover uses IDV to select the corresponding key
kAV for decrypting m1. It then uses the decrypted
information to verify I1 and N1 where N1 is matched
with the list of reserved nonces stored in the IoT device.
If successful, it reads one SRAM trace ST , generates a
random nonce N2, and encrypts them into a message m2.
It also creates the authentication parameter I2 and sends
m2 and I2 as an authentication response to the verifier.
Since the verifier is assumed to be a trusted device, I1
is always authentic. However, if that assumption is not
made and the verification of I1 is unsuccessful, the prover
identifies the supposed verifier as a malicious entity and
blocks future connection requests from it.

3) The verifier decrypts message m2 to retrieve ST and N2,
and uses the decrypted data to verify I2. If successful,
it evaluates ST on the algorithm parameters, ParamA,
to obtain a fingerprint decision as per Equation 4. If
the result is 1, the verifier has successfully attested the
prover and it sends an encrypted message m3 and hash
I3 as acknowledgment. It also updates N1 for the next
connection with N3. However, if ParamA(ST) returns
0 or the verification of I2 is unsuccessful, the protocol
deletes ParamA from the verifier memory and adds
it to the list of untrusted devices, blocking all future
connection requests from this device. In this way, the
unauthorized device is isolated and does not impact the
network.

4) The prover decrypts m3 and verifies I3. If successful, it
updates the nonce N1 with N3 for the next connection
with the verifier.

VI. EXPERIMENT DESIGN

This section details the experimental setup of the paper.

A. Prover Devices

Three UNO Rev3 devices: Uno1, Uno2 and Uno3 were
used as provers in this paper, of which two devices (Uno1 and
Uno2) were genuine Arduino products, while the third (Uno3)
was manufactured by Elegoo. The provers were loaded with an
Arduino IDE file containing the necessary code to retrieve their
2kB SRAM traces. This setup helps us test the fingerprinting
algorithm on devices of identical architecture manufactured by
the same as well as different manufacturers.

B. Verifier Device and Simulation Environment

The verifier in this paper was a Dell Inspiron laptop with a
3 GHz 11th Gen Intel i7 vPRO processor and a 16 GB DDR4

6

0 250 500 750 1000 1250 1500 1750 2000
Byte

0
100

Sa
m

pl
e

(a) Uno1

0 250 500 750 1000 1250 1500 1750 2000
Byte

0
100

Sa
m

pl
e

(b) Uno2

0 250 500 750 1000 1250 1500 1750 2000
Byte

0
100

Sa
m

pl
e

(c) Uno3

Fig. 6: The 2kB SRAM fingerprint dataset.

DRAM. The fingerprinting algorithm and data collection pro-
grams were written in Jupyter Notebooks and run on the
laptop CPU. The main python libraries used in this paper were
keras-2.9.0, numpy-1.21.5, pandas-1.4.2, matplotlib-3.5.1, and
pyserial-3.3.

C. Dataset and Preprocessing

Figure 6 shows the 2kB SRAM fingerprint dataset collected
for the three devices. 200 initial power-up SRAM states were
collected manually for each prover by resetting the power
to the devices. Looking at the memory usage results of the
Arduino IDE, it was seen that the .data section occupied 184
bytes for all provers. The remaining 1864 bytes corresponding
to the stack were selected for fingerprinting and divided by
a factor of 255 to normalize the values to a range of [0,1].
The samples were randomized and the first 175 samples
were used as training data while the remaining 25 were used
for testing. Furthermore, 10 additional samples from Uno1
were collected at different times and under different physical
conditions to verify the robustness of the approach against
varying environmental factors.

D. Generative Network Architectures

Three identical multi-layer perceptron networks were used
as the device-specific GNs (GN1, GN2, and GN3). The
selected architecture is simplistic and comprises an input
layer of 1864 normalized input bytes, one hidden layer of
20 neurons, and an output layer of 1864 neurons for the
reconstructed bytes. All layers are activated using the ReLU
function. Additionally, a dropout of 0.2 is introduced for the
hidden layer. Although Stochastic Gradient Descent (SGD)
has been shown to perform better than the Adam optimizer
[18], the latter performs better in this experiment and is the
optimizer of choice. The models were trained using MSE
for 200 epochs at a learning rate of 0.001. Figure 7 shows

TABLE II: Prover authorization (%) using the three sets of
algorithm parameters.

S.No. Algorithm parameters Registered device Prover fingerprint (%)
Uno1 Uno2 Uno3

1 Param1 Uno1 100 0 0
2 Param2 Uno2 0 100 0
3 Param3 Uno3 0 0 100

TABLE III: Execution time analysis on Jupyter notebook and
the Intel i7 vPRO processor laptop.

Trace retrieval
and processing (s)

Evaluation (s)
Param1 Param2 Param3

2.1 0.0125 0.014 0.014

the learning curves for the three GNs on the 2kB SRAM
fingerprint dataset shown in Figure 6.

E. Anomaly Threshold Selection

Using Equation 3 on the train and test samples of the
three devices, 0.0223, 0.0155, and 0.0124 were selected as
the anomaly thresholds T1, T2, and T3, respectively.

