
Physically Secure Mutual Authentication for IoT
Muhammad Naveed Aman, Kee Chaing Chua, and Biplab Sikdar

Department of ECE,
National University of Singapore, Singapore

Abstract—Many devices in the Internet of things (IoT) have
special and challenging design requirements including limited
size, energy, storage, and processing capabilities. Moreover, many
IoT devices may be deployed in the open and in public places,
making them vulnerable to physical and cloning attacks. These
characteristics dictate that any security protocol designed for
IoT devices should not only be efficient but should also provide
security even if an IoT device is captured by an adversary. To
solve this issue, we present mutual authentication protocols for
IoT devices that are not only efficient but also secure against
physical and cloning attacks. To provide security to physically
unprotected devices, the proposed protocols use physical unclon-
able functions (PUFs) and avoid storing sensitive information on
the device. A security and performance analysis of the proposed
protocols is presented.

I. INTRODUCTION

IoT systems will change the way we work, think, and
interact with objects as well as with each other. The explosive
growth of autonomously communicating “devices” has caused
the devices to outnumber human beings by a ratio of 1.5 to
1 [1]. IoT devices typically have a low cost, with limited
processing power and energy. Any protocol or application
designed to run on IoT devices, including those for security,
thus needs to be very efficient in terms of computational
complexity and energy requirements. Moreover, traditional
security protocols for the Internet were designed for physically
protected devices such as personal computers. However, IoT
devices may be easily accessible by an adversary. Thus, the
simple nature, no physical protection and constrained re-
sources put security at the forefront for designing IoT systems.

As an alternative paradigm for providing security primi-
tives, physical or physically unclonable functions have gained
popularity in the security domain and their practicality has
been demonstrated by recent works. PUFs are a result of
the manufacturing process of Integrated Circuits (ICs) which
introduces random physical variations into the micro structure
of an IC, making it unique. These variations in the micro
structure of an IC cannot be controlled, making them virtually
impossible to clone or duplicate. PUFs are ICs which use their
internal structure to provide a one-way function that can not
be duplicated. The fact that PUFs are hard to predict but easy
to construct and evaluate makes them a good choice for use
as security primitives for IoT devices.

The focus of this work is to design an authentication pro-
tocol for IoT systems, which is not only secure against other
forms of compromise but also provides superior protection
against physical and cloning attacks. For this purpose, we use

978-1-5090-5569-2/17/$31.00 c©2017 IEEE

a challenge-response based mechanism using PUFs. The use
of PUFs serves the purpose of protecting a device from being
cloned. Our design requirements also include not storing any
sensitive information on an IoT device to avoid leakage of
data or security keys. We desire to meet these requirements
with scalability, i.e., keeping the storage requirements at the
server to the minimum.

The rest of the paper is organized as follows. In Section
II we discuss the related work. Section III presents a brief
introduction to PUFs, the network model, assumptions and
attack model. The proposed mutual authentication protocols
are presented in Section IV. Section V proves the correctness
of our protocols. The security and performance analysis of
the proposed protocols are presented in Sections VI and VII.
Finally we conclude the paper in Section VIII.

II. LITERATURE REVIEW

Existing literature for authentication in IoT systems are
either too computationally complex or require sensitive in-
formation to be stored in the IoT device [2], [3], [4], [5].
The existing literature on using PUFs for authentication is not
extensive. Most of the work is focused reliably computing a
PUF response to a challenge [6], [7]. Similarly, some literature
describe techniques for implementing authentication protocols
on reconfigurable hardware for the purpose of intellectual
property (IP) protection [8], [9]. In other work, PUFs are used
for designing protocols for wireless sensor networks (WSNs)
and radio frequency identification (RFID) systems [6], [10],
[11]. However, most of these protocols store secret keys on the
device’s memory. Moreover, most of the PUF based protocols
are not scalable in the sense that they require the server to
store a large number of parameters for each device. Similarly,
existing authentication protocols based on smart cards also
require some information to be stored on the card. In contrast,
the proposed protocols do not store any secret information on
the device’s memory and are scalable at the same time.

