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Abstract— The complexity and dynamics of the Internet is driving the
demand for scalable and effective network control. This paper proposes a
collaborative on-line simulation architecture to provide pro-active and au-
tomated control functions for networks. The general model includes au-
tonomous on-line simulators which continuously monitor/model the net-
work conditions and execute a search in the parameter state space for better
settings of protocol parameters. The protocol parameters are then tuned by
the on-line simulation system. In this paper, we describe the building blocks
of this architecture and investigate the implementation challenges in the ar-
eas of network modeling, on-line simulation and parameter search. We also
discuss the applicability of this system and present the simulation and test
results of a preliminary implementation.

I. I NTRODUCTION

With the Internet expanding at an explosive speed, there is a
need for scalable, automated network management functional-
ity. We propose a collaborative on-line simulation architecture
to address this objective, albeit in a limited scope. The basic
idea of the architecture is illustrated in Fig. 1.
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Fig. 1. Collaborative on-line simulation architecture

The collaborative on-line simulation architecture operates in
the themanagement planeand interfaces with thecontrol plane
of the network. In particular, it does not interfere with the
packet-by-packet data-plane operation of the network. We term
this as“second-order” controlover network functions. The ar-
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chitecture is mainly composed of autonomous on-line simula-
tors which continuously monitor and model the network con-
ditions and topology. Based upon the on-line model of traffic
and topology, the simulators can execute simulations to eval-
uate the performance of the network for a given set of proto-
col parameters. The assumption is that network control proto-
cols (e.g.: traffic management, routing protocols) are sensitive to
traffic loads and a subset of their parameters. The goal then is to
have the on-line simulation system use sophisticated parameter
search methods to search for better parameter settings applica-
ble to the current traffic and topology mix. In other words, the
simulation system can support continuous tuning of the network
based upon the on-line modeling, parameter search and simu-
lation capabilities. The on-line simulation scheme uses a best-
effort parameter search strategy whose emphasis is not on “full”
optimization, but on continuously and increasingly moving the
system towards a “better” operating point. And in this sense,
on-line simulation equips the network management infrastruc-
ture with pro-active, dynamic and automated management ca-
pabilities.

Now, we will discuss the problems faced in the on-line sim-
ulation scheme, such as, network modeling, on-line simulation
and parameter search, and investigate possible solutions. In Sec-
tion 2, we describe the basic structure of on-line simulator. Sec-
tion 3 introduces our work in on-line modeling, especially the
generation of realistic network traffic. Section 4 describes our
approach to the efficient parameter search. Section 5 discusses
two ways to speed up the network simulation. In particular, our
approach for topology decomposition shows a very high speed-
up in large-scale simulations. Section 6 and 7 present the sim-
ulation results underns and the validation experiment results
under Linux. Section 8 discusses the applicability of on-line
simulation to routing algorithms. Section 9 concludes this paper
and points out the areas for further research. In particular, the
collaborative aspects between multiple simulation components
will be discussed in future papers.

II. STRUCTURE OFON-LINE SIMULATOR

Consider a network with a management interface and an on-
line simulation back-end system. Fig. 2 shows the basic struc-
ture of such an on-line simulator system.

The simulator is composed of the following function units:
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Fig. 2. Structure of on-line simulator

monitor and modeling, experiment design, management inter-
faceandexperiment execution.

Monitor and Modelingunit continually collects all kinds of
information about the local network, such as network
topology, traffic conditions, and tries to build the most up-
dated network model for use by on-line simulation.

Management Interfaceunit is the control center of the on-
line simulator. It controls and synchronizes the operation
of all the other units. Meanwhile, it is also the interface of
the on-line simulator with the outside world. Through this
interface, the network administrator can control and moni-
tor the operation of the on-line simulator, such as, choosing
search methods and the parameter space to be optimized,
examining network status.

Experiment Design unitis responsible for setting upsimula-
tion experimentswith all the collected network information
and search for the good parameters in the given parameter
space with appropriate search techniques.