F. Algorithm Parameters

The obtained GNs (GN1, GN2, and GN3) and anomaly
thresholds (T1, T2, and T3) were stored on the verifier as
three sets of algorithm parameters (Param1, Param2, and
Param3).

VII. RESULTS

Figure 8 shows the detection box plots of the three provers
on their respective algorithm parameters. The figure can be
interpreted as follows: In Figure 8a, samples from Uno1 lie
below its anomaly threshold (T1 = 0.0118), while those from
Uno2 and Uno3 lie above it. This means that Param1 is able
to fingerprint Uno1 and detects Uno2 and Uno3 as unknown
devices. A similar inference can be made from Figures 8b and
8c. Table II shows that the proposed fingerprinting technique
can identify authorized devices with 100% accuracy. Addi-
tionally, a 0% detection means the parameters detect a device
different from their registered device. Based on the results, it
can be inferred that one test sample is sufficient to evaluate
each device, i.e., one run of the authentication protocol.

Table III shows the execution time for the fingerprinting
process. The data sampling and preprocessing take 2.1 seconds
per sample, while the prediction and error evaluation takes
0.0125 to 0.014 seconds. Since the proposed algorithm uses
simplistic MLP networks and simple operations, it can also
be deployed on low-power verifiers compatible with machine
learning.

The obtained results validate the intended functionality of
the proposed algorithm. Furthermore, the device-specific algo-
rithm parameters can differentiate between the registered and
unknown devices without the need to train on data from the
latter. This means that the proposed method is self-sufficient
and can perform a ”one vs any” classification.

7

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
M

SE

train loss
validation loss

(a) GN1

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
SE

train loss
validation loss

(b) GN2

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

train loss
validation loss

(c) GN3

Fig. 7: Train and validation loss for the three generative
networks.

VIII. SECURITY ANALYSIS

Lemma 1. The behavior of the SRAM cannot be predicted.

Proof. Analysis of the pseudo-random SRAM states of the
stack shows a list of possible values for each byte which are
distinct for each prover. Assuming that every combination of
unique byte values across all bytes is possible, the probability
(P) of predicting the entire 1864-byte stack correctly can be
calculated using the equation

Uno 1 Uno 2 Uno 3
Devices

10 2

10 1

RE

0.0223

threshold

(a) Param1

Uno 1 Uno 2 Uno 3
Devices

10 2

10 1

RE
0.0155

threshold

(b) Param2

Uno 1 Uno 2 Uno 3
Devices

10 2

10 1

RE

0.0124

threshold

(c) Param3

Fig. 8: Fingerprint boxplots of test samples using the three
algorithm parameter sets.

P =

1864∏
i=1

Pi (5)

where Pi is the probability of correctly predicting byte
i. Based on our experiments, this value has a lower bound
of 10−3800. Factoring in the loose assumption of exhaustive
combinations which is generous towards the attackers, the
actual probabilities are expected to be even lower. Thus, the
SRAM trace is unique to each device and the adversary
can make a random guess to predict the state of a stack.

8

Therefore, the advantage of an adversary is bounded by
AdvSRAM

A ≤ 1
10−3800 . Note that for practical reasons, the

number of stack bytes used for fingerprinting may be reduced
based on the required security level.

The discussion in Section II and results from Section VII
support the universality of this lemma.

Theorem 2. Authentication: If a verifier completes one run of
the protocol, it has indeed done so with a legitimate device.

Proof. An adversary may attempt a proxy attack. In this
type of attack, an adversary uses an identical IoT device to
impersonate an authorized IoT device. To successfully launch
a proxy attack, an adversary needs to send an authentic SRAM
trace to the verifier in response to an authentication request.
However, by Lemma 1 this is not possible. Thus, it is not
possible for an adversary to authenticate itself as a legitimate
IoT device.

Theorem 3. Availability: An IoT device registered with the
verifier is always available.

Proof. An adversary may launch a Denial of Service (DoS)
attack by impersonating as a legitimate verifier [19] and send-
ing authentication requests more frequently. To successfully
launch this type of attack the adversary must generate a valid
authentication parameter I1 = H(IDA||IDV ||m1||N1||kAV).
However, this is not possible without knowledge of the secret
key kAV shared between the prover and the verifier only.

An adversary may also attempt at replaying a previously
sent authentication request. To successfully launch this type of
attack the adversary needs to generate a valid authentication
parameter I1. However, this is not possible without knowledge
of the nonce N1, which can not be revealed without knowledge
of the secret key KAV .

The adversary may also affect the availability of an IoT
device by dropping message 2 sent by the prover to the verifier
(carrying the authentication response) or message 3 sent by
the verifier (carrying the new value for the initiating random
nonce, i.e., N3) to the prover. This type of attack is called a
de-synchronization attack. However, the verifier maintains an
extra list of random nonces, LR, as described in Section IV,
which it can use to re-synchronize with an IoT device.

Thus, the proposed protocol is secure against DoS attacks
and ensures availability of the IoT devices.