In a related work, the authors of [12] propose an authenti-
cation protocol based on PUFs. The protocol does not require
any secrets on the device and is also scalable. However, their
protocol requires a user to input a password for authentication
as well as enrollment with the server. Since most IoT devices
are not operated by humans, this protocol is not suitable
for IoT systems. This paper is an extension of our previous
work [13], and provides a mechanism for two way device
authentication as well as a formal verification of the protocols.

2

Fig. 1: Network Model

III. BACKGROUND, NETWORK MODEL AND
ASSUMPTIONS

A. Preliminary Background

In this section we present a short description of PUFs.
A PUF can be considered as a function that maps a set of
challenges to a set of responses based on a unique physical
micro structure. A PUF has the following properties:

• Output depends on a physical system.
• Easy to evaluate and construct.
• Output is unpredictable and looks like a random function.
• Virtually impossible to duplicate or clone a PUF [14].

A PUF is characterized by a challenge-response pair (CRP). It
is an IC which takes a string of bits as an input challenge and
produces a string of bits called the response. The response R
of a PUF P to a challenge C can be represented as follows:

R = P (C). (1)

B. Network Model

We assume each IoT device is equipped with a PUF. The
IoT devices are connected with a data center using the Internet
through border router elements such as 6LoWPAN. Figure 1
describes our network model.

C. Assumptions

In this paper, we make the following assumptions regarding
the system:
a. An IoT device consists of a microcontroller attached to

a PUF. As the PUF output depends on its unique physical
characteristics, any attempt to tamper with the PUF changes
the behavior of the device and renders the PUF useless.

b. An IoT device is considered to be a system on chip, and it
is not possible to tamper with the communication between
the micro controller and its PUF [15], [16].

c. IoT devices have limited resources while the servers in
the data center are considered secure and have no such
limitation.

d. We denote the ID of an IoT device, XOR operation,
hash of X, and concatenation by IDx, ⊕, H(X), and
‖, respectively. Moreover, the challenge and response for

the i-th round of the protocol are denoted by Ci and Ri,
respectively. An expression Ex evaluated using the values
from a received message is represented by [Ex]REC .

D. Attack Model

We assume that the IoT devices may be deployed out in the
open and are not physically protected. An adversary can easily
access the device and subject it to physical or cloning attacks.
We assume an adversary can compromise one or more network
entities and can inject packets, eavesdrop, initiate a session,
replay older messages and mimic other devices. We assume
that the adversary aims to launch an undetectable attack to
authenticate itself with the server or any of the IoT devices.

IV. PROPOSED MUTUAL AUTHENTICATION PROTOCOLS

In this section we describe the proposed mutual authentica-
tion protocols. Separate protocols for mutual authentication are
presented for two scenarios: (i) mutual authentication between
an IoT device and a server in the data center, and (ii) mutual
authentication between two IoT devices.

The initial CRP for a device is obtained by the server when
a device is first deployed in the field. An operator inputs a
password into the device and the device can exchange an initial
random CRP with the server using a one time password (OTP)
authentication mechanism. IDA, and the CRP (Ci, Ri) for
each IoT device are stored at the server. However, an IoT
device does not need to store anything.

A. Protocol 1: IoT Device and Server Mutual Authentication

When an IoT device wants to authenticate itself with the
server, the proposed mutual authentication protocol is shown
in Figure 2. Steps for the protocol are as follows:

1) The IoT device sends a randomly generated nonce along
with its identity to the server as shown in message 1 in
Figure 2.

2) The server searches its memory for IDA, and the authen-
tication request is rejected if the search fails. Otherwise,
the server reads the corresponding CRP (Ci, Ri) for this
device from its memory. The server then sends message
2 to IDA as shown in Figure 2. Message 2 contains
a message authentication code (MAC) to ensure data
integrity and freshness. The last parameter in this MAC
i.e., NA is the freshness identifier for the source (the
server in this case). The remaining parameters ensure
data integrity. The same approach is followed for message
freshness, source identifier, and data integrity throughout
the protocol.

3) IoT device IDA uses its PUF to generate Ri using the
challenge Ci. The device then computes NA using Ri as
follows

NA = Ri ⊕
[
Ri ⊕NA

]
REC

. (2)

IDA verifies the MAC using the parameters in its
memory and if the verification fails, authentication is
terminated. Otherwise, the IoT device constructs the new
challenge Ci+1 = H(NA ‖ NB) using a new random

3

Fig. 2: Mutual authentication for IoT device and server.

number NB . IDA then inputs Ci+1 into its PUF to obtain
the new response Ri+1. This new CRP (Ci+1, Ri+1) will
be used for future authentications. The IoT device then
sends message 3 to the server.

