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ABSTRACT

Many IoT devices lack memory and computational complexities

of modern computing devices, making them vulnerable to a wide

range of cyber attacks. Among these, DDoS attacks are a growing

concern in IoT. Such attacks are executed through the introduction

of rogue devices and then using them and/or other compromised

devices to facilitate DDoS attacks by generating relentless traffic.

This paper aims to address DDoS security issues in IoT by proposing

an integration of IoT devices with blockchain. This paper uses

Ethereum, a blockchain variant, with smart contracts to replace the

traditional centralized IoT infrastructure with a decentralized one.

IoT devices are then required to access the network using smart

contracts. The integration of IoT with Ethereum not only prevents

rogue devices from gaining access to the server but also addresses

DDoS attacks by using static resource allocation for devices.
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1 INTRODUCTION

The Internet of Things (IoT) broadly refers to the integration of

physical devices that can operate, actuate, and communicate au-

tonomously to optimize and enable new services in a wide range
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of areas. With recent developments in device fabrication and com-

munication technologies, the IoT is expected to facilitate pervasive

sensing and efficient resource management in applications such as

smart power grids, intelligent spaces, smart cities, industry automa-

tion, health care, etc. to name a few [13, 15]. A high-level overview

of IoT based systems is shown in Figure 1 where different IoT de-

vices (e.g. sensors and actuators) communicate with a centralized

server through a communication network. It is estimated that by

2020, between 50-100 billion things (objects) will be connected to

the Internet [9]. Due to the large size of the network and the sensi-

tive nature of the data these devices produce, security is a serious

concern for a number of IoT applications. Many IoT devices are

resource constrained in terms of energy, memory and computa-

tional resources which exacerbate the security and architectural

challenges [13, 14, 16]. For example, the computational complexity

of classical security techniques makes them unsuited for IoT de-

vices. Thus, in order to enable secure communication between a

large number of devices, new security techniques and protocols are

required that can cater to the specifications of conventional as well

as new IoT devices.

Figure 1: A conventional IoT architecture.

One of the major security concerns that needs to be addressed

in IoT systems is distributed denial of service (DDoS) attacks. Such

attacks are usually targeted at Internet-based services, financial

institutions, and broadcasting networks. In DDoS attacks involving

IoT devices, the devices may be used to overload the resources of a

network or targeted computing device. Recently, DDoS attacks that

exploit the simple service discovery protocol (SSDP) have increased
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because of the vulnerabilities present in it [12]. Many IoT devices

(e.g. closed-circuit television (CCTV) cameras, wireless routers, and

IP based devices) use this protocol. This puts them at high risk of

being used for such attacks. IoT devices were widely used in the

DDoS attack on the Dyn domain name server (DNS) servers in

October 2016 [10].

This paper explores the use of blockchains for providing security

solutions for the IoT, with particular emphasis on DDoS attacks.

A blockchain is an online distributed ledger consisting of a list of

blocks. Each block is an ordered record of a timestamp and a hash

of the previous block, making blockchains highly resistant to data

modification. Secondly, blockchains use online distributed ledgers

to allow transparency in every transaction. Finally, blockchains use

a decentralized approach for storing data all across the network,

resulting in increased robustness. Therefore, many applications

have adopted blockchains to provide decentralized and trust-free

solutions. Moreover, blockchains are most widely used in crypto-

currencies such as Bitcoin [8]. Another use for blockchains is for

smart contracts which are self-executable computer programs such

as Ethereum [4]. Blockchains are increasingly being used for other

applications as well. For example, [20] proposed a blockchain based

IoT E-business model and in the recent past, more than 200 vari-

ants of blockchains have been proposed [6]. One of the features

of blockchains that makes it an attractive choice for IoT systems

is that it allows devices to freely transact without relying on third

parties [8]. However, Blockchains are criticized for their scalability

problems [5].

A typical IoT device-to-server communication infrastructure

typically involves varying levels of security features and security

capabilities on the IoT devices, the network, and the cloud server(s).

This paper takes on a new perspective, to introduce blockchains

as a defense mechanism against rogue physical devices and DDoS

attacks they may launch by integrating the same IoT device-to-

server communication architecture with the Ethereum blockchain.

The solution proposed in this paper provides the following security

and architectural properties:

(i) A blockchain based framework for detecting and preventing

DDoS attacks in IoT devices.