Experiment Execution unitexecutes the simulation experi-
ments received fromexperiment designunit and returns the
results to the designer. The network simulatorns[1] devel-
oped by UCB/LBNL and the VINT project has been cho-
sen as our current simulation platform for its reliability and
wide acceptance. However, this is not the only choice, and
any other faster simulation software can be used as execu-
tion unit as long as it can provide the efficient and reliable
network simulation.

Besides interacting with the local network, the on-line simula-
tor also communicates with other simulators and exchanges the
relevant network information, such as network traffic models,
good network parameters. Thus, a collaborative and scalable
on-line simulation network is formed. Through this, the local
simulator acquires a global view of the network and is able to
perform better network simulation and control.

III. O N-LINE MODELING: WORKLOAD GENERATION

On-line modeling is to create traffic models, topology mod-
els, protocol models, etc., for use in the simulation to reconstruct
network scenarios. On-line modeling, especially traffic model-
ing, is greatly complicated by the complexity and heterogeneity
of the Internet. We will first address the problem of on-line traf-
fic modeling. A presumption of our work is that since we do

not understand how to build stationary models of Internet traffic
patterns, a reasonable approximation of “current” traffic behav-
ior could be characterized by quasi-stationary models, and such
models can be constructed on-line. An important problem in the
on-line traffic modeling is how to generate the realistic traffic in
the simulation.

The first issue in generating the realistic traffic is to maintain
the proper traffic composition in the simulation, which is essen-
tial to capturing the behavior of wide area networks. For the
Internet, the dominating applications are WWW, Telnet, FTP,
SMTP, and NNTP. We use the empirical distributions in [5] to
characterize the underlying protocols for these applications. We
implement these application-specific traffic generator underns
and deploy some measures in the simulation to maintain the pro-
portion of these traffics according to the empirical data from [4].

Another important issue with traffic generation is self-
similarity in wide area and Ethernet traffic[5]. Generation of
aggregate traffic which is self-similar in nature is of utmost im-
portance in simulation scenarios as Poisson models grossly un-
derestimate the queuing delays and overflow probabilities. We
have implemented inns two self-similar traffic sources: Appli-
cation/Traffic/SupFRP and Application/Traffic/SS, respectively
based on the algorithms proposed in [6] and [7].

All the protocol specific, application specific and self-similar
traffic generators described above have been validated through
extensive simulation and experimentation. The detailed results
and analyses are presented in another paper[8].

IV. EXPERIMENT DESIGN

Since the network conditions keep changing all the time,
the on-line simulation scheme needs the fast experiment design
method to quickly find the “good” network parameters before
the underlying network information becomes obsolete. The goal
of the experiment design is to use the minimum number of ex-
periments to find as good a parameter setting as possible. Note
that here the emphasis isnot on seeking the optimum setting, but
to find a better operating point within the limited time frame.
Based on this principle, an iterative method, which leads the
search to the optimum point in a monotonic fashion, would be
desirable for the experiment design. Given such a search algo-
rithm, the search can be interrupted at any time and still produce
a result likely to be better than the starting point. This allows us



the flexibility to design a tradeoff between the goodness of the
parameter result and the search time.

The basic procedure of our approach is to first probe the
search space roughly and find the important parameters which
have greater effects on the network performance. After pruning
part of the search space by ignoring less important parameters,
we explore the promising search space in more detail. To per-
form the fast and efficient search in the concerned parameter
space, we designed a new hybrid search algorithm which com-
bines the strengths of various search algorithms and is especially
suitable in the context of our problem.

A. Probing the Search Space

As described above, we start our search process with the
roughprobing of the search space. For this purpose, simulations
will be conductedfirst to explore the boundaries of the search
space. These simulations will be based upon2k full factorial
experiment design[9] that is well known in the area of perfor-
mance analysis.