4) The server computes NB and Ri+1 using the stored secret
NA. The server then verifies the MAC and sends message
4 to IDA if the verification is successful. Otherwise, the
authentication is rejected.

5) IDA verifies the MAC received in message 4. If the ver-
ification fails the authentication is terminated. Otherwise,
authentication is considered complete.

NA and NB can also be used to construct a session key
between IDA and the server as follows: H(NA)⊕H(NB). It
should be noted that any compromise in this secret key does
not jeopardize the security of the system. An adversary can
not obtain Ri from the secret key, and thus cannot construct
“valid data”.

B. Protocol 2: Mutual Authentication for Two IoT Devices

In this section we present a mutual authentication and key
exchange protocol for the scenario when two IoT devices want
to authenticate each other and form a session. Let us assume
IoT device IDA wants to establish a session with another
IoT device IDB . Figure 3 shows the mutual authentication
protocol for this scenario. The steps for the proposed protocol
are as follows:

1) The IoT device that wants to initiate authentication sends
its ID and a nonce to the IoT device with which it wants
to communicate, i.e., IDB , as shown in Figure 3.

Fig. 3: Mutual authentication of two IoT devices.

2) IDB sends message 2 to the server which contains the
IDs and nonces of the two IoT devices.

3) The server searches its memory and reads the respective
CRPs (Ci, Ri), and (Cj , Rj) for IDA and IDB . The
server then sends message 3 to IDA and message 4 to
IDB .

4) IDA and IDB generate Ri and Rj , respectively, using
their respective PUFs. IDA and IDB compute RS1

and
RS2

using Ri and Rj respectively. Both IoT devices
verify the MACs, and if the verification fails, the con-
cerned IoT device does not respond and terminates the
current authentication attempt. Otherwise, the IoT devices
generate random numbers NA and NB , and compute
their respective new CRPs using their PUFs. IDA sends
message 5, while IDB sends message 6 to the server.

5) The server computes NA, NB , Ri+1, Rj+1 and verifies
the respective MACs for data integrity and freshness. If
the verification fails the server rejects the authentication.
Otherwise, the server sends the random number generated
by IDB , i.e., NB in message 7 to IDA.

6) IoT device IDA computes NB using NA and RS1
. IDA

verifies the MAC in message 7, and if the verification fails
the authentication is terminated. Otherwise IDA sends its

4

Fig. 4: Directed Graph/FSM for Protocol 1

Fig. 5: Directed Graph/FSM for Protocol 2

own random number, i.e., NA to IDB in message 8.
7) IoT device IDB computes NA using NB in its memory

and verifies the MAC in message 8. If the verification fails
the authentication request is rejected. Otherwise, IDB

sends NA − 1 back to IDA in message 9.
8) IDA verifies NA − 1 and the MAC received in message

9. If the verification fails the authentication is rejected.
Otherwise, the verification is complete and IDA and
IDB have successfully authenticated each other.

Similar to Section IV-A, the two IoT devices can now use
NA and NB to establish a secret symmetric key.

V. PROTOCOL VERIFICATION

In this section we present a formal verification of the
correctness of the proposed protocols. To prove correctness
we show that the proposed protocols possess the following
properties [17]:

1) Completeness: The protocol is able to accept all valid
inputs.

2) Deadlock Freeness: The protocol does not enter a state
such that it stays in that state indefinitely.

3) Livelock or Tempo-blocking freeness: The protocol
does not enter into an infinite loop.

4) Termination: When starting from the initial state, the
protocol is always able to reach a well-defined final state.

5) No non-executable interactions: The protocol only con-
tains transmission, reception, and interaction paths that
are realized under normal operating conditions.