(ii) A distributed framework for control and enabling trust-free

operation of IoT devices.

(iii) Ability to integrate legacy IoT devices with very low com-

putational capabilities.

This paper is organized as follows: Section 2 describes the net-

work and threat models. Section 3 presents the proposed system

design and Section 4 presents the security and performance analy-

sis. Section 5 describes the implementation and evaluation results

while Section 6 and Section 7 present the existing related work and

conclusion to this paper, respectively.

2 NETWORK MODEL, ASSUMPTIONS, AND

THREAT MODEL

2.1 Network model

Figure 2 describes the network model. This model consists of the

following entities:

Figure 2: The IoT-Blockchain system model.

• Device: Devices represent “things” (IoT nodes) which are

responsible for sensing, processing, and communicating data

to the server through a gateway. A common gateway can be

used to connect multiple, say n, devices. Each device has a

gas limit (see Section 3.1 for a definition) which is equal to

or lesser than the total load the IoT-Ethereum network can

handle.

• Gateway: This represents a common gateway that can be

used by a cluster of devices for communication purposes.

The gateway provides network connectivity to the devices in

its neighborhood and may provide additional functionalities

such as data aggregation and security features. Different

gateways may be used for different types of devices (for

example, a gateway for temperature sensing devices), or a

single gateways may be used for a range of devices.

• Smart contract: This is the regulatory body of the system

which is responsible for authorizing the devices and ensuring

that they do not operate beyond their gas limit. Its operation

is discussed in detail in Section 3.

• Server/Miner: The IoT-Ethereum network includes multi-

ple volunteers acting as the servers/miners. These entities

are responsible for verifying the transactions and data ex-

change through smart contracts using high computational

and processing capabilities.

2.2 Assumptions

We make the following assumptions regarding the network model

and the proposed framework:

a. IoT devices are considered to be resource constrained with lim-

ited power, memory, and processing capabilities. They are also

considered safe against physical attacks and spoofing.

b. The servers are not constrained in terms of resources.

c. Ethereum loss during a transaction is not possible.

d. DDoS attacks are not possible on Internet hosts and blockchain

verifiers (miners).
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2.3 Threat model

The objective of the attacker is to overload and flood the servers

with data traffic, in turn causing outages. We assume that the ad-

versary is capable of compromising the IoT devices and make them

send arbitrary amount to data to the target of the DDoS attack. In

this paper, the attacker is assumed to use the IoT devices to launch

DDoS attacks on the servers to which they send their data. The

proposed solution may be extended to the scenario where the IoT

devices are used to target any arbitrary server. In our model, we

assume that the gateways are secure and cannot be compromised.

In addition, we assume that the adversary cannot compromise the

blockchain.

3 PROPOSED SYSTEM DESIGN

The attacks of interest in this paper are denial of service and dis-

tributed denial of service attacks, i.e., how IoT devices can con-

tribute and facilitate in orchestrating DoS/DDoS attacks. Both

attacks are assumed and a framework based on the Ethereum

blockchain is proposed as a means of defense.

3.1 The IoT-Blockchain model

Ethereum is one of the largest online established software plat-

forms that allows smart contracts and decentralized applications

(DApps) to be built on blockchains along with their state. The state

is composed of objects called accounts which have the following

fields [4]:

(1) A 20-byte address.

(2) A nonce so each transaction is processed only once.

(3) A balance of Ether or the internal numbers used to pay fees.

(4) A contract code that may be empty.

(5) Storage, which may also be empty.

State in Ethereum refers to the data present in the blockchain and

a state transition occurs when a transaction happens. Moreover,

there are two types of accounts:

a. Externally owned accounts (EOAs): This is controlled by a pri-

vate key and the user who owns it can send or receive messages

from it.

b. Contract: This is a computer program and its corresponding

account has its own code and is controlled by the same.

A gas limit exists for each transaction and processwithin Ethereum.

Gas is an analogous word for “resource” in Ethereum terms, i.e., a

certain amount of gas for a function means that the execution of

the function has that much resource. Secondly, IoT devices have to

use gas for their operation. It can be interpreted as a cost factor for

the IoT devices but it also ensures security by causing adversaries

to consume their resources instead if they attack the system.