IX. CONCLUSION

This paper proposed a lightweight, intelligent algorithm for
hardware fingerprinting and the corresponding authentication
protocol using initial power-up SRAM states as a physical
fingerprint to manage trust in IoT networks. SRAM sam-
ples from three Arduino UNO provers were used to train
their respective generative networks and evaluate anomaly
thresholds. The resulting algorithm parameters were tested on
data from all three devices. The results showed the ability
of the proposed method to fingerprint registered devices and
detect unauthorized ones with 100% accuracy. Execution-time
analysis of the proposed results showed the practicality of
the proposed method, with 2.1 seconds needed to collect and

preprocess a trace and 0.0125 to 0.014 seconds for evaluation.
To maintain trust in the IoT network, the verifier initiates
the protocol with each IoT device periodically. Based on the
outcome, devices may be flagged as compromised. The brute
force attack probability was found to be of the order 10−3800

and a security analysis of the proposed protocol shows that it
is secure against various types of attacks.

REFERENCES
[1] G. M. Honti and J. Abonyi, “A review of semantic sensor technologies

in internet of things architectures,” Complexity, vol. 2019, 2019.
[2] K. Cao, S. Hu, Y. Shi, A. W. Colombo, S. Karnouskos, and X. Li,

“A survey on edge and edge-cloud computing assisted cyber-physical
systems,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11,
pp. 7806–7819, 2021.

[3] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge
intelligence: Multiaccess edge computing for 5g and internet of things,”
IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6722–6747, 2020.

[4] L. Chettri and R. Bera, “A comprehensive survey on internet of things
(iot) toward 5g wireless systems,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 16–32, 2019.

[5] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of things is a revolu-
tionary approach for future technology enhancement: a review,” Journal
of Big data, vol. 6, no. 1, pp. 1–21, 2019.

[6] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[7] K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting of iot
devices in the cyberspace,” Computer networks, vol. 148, pp. 318–327,
2019.

[8] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gu-
rusamy, “Deft: A distributed iot fingerprinting technique,” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 940–952, 2018.

[9] U. Javaid, M. N. Aman, and B. Sikdar, “Defining trust in iot en-
vironments via distributed remote attestation using blockchain,” in
Proceedings of the Twenty-First International Symposium on Theory,
Algorithmic Foundations, and Protocol Design for Mobile Networks and
Mobile Computing, 2020, pp. 321–326.

[10] M. N. Aman, M. H. Basheer, and B. Sikdar, “A lightweight protocol
for secure data provenance in the internet of things using wireless
fingerprints,” IEEE Systems Journal, vol. 15, no. 2, pp. 2948–2958,
2021.

[11] M. N. Aman, K. C. Chua, and B. Sikdar, “Mutual authentication in iot
systems using physical unclonable functions,” IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1327–1340, 2017.

[12] D. E. Holcomb, W. P. Burleson, K. Fu et al., “Initial sram state as
a fingerprint and source of true random numbers for rfid tags,” in
Proceedings of the Conference on RFID Security, vol. 7, no. 2, 2007,
p. 01.

[13] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning
for rf device fingerprinting in cognitive communication networks,” IEEE
journal of selected topics in signal processing, vol. 12, no. 1, pp. 160–
167, 2018.

[14] V. Kohli, A. Chougule, V. Chamola, and F. R. Yu, “Mbre ids: An
ai and edge computing empowered framework for securing intelligent
transportation systems,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2022, pp. 1–6.

[15] A. Chougule, V. Kohli, V. Chamola, and F. R. Yu, “Multibranch
reconstruction error (mbre) intrusion detection architecture for intelligent
edge-based policing in vehicular ad-hoc networks,” IEEE Transactions
on Intelligent Transportation Systems, 2022.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[17] M. Sabuhi, M. Zhou, C.-P. Bezemer, and P. Musilek, “Applications
of generative adversarial networks in anomaly detection: a systematic
literature review,” IEEE Access, vol. 9, pp. 161 003–161 029, 2021.

[18] N. S. Keskar and R. Socher, “Improving generalization performance by
switching from adam to sgd,” arXiv preprint arXiv:1712.07628, 2017.

[19] M. N. Aman, H. Basheer, J. W. Wong, J. Xu, H. W. Lim, and B. Sikdar,
“Machine-learning-based attestation for the internet of things using
memory traces,” IEEE Internet of Things Journal, vol. 9, no. 20, pp.
20 431–20 443, 2022.

	Introduction
	Bases of the Proposed Technique
	Initial Pseudo-random Power-up SRAM States
	Generative Networks, Reconstruction Error, and Anomaly Thresholds

	System Model
	Prover
	Verifier

	Proposed Fingerprinting Algorithm
	Registration phase
	Authentication phase

	Proposed Protocol
	Experiment Design
	Prover Devices
	Verifier Device and Simulation Environment
	Dataset and Preprocessing
	Generative Network Architectures
	Anomaly Threshold Selection
	Algorithm Parameters

	Results
	Security Analysis
	Conclusion