We use the technique proposed in [17] to prove the correct-
ness of the proposed protocols. In this technique we first create
a directed graph for each entity of a protocol being verified.
The directed graph can be considered as a finite state machine
(FSM) for that entity. In protocol 1 we have two entities (an
IoT device and a server), and the directed graphs for these
entities are shown in Figure 4. Similarly, the directed graphs
for the three entities of protocol 2 are shown in Figure 5. In
these figures, gA, gB , and gS represent the directed graphs for
the FSMs of IDA, IDB , and the server, respectively. In this

section we refer to IDA, and IDB as A and B, respectively, in
the figures. The state of a protocol machine is represented by
the labeled circles. -m (respectively, +m) on the directed arcs
represent a transmission (reception) of message m. Moreover,
+m/-n represents the reception of message m followed by the
transmission of message n. For example, one run of protocol
1 corresponds to the following interaction paths for gA and
gS :

• gA: [0] -1[1] +2/-3[3] +4[0]
• gS : [0] +1/-2[1] +3/-4[0]

where “[]” represents a state in Figure 4. The above sequence
of activities for IoT device IDA can be interpreted as: IDA

starts in state 0, sends message 1 to the server and enters
state 1, receives message 2 and transmits message 3 to enter
state 3, and finally receives message 4 to enter state 0 again.
The sequence of activities for the server can be interpreted
in a similar fashion. Note that the final state for both IDA

and the server for protocol 1 is S0, while the final states for
IDA, IDB , and the server for protocol 2 are S6, S6, and S0,
respectively.

The next step to prove the correctness of the proposed proto-
cols is to perform a reachability analysis technique proposed
in [19], [17]. In this analysis we represent the overall state
of the system (consisting of all entities in the protocol) as a
matrix. The state matrices for protocol 1 and 2 are given in
(3) and (4), respectively, as

A A → Server

STATE CHANNEL

Server → A Server
CHANNEL STATE

 (3)

A A → B A → Server
STATE CHANNEL CHANNEL

B → A B B → Server
CHANNEL STATE CHANNEL

Server → A Server → B Server
CHANNEL CHANNEL STATE

. (4)

The elements of the above matrices represent the current state
of the FSM of an entity and the messages sent by the entity.
For example, when the protocol starts all the entities will be
in their initial state, i.e., state 0 in Figures 4 and 5. Now let
us assume IDA sends message 1 to the server in protocol
1. From the FSM of IDA in Figure 4 we can see that IDA

transitions into state 1 after sending message 1. The matrix
for the overall state of the system can then be constructed as
follows: [

S1 1
E S0

]
(5)

The matrix in (5) shows that IDA is in state 1 (element at row
1 and column 1), while the element at row 1 and column 2
shows the contents of the channel from IDA to the server, i.e.,
the message sent from IDA to the server, which in this case is
message 1. Similarly, in this example the server is currently in
state 0 denoted by S0 and has not sent any message to IDA,
represented by the E at row 2 and column 1. We denote the
overall state of the system by SSi, while the constituent states

5

Fig. 6: Reachability Analysis for Protocol 1

of the subsystems (entities) are denoted by Si.
Figures 6 and 7 show the results of the reachability analysis

for protocols 1 and 2, respectively. The reachability analysis
always starts in the initial state SS0. All the protocol entities
are in their respective initial states, i.e., S0 and all the channels
are empty, i.e., E. Moreover, a transition from one system state
to another caused by the transmission (reception) of message
i by entity X is denoted by X−i (X+i) on the respective
directed arcs.

Figure 6 shows that protocol 1 starts with a transition
from SS0 to SS1 when IDA sends message 1, followed
by subsequent transitions. This figure shows the transitions
of the overall system state caused by all the possible inputs,
implying completeness of the protocol. A potential deadlock
state is defined as an overall system state which is not an
initial or final state and does not have any messages in any
channel. Figure 6 shows that the protocol does not have
any potential deadlock states, implying deadlock freeness.
Moreover, the analysis covers all the possible interaction paths,
transmissions, and receptions, and shows that the protocol
does not contain any infinite loops and always ends up in
state SS0. This implies the remaining three properties, i.e.,
livelock freeness, termination, and absence of non-executable
interactions. This shows the correctness of protocol 1.

Similarly, the reachability analysis for protocol 2 shows that
we always start from the initial state SS0 and terminate at the
final state SS18. SS18 is the final state because all the entities
are in their respective final states and the channels are empty.
Note that the overall system state SS19 involves a decision
based on the message contents of the protocol. The system
reaches SS19 when both IoT devices IDA and IDB try to
initiate authentication at the same time. We assume that the
protocol uses the nonces provided by IDA and IDB as the tie
breaker, e.g., if nonceA > nonceB then IDA gets to initiate
the authentication and IDB sends message 2 to the server.
Accordingly, the state machine for IDB transitions to state 2
as shown by the overall system state SS3.