The operation of the proposed model relies on Ethereum for

generating addresses for the devices and server/miner nodes, and

implementing our custom coded smart contract. The contract is

coded to differentiate between trusted and untrusted devices. De-

vices are required to be first registered with the system and provided

with a specific gas limit. The registration will generate an account

with a unique address for each device and gas limit for a device is

related to their specifications, i.e., it depends on the bandwidth and

resource requirements of the device. Interactions between devices

and servers are enabled by using the smart contract governed by

the server node.

3.2 Overview of the smart contract

The smart contract in the system is responsible for facilitating

secure communication between the IoT devices and the distributed

servers as illustrated in Figure 3. It is developed using Solidity, which

is a contract-oriented, high-level language for the Ethereum virtual

machine environment. It has two phases of operation: Initialization

and Deployment.

Figure 3: System components with information flow layout.

3.2.1 Initialization: In this phase, a server node deploys the

smart contract, which will then be known as the server variable by
the contract to recognize the trusted host. The paper assumes that

servers are the trusted hosts. The smart contract address will then

be broadcasted among the IoT nodes for them to engage with the

contract instance. The gas limit for each transaction in the contract

is set in this phase to defend against DDoS attacks.

3.2.2 Deployment: In this phase, IoT nodes will communicate

and interact with the server nodewhich deployed the smart contract

so that they can get registered. Only the server can authorize devices

to get registered or deleted. Upon receiving confirmation from the

server, an IoT node address will be registered and kept in the smart

contract list of trusted devices. If the server suspects a node to be

malicious or if it is needed to be removed, it can call the delete

function which will remove that particular node.

3.3 System operation

All IoT devices in the IoT-Ethereum system are able to call the smart

contract to send a message. The message will be sent through and

stored in the blockchain for retrieval only if the IoT node is granted

access. The IoT node is checked with the list of authorized addresses

by the smart contract and is passed as a trusted device if stated so

in the contract. If the node fails to get access, the message(s) and

interaction(s) will be dropped and rendered void. The algorithm

used for the operation of smart contracts is detailed in Algorithm 1.

In this algorithm, access function means if a device will be blocked

or given access to the systemwhile messages refer to data generated

by the IoT devices in the system.



CryBlock’18, June 15, 2018, Munich, Germany Uzair Javaid et al.

Algorithm 1: Smart contract algorithm for validation

1 function access(devicei )
Input :message(devicei )
Output :trusted , untrusted

2 if (message(devicei ) exists and message(devicei ) is valid) then
// Check devicei is trusted/untrusted

3 if (devicei is registered in the trusted list) then
// Check devicei has good gas limit

4 if (devicei .gas.used ≤ gas.limit) then
5 return trusted

6 else

7 return untrusted

8 end

9 else

10 return untrusted

11 end

12 else

13 return untrusted

14 end

15 end function

4 PERFORMANCE AND SECURITY ANALYSIS

The ability to create and deploy smart contracts in an IoT-Ethereum

network removes the possibility of downtime and censorship by

avoiding a single point-of-failure (attributed to a centralized server

approach). Thus, the proposed IoT-Ethereum framework can be

a potential solution to authentication, trust, and single point-of-

failure problems that IoT based systems are currently facing. The

advantages of such a system architecture can be reflected in the

following ways.

4.1 Centralized versus distributed servers

Conventional network designs use a centralized server for the

integration of IoT devices, commonly referred to as the cloud server

as illustrated in Figure 1. The cloud server handles and is solely

responsible for all the computation and decision making tasks.

Note that while the cloud server may in reality be replicated for

redundancy, for the purposes of authentication and decisionmaking,

the system can be considered as a single entity. This centralized

approach leads to many security issues. For example, if an adversary

can gain access into this server, the whole infrastructure of the

system can be compromised.

The proposed IoT-Ethereum framework eliminates this prob-

lem by distributing control and trust, i.e., multiple nodes (partici-

pants) are responsible for the sustainability, reliability, and proper

functioning of the network resulting in high security fidelity. The

proposed framework can be considered decentralized in two ways.

First, the computational requirements for running the blockchain

are distributed among all the operating nodes. Second, instead of

trust established by third parties, a consensus mechanism, proof-

of-work (PoW), is used among the nodes in the network [4]. Thus,

if one or more node(s) fail, the system is not compromised as it is

an adversary versus everyone else in the system.