Figure 7 shows that protocol 2 accepts all valid messages
implying the completeness property. We also observe that the
protocol has one potential deadlock state i.e., SS19. However,
SS19 has outgoing transitions depending on a decision based
on the nonces of IDA and IDB as explained above. Therefore
the deadlock is resolved and the protocol can be considered
deadlock free. There are no loops among the overall systems
states implying livelock or tempo-blocking freeness. Figure
7 covers all the transmissions, interaction paths, receptions,
and states, and we see that following any of the interaction

paths we always end up in the final state. This shows that the
protocol possesses the termination property and does not have
any non-executable interactions. Thus, the proposed protocol
is proved to be correct.

VI. SECURITY ANALYSIS

In this section we analyze the security of the proposed
mutual authentication protocols. The automated security verifi-
cation tool ProVerif (PV) [20] was used to thoroughly simulate
and verify the security properties of the proposed protocols.
PV has the ability to prove reachability properties, correspon-
dence assertions, and observational equivalence. Although PV
may not be able to prove a property, however, when PV says
a property holds, the model does guarantee that property. The
IoT devices and the server are modeled as separate processes.
To simulate arbitrarly many sessions of the protocol between
the entities, we instantiate an unbounded number of instances
of these processes. This simulates arbitrarly many sessions of
the protocol between the two parties. The simulation scripts
for protocol 1 and protocol 2 can be found at [21].

A. Security Analysis For Protocol 1

Mutual authentication of the principals IDA and IDS is the
primary objective of the protocol. Thus, when IDA reaches
the end of the protocol, she should be assured that she has
indeed completed the protocol with IDS . Similarly, when IDS

completes a run of the protocol, he should be assured that he
has indeed done so with IoT device IDA. The security of
mutual authentication in the proposed protocols was evaluated
using correspondence assertions. For this purpose we declare
the following events in PV:

• event beginAfull(IDA, IDS , NA, NB), is used by IDS

to represent the start of a protocol run by the IoT device
IDA with NA and NB as the shared secrets.

• event endAfull(IDA, IDS , NA, NB), is used by IDA

to record the belief that she has successfully completed
the protocol with IDS and agrees to the shared secrets
NA and NB .

• event beginBfull(IDA, IDS , NA, NB), is used to
record IDA’s intention to launch the protocol with IDS

with the given protocol parameters.
• event endBfull(IDA, IDS , NA, NB), is used to repre-

sent IDS’s belief that he has successfully completed the
protocol with IDA with the given protocol parameters.

These events are used to prove authentication properties for
protocol 1. The authentication properties we intend to prove
for protocol 1 are as follows:

1) Authentication of IDS to IDA: IDA is only willing
to share her data with the server IDS . Thus, if she
completes the protocol, she has indeed executed the
protocol with IDS . This implies authentication of IDS to
IDA holds. The correspondence assertion used to prove
this property in PV is as follows:

inj−event(endBfull(· · ·)) ==>

inj−event(beginBfull(· · ·)). (6)

6

Fig. 7: Reachability Analysis for Protocol 2

Note that the statement eventA ==> eventB is used to
check the fact that whenever there is an occurrence of the
event eventA, it must always be preceded by the event
eventB .

2) Authentication of IDA to IDS: Server IDS is willing
to establish a session with any of the IoT devices in its
clientele. Thus, if he runs the protocol with IDA, he only
requires authentication from IDA to IDS to hold. The
correspondence assertion used to prove this property in
PV is as follows:

inj − event(endAfull(· · ·)) ==>

inj − event(beginAfull(· · ·)). (7)

Moreover, PV can also be used to establish the (syntactic)
secrecy of NA, NB , and Ri+1 after the protocol is successfully
executed. The following queries in PV are used to prove the
secrecy of the secrets in the proposed protocol.

query attacker(ANa); attacker(BNa); (8)
attacker(ANb); attacker(BNb); (9)
attacker(AR new); attacker(SR new) (10)

where, ANa, ANb, and ARnew are used to prove that NA,
NB , and Ri+1 can be considered good secrets on the site
of principal IDA. Similarly, BNa, BNb, and BRnew are
used to prove the secrecy of NA, NB , and Ri+1 on the
site of principal IDS . PV has the ability to identify any
definite/possible attack, and therefore, we conclude that the
proposed protocol is secure against different types of attacks.

B. Security Analysis for Protocol 2

In this section we discuss the security of the proposed
mutual authentication protocol for two IoT devices. The events
declared to prove mutual authentication between IDA and
IDB in PV for protocol 2 are as follows:

• event beginAfull(IDA, IDB , NA, NB), is used by IDB

to record the initiation of the protocol by the IoT device
IDA with NA and NB as the shared secrets.

• event endAfull(IDA, IDB , NA, NB), meaning IDA

believes that she has successfully completed the protocol
with IDB and both agree on the shared secrets NA and
NB .

• event beginBfull(IDA, IDB , NA, NB), meaning IDA

intends to initiate the protocol with IDB using the given
protocol parameters.

• event endBfull(IDA, IDB , NA, NB), denotes IDB’s
belief that she has successfully completed the protocol
with IDA with the given protocol parameters.

The authentication properties proved for protocol 2 are as
follows:

1) Authentication of IDB to IDA: IDA wants to establish
a session with IDB . Thus, if she completes the protocol,
she has indeed executed the protocol with IDB . This also
implies that IDA and IDB agree on the set of given
protocol parameters. The correspondence assertion used
to prove this property in PV is as follows:

inj − event(endBfull(· · ·)) ==>

inj − event(beginBfull(· · ·)). (11)

2) Authentication of IDA to IDB: If IDB thinks she has
completed the protocol with IDA, she indeed did so with
IDA. The correspondence assertion used to prove this
property in PV is as follows:

inj − event(endAfull(· · ·)) ==>

inj − event(beginAfull(· · ·)). (12)

Similarly, we also define separate events and correspon-
dence assertions in PV to prove the mutual authentication
between IDA and IDS , and IDB and IDS . The details can
be found in the simulation scripts [21]. These authentication
properties are important because the IoT devices update their
CRPs with the server.

To establish the secrecy of the secrets in Protocol 2, we use

7

TABLE I: Computational Burden
Task IoT Device Server

Protocol 1 1NH + 3NMAC + 3N⊕ 3NH + 3NMAC + 3N⊕
[12] 2NH + 2Nexp +N× 1NH + 3Nexp

Protocol 2 5NH + 5NMAC + 7N⊕ 7NH + 5NMAC + 10N⊕

the following queries in PV:

query attacker(ANa); attacker(ANb); (13)
attacker(BNa); attacker(BNb); (14)
attacker(SNa); attacker(SNb); (15)
attacker(ARs1); attacker(SRs1); (16)
attacker(BRs2); attacker(SRs2); (17)
attacker(AR new); attacker(SR newA); (18)
attacker(BR new); attacker(SR newB) (19)

where ANa, ANb, ARs1, and AR new are used to check
the secrets NA, NB , RS1

, and Ri+1 on the site of principal
IDA. The rest of the queries are used in a similar fashion to
prove the secrecy of the secrets on the site of principal IDB

and IDS . Using these queries and correspondence assertions
we have established the security of protocol 2.

C. Protection against Physical Attacks and Cloning

An adversary may get easy access to IoT devices. Therefore,
it is desirable that IoT devices should be safe against cloning
and physical attacks. and do not store any secrets within the
device. Therefore, The proposed protocols require each IoT
device to be equipped with a PUF which makes them safe
against cloning [6], [18]. Moreover, the PUFs are used to
generate the secrets whenever needed and do not rely on any
stored secrets. Stored secrets can lead to leakage of keys using
physical attacks. Most of the existing authentication protocols
proposed for the IoT rely on one or more secrets (in the form
of keys) to be stored in a device’s memory. However, this
approach can lead to leakage of keys using physical attacks.
The proposed mutual authentication protocols do not use any
stored secrets. Moreover, the PUF and micro-controller of
an IoT device are considered inseparable [15]. Therefore, we
can conclude that even if an adversary has access to an IoT
device, he/she can not compromise the security of the proposed
protocols.