4.2 Blocking rogue devices

Using a list of authorized devices maintained on the smart contract

of the IoT-Ethereum model, the contract will authorize each device.

When a device calls for a function, it is checked against the list

of authorized device addresses by the contract and granted access

only if it is registered in the list. If the device fails to get access or

is not in the list, all messages (data) and interactions with it will be

dropped and rendered void.

4.3 Defense against DDoS attacks

The DDoS problem addresses in this paper is that one or more

devices are sending extremely large quantities of data to overload a

server and consume its resources. In our system model in Figure 2,

any of then devices may all start continuously uploading data to the

server and effect a DDoS attack. Such attacks can be prevented with

the gas limit attribute of Ethereum as it ensures no further resources

can be consumed once the limit is exceeded. In the proposed smart

contract, a gas limit is set for each transaction processed through it

which acts as a mechanism to prevent the system from overloading.

Let us consider n IoT devices, each having a gas limit of дi . If the
maximum bandwidth available at the server is B, then we have

n∑
i=1

дi ≤ B. (1)

Equation (1) indicates that even if all the devices start sending data

at their gas limit at the same time, the server bandwidth still can-

not be exhausted. Moreover, any DoS/DDoS attack that intends to

consume the server resources will first require the malicious device

to consume its own resources (gas) first until they are exhausted.

This will terminate the malicious device’s operation (in terms of its

packets being forwarded to the server) once the gas limit is reached

and prevent the server from overloading. The gas limit can be set

as desired and each device has its limit defined when it registers in

the IoT-Ethereum network.

Figure 4: Flow diagram of the IoT-Blockchain network.
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4.4 Trust-free system operation

Conventional IoT system designs rely heavily on trust since it is

one of the key security requirement. Trust is typically established

with the help of third parties which work as intermediaries between

two devices. These third parties have their own fee and associated

costs in terms of latency and labor costs. IoT-Ethereum eliminates

this need since it does not need any third party to guarantee its

operation [3]. A consensus protocol is used instead where different

devices come to terms with each other directly and thus, a trust-free

system operation is realized.

5 IMPLEMENTATION AND EVALUATION

For evaluation and proof-of-concept purposes, a smart contract

of Ethereum was custom coded to create the IoT-Ethereum frame-

work. Subsequently, simulations were conducted to validate the

interactions between an IoT device and a server node. The server

node is also used for registering/deleting devices. The code for the

smart contract can be found at [1].

5.1 Setup

Linux (Ubuntu 16.04) was used as the operating system for the

simulation environment. The Ethereum development package was

used to setup the nodes using the Ethereum Go client (geth). Sep-

arate accounts were used to simulate the server and IoT devices

communicating with each other using the smart contract.

5.2 Setting up the Nodes

The Linux platform that Ubuntu OS offers through its Terminal

was used. The nodes were simulated according to Algorithm 2.

5.3 Operational Flow of the Smart Contract

With the two types of nodes set up (server and IoT), the smart

contract is deployed on the server node such that the contract will

register the address of this node as the server for this IoT system.

First, the smart contract has to be compiled before deployment. The

flow of operation of the smart contract is as follows.

5.3.1 Compilation. For compiling the smart contract, the online

browser Solidity compiler was used. The output of the compiler

is shown in Figure 5. The variables given in the Web3 deploy are

executed in the geth terminal of the server node.

5.3.2 Deployment. With the contract compiled, it is then de-

ployed on the server node and proceededwithmining for an address

to be used for interacting with the contract instance. The contract

address is then broadcasted to the IoT devices to allow them to

interact with the contract. The contract application binary inter-

face (ABI) will be required and can be obtained from the solidity

compiler. A monitoring function in the contract allows to watch

over all logs at specific events of the contract such that necessary

information will be outputted accordingly.

5.3.3 Operation. With the contract deployed and set up on both

the server and the IoT devices, interaction is possible with the

contract from the devices to simulate IoT-Server interactions. Only

a server node can successfully execute the function for registering

and removing IoT devices as the contract will authenticate the

Figure 5: Output console of browser Solidity.

transaction sent for that function with the credentials of the server.

These are the functions used to maintain a list of trusted IoT devices

in the contract to perform authentication. The flow diagram of IoT-

Ethereum network interactions is presented in Figure 4.