VII. PERFORMANCE ANALYSIS

IoT devices have limited resources. Therefore, any protocol
designed for IoT systems should be efficient in terms of mem-
ory, processing, energy, storage, and communication overhead.
In this section we compare the performance of our protocol
with the most relevant PUF based authentication protocol,
proposed by Frikken et al. [12].

A. Computational Efficiency

Table I shows the number of hash (NH), MAC (NMAC),
exclusive-or (Noplus), modular exponentiation (Nexp), and
modular multiplication (N×) operations required by the pro-
posed mutual authentication protocols, and the protocol pro-
posed by Frikken et al. [12]. Note that these values can be

TABLE II: Parameter Lengths
Parameter Size (bits)
ID 8 [28]
NA, NB ,RS1 , RS2 128 [25], [29]
C, R 128 [25]
MAC 32/64/96/128 [26]

directly obtained by counting the occurrence of the respective
operation in Figures 2 and 3.

If we assume the use of message authentication codes using
universal hashing (UMACs) the complexity of calculating the
hash function and MAC is be O(n) [22], [23]. Therefore, the
complexity of both proposed protocols is O(n) on the IoT
device side as well as the server side, where n is the number
bits in the response of the PUF (128 bits in our case). However,
it can be shown that the complexity of [12] is O(n+M(l)k)
on the user as well as the server side, where M(l) denotes
the complexity of a general modular multiplication with l bit
operands, and k is the exponent. M(l) is generally quadratic
in l [24]. This shows that the computational complexity of the
proposed mutual authentication protocols is lower.

B. Communication Overhead

Let us assume the parameter sizes given in Table II. Looking
at Figures 2 and 3, we observe that message 3 is the longest
message in Protocol 1 as well as Protocol 2. We assume the use
of UMAC as the MAC for data integrity. UMAC provides the
flexibility of different levels of security by offering MACs of
varying lengths as given in Table II [26]. Using the maximum
MAC size of 128 bits, the length of message 3 in Protocol 1
is 48 bytes while the length of message 3 in protocol 2 is 50
bytes. This shows that the messages of the proposed protocols
can fit in a single protocol data unit (PDU) of 6LoWPAN
that has a maximum transmission unit (MTU) size of 127
bytes [27]. Moreover, the length of the longest message in
[12] is approximately 68 bytes which is much larger than the
proposed protocols.

C. Storage Requirement

The proposed protocols are very efficient in terms of storage
requirements. Variables such as NA, NB , RS1

, and RS2
are

only stored temporarily during the authentication process and
deleted afterward. Moreover, only one CRP pair (Ci, Ri), and
the ID are stored for each IoT device in the server. In contrast,
most of the protocols in existing literature either require the
IoT devices to store secret information or the server needs to
store a large number of CRPs for each IoT device. However,
these approaches are vulnerable to physical attacks and are
not scalable. The proposed mutual authentication protocols do
not impose these kind of requirements and do not require any
stored secrets.

VIII. CONCLUSIONS

In this paper we presented two mutual authentication proto-
cols: for communication between an IoT device and a server,

8

and between two IoT devices. We showed that the system
remains safe even if an adversary has physical access to an IoT
device. The proposed protocols provide the desired security
characteristics efficiently by exploiting the inherent security
features of PUFs. It is shown that the IoT devices do not
need to store any secrets (such as keys). Moreover, the storage
requirements at the server are also very low. The proposed
protocols can also be used to establish session keys.

REFERENCES

[1] The Internet of Things Reference Model, CISCO, 2014.
[2] V. Shivraj et. al., “One time password authentication scheme based on

elliptic curves for Internet of Things (IoT),” Proceedings of NSITNSW,
pp. 1-6, Riyadh, KSA, Feb 2015.

[3] P. Porambage et. al., “Two-phase Authentication Protocol for Wireless
Sensor Networks in Distributed IoT Applications,” Proceedings of IEEE
WCNC, pp. 2728-2733, Istanbul, Turkey, April 2014.

[4] Y. Kim et. al.,“DAoT: Dynamic and Energy-aware Authentication for
Smart Home Appliances in Internet of Things,” Proceedings of IEEE
ICCE, pp.196-197, Las Vegas, NV, Jan 2015.

[5] V. Petrov et. al.,“Towards the Era of Wireless Keys: How the IoT Can
Change Authentication Paradigm,” Proceedings of IEEE WF-IoT, pp.51-
56, Seoul, South Korea, Mar 2014.

[6] G. E. Suh, and S. Devadas “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” Proceedings of IEEE/ACM
DAC, pp. 9-14, San Diego, CA, June 2007.

[7] E. Ozturk et. al., “Towards Robust low cost authentication for pervasive
devices”, Proceeding of IEEE PerCom, pp. 170-178, 2008.

[8] E. Simpson, and P. Schaumont, “Offline hardware/software authenti-
cation for reconfigurable platforms”, In: L. Goubin, M. Matsui, (eds.)
CHES 2006. LNCS, vol. 4249, pp. 311-323, Springer, Heidelberg 2006.

[9] J. Guajardo et. al., “Physical unclonable functions and public key
crypto for FPGA IP protection”, International Conference on Field
Programmable Logic and Applications, pp. 189-195, 2007.

[10] P. Cotese et. al., “Bernardo, Efficient and Practical Authentication
of PUF-Based RFID Tags in Supply Chains,” Proceedings of IEEE
RFIDTA, pp. 182-188, Guangzhou, China, June 2010.

[11] Y. S. Lee et. al., “Mutual Authentication in Wireless Body Sensor
Networks (WBSN) based on Physical Unclonable Function (PUF),”

International Wireless Communications and Mobile Computing Confer-
ence (IWCMC), pp.1314-1318, Sardinia, July 2013.

[12] K. Frikken et. al., “Robust Authentication Using Physically Unclonable
Functions”, In: P. Samarati et al. (eds.): ISC 2009, LNCS 5735, pp.
262-277, Springer, Heidelberg 2009.

[13] M. Aman, K. C. Chua and B. Sikdar, “Physical Unclonable Functions
for IoT Security,” Proceedings of ACM IoTPTS, pp. 10-13, Xian, China,
June 2016.

[14] C. Bohm, and M. Hofer, “Physical Unclonable Functions in Theory and
Practice,” Springer, 2012.

[15] S. Guilley, and R. Pacalet, “SoCs security: a war against side-channels”,
Annals of Telecommunications, Vol. 59, no. 7, pp 998-1009, 2004.

[16] M. Kirkpatrick et. al., “System on Chip and Method for Cryptography
using a Physically Unclonable Function,” U.S. Patent 8750502 B2,
issued March 22, 2012.

[17] D. P. Sidhu, “Authentication protocols for computer networks: I”,
Computer Networks and ISDN systems, Vol. 11, pp. 287-310, 1986.

[18] P. Tuyls, and L. Batina, “RFID-tags for Anti-Counterfeiting, Topics in
Cryptology CT-RSA”, Lecture Notes in Computer Science, Vol. 3860,
pp.115-131, San Jose, CA,2006.

[19] V. Varadharajan, “Verification of network security protocols”, Computers
and Security, Vol. 8, no. 8, pp. 693-708, 1989.

[20] B. Blanchet and B. Smyth, ProVerif: Automatic Cryptographic Protocol
Verier, User Manual and Tutorial.

[21] https://www.ece.nus.edu.sg/stfpage/bsikdar/scripts/DSC17.
[22] M. Babka, “Properties of Universal Hashing,” Charles University in

Prague, Master Thesis, 2010.
[23] Y. Mansour, N. Nissan and P. Tiwari, “The Computational Complexity

of Universal Hashing,” Theoretical Computer Science, vol. 107, no. 1,
pp. 121-133, 1993.

[24] T. Kivinen and M. Kojo, “More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE),” IETF RFC 3526,
May 2003.

[25] M. Katagi and S. Moriai, “The 128-bit blockcipher CLEFIA,” IETF RFC
6114, March 2011.

[26] T. Krovetz, “UMAC: Message Authentication Code using Universal
Hashing”, IETF RFC 4418, March 2006.

[27] G. Montenegro et. al., “Transmission of IPv6 Packets over IEEE
802.15.4 Networks,” IETF RFC 4944, September 2007.

[28] P. Kim, “ IoT Specific IPv6 Stateless Address Autoconfiguration with
Modified EUI-64,” IETF Internet-Draft, July 2015.

[29] D. Whiting et. al., “Counter with CBC-MAC (CCM),” IETF RFC 3610,
September 2003.