Algorithm 2: Instantiation of IoT devices and servers/miners

1: procedure setup(devicei , server j )

2: device initialization // users

3: дenesis f ile(xxx .json) ← define // gas limit

4: devicei ← create node // where i ≥ 1

5: devicei ← make account // outputs address

6: devicei .account ← sign // with private key
7: devicei .account ← allocate some ether

8: repeat device initialization // for i devices

9: server initialization // miners

10: server j ← create node // where j ≥ 1

11: server j ← make account // outputs address
12: server j .account ← sign

13: repeat server initialization // for j servers
14: devicei and server j ← run

15: server j ← smart contract // deploy

16: devicei with server j ← interact // via contract
17: end procedure

Authorization is done by the contract when IoT devices call the

sendMessaдe() function that allows them to send in data to the

server as shown in Figure 3. The data will only go through if an IoT

node is authenticated successfully. Otherwise, it will be dropped

preventing unauthorized devices from accessing the server.

In the case where an authorized device becomes compromised

and exhibits malicious behavior by trying to send a large amount of

data to the server to attempt a DoS attack, its requests will be termi-

nated due to exhaustion of the gas limit in the Ethereum framework.

This will protect the server from exhausting its resources to handle

such malicious activity as the contract executed for this large data

transaction will be consuming the gas from the malicious node

itself. Moreover, mining of blocks for the transactions to be stored

in the blockchain is performed on the server/miner nodes, allow-

ing distributed computation which effectively reduces load on all
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servers. This is also a good mitigation strategy to reduce malicious

activities since the consumption of the resources is on the attacker’s

end instead. Besides, all transactions will have a transaction receipt

tagged with the sender’s address and stored in the blockchain, al-

lowing for future references while ensuring non-repudiation of

activities performed. This helps in identifying anomalies in IoT

devices and single out possible compromised nodes.

6 RELATEDWORK

Research in various areas related to IoT has received considerable

attention recently. The author of [13] highlights various challenges

in IoT based systems and identifies the following areas for research:

scaling, architecture and dependencies, creating knowledge and big

data, robustness, openness, security, privacy, and human-in-the-

loop. IoT has two major requirements in terms of security: trust
and control which are difficult to achieve given the large size of

the network. Although public key infrastructure (PKI) techniques

have proven themselves for large-scale systems (e.g. global pay-

ments system) as a security solution, key management in an IoT

environment may not be feasible due to resource constraints.

One of the fundamental challenges in the Internet today is that of

security [11, 17], which also extends to the IoT. Among the various

security threats faced by IoT devices and systems, DDoS attacks

pose a significant threat to the IoT infrastructure. Such attacks are

typically executed using malicious software (malware), such as

Mirai, which exploit vulnerabilities of networked devices and turns

them into remotely controlled devices, bots . Bots are then used to

create a botnet which can be used for cyber attacks including DDoS

attacks. A large body of work for defending against DDoS attacks

in the Internet is mainly based on the use of firewalls, filters, and

hardware devices that monitor network activity [18]. Specific to IoT,

the authors in [7] present AntibIoTic for protection of IoT devices

from DDoS attacks. Their solution is limited since it is centralized

and it requires patching vulnerable IoT devices first which incurs

additional computation and time costs. The authors in [19] propose

an algorithm which can help avoid DDoS attacks. Their algorithm

provides distinction between malicious and legitimate requests,

analogous to a firewall, and processes them differently. Although

the algorithm provides useful distinction, it requires considerable

processing which makes it less efficient for large-scale systems.

Another DDoS detection technique is proposed in [2] but it is only

limited to detection and no preventive measures are provided.

The proposed IoT-Ethereum framework removes the need for

PKI in its design since it is a trust-free system. Moreover, it does not

require the IoT devices to get a hardware upgrade. Rather, it can be

implemented on top of a conventional system as an overlay network.

Finally, the proposed system provides an integrated solution for

detection and prevention of DDoS attacks.

7 CONCLUSION

This paper presented an IoT device and server communication

framework on Ethereum using a customized smart contract which

enables a better defense mechanism against DDoS and rogue device

attacks. The proposed system is able to provide distinction between

trusted and untrusted devices and allocates a static resource limit

to each device above which it cannot operate.
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