Basically, assuming each parameter has a range delimited
by extreme values, the2k full factorial design procedure tries
all possible combinationsof the parameterextremes. It then
fits the results into a non-linear regression model to analyze
the importance of different parameters. However, it isnot a
iterative method, i.e., the meaningful results can only be ob-
tained after finishing all the experiment, which is opposite to
our search strategy. To achieve the iterative capability and the
goal of monotonically improving results, we designed a exper-
iment scheme to carefullyorder the experiments in aseries of
subsets of experiments. The first subset is generated by consider-
ing a2k−p fractional factorial design[9] on the parameter space.
Here,p is the minimum integer satisfying2k−p ≥ k, which is
required by the regression analysis described in [9].2k−p frac-
tional factorial design is a technique which just chooses part of
the experiments to execute from2k full factorial design. With
these carefully selecting the experiments, the analysis of the pa-
rameter importance can still be accomplished at the expense of
some accuracy[9]. After finishing this subset of experiments and
analyzing the simulation results, we then step into the next larger
subset which is obtained by using2k−p+1fractional factorial de-
sign, and so on until all2k experiments are finished. During this
process, if the search is interrupted, the analysis result based on
the last subset of experiments is returned as the “best-so-far”
result.

B. Hybrid Search Algorithm

Once the high level pruning is complete, the next task is to
search the remaining parameter space in detail withgeneralstate
space search techniques. Basically, the state space search al-
gorithms include two important components,explorationand
exploitation, and a balance strategy between these two compo-
nents. Exploration encourages the search process to examine
unknown regions. In comparison,exploitationattempts to con-
verge to a maximum or minimum in the vicinity of a chosen
region.

The “No Free Lunch” theorem[13] cautions us that there is no
general good search algorithm performing equally efficiently in
every problem. And the most efficient search algorithms would

aggressively incorporate the maximum domain-specific features
into the search strategy at all times. This necessitates that the
search algorithm be extremely flexible and adaptive to different
kinds of specialized information.

Our hybrid search algorithm is based on the hillclimbing
technique[10] with TABU technique[12] included to avoid re-
visiting the previous region and speed up the exploration pro-
cess. Different from other algorithms, the hybrid method
maintains a dynamic balance betweenexploration and ex-
ploitation by accepting the bad move with a probability of
exp(−current gradient feature/average gradient feature). The
idea here is that in the promising areas whose gradient is much
steeper than the average gradient, the algorithm performsex-
ploitation, i.e., a hill climbing procedure which quickly con-
verges to the local optimum. Else, depending upon the proba-
bility generated by the balance strategy, it performsexploration,
i.e., random walk. Observe that this balance strategy is different
from that of Simulated Annealing(SA)[11]. In SA, the accep-
tance probability of bad moves decreases gradually according
to a predefined cooling scheme, whereas in our algorithm, the
acceptance probability is adapted to the gradient features of the
current area.

The hybrid algorithm also automatically adjusts itsstep size
(used for exploration) to suit the current gradient features. When
the current gradient is large relative to the average, the step size
is reduced to explore this promising area carefully. Otherwise,
the step size is increased to quickly get through this area. With
the increase of the step size, the rugged microscopic features of
search space are smoothed out and the major features are ex-
hibited. The search can take advantage of these macroscopic
features to improve the efficiency. A detailed analysis and com-
parison of candidate search techniques will be reported in future
papers.

V. SPEEDINGUP ON-LINE SIMULATION

The execution of the simulations is the most time-consuming
task in the on-line simulation system. We have designed a few
methods to speed up this process.

A. Farmer-Worker Infrastructure

The first method is to parallelize the execution of the simu-
lations. This is achieved by encapsulating each simulation in a
thread and distributing the threads across machines. We have
developed a farmer-worker infrastructure for this purpose. This
infrastructure can be used not only in our on-line simulation,
but also as a general performance evaluation tool using multi-
ple simulations or distributed computations. The farmer-worker
infrastructure is shown in Fig. 3.

As shown in the figure, the dispatcher is the interface between
the distributed simulation executer and the experiment designer.
The latter is the one that decides which simulation experiments
to perform (as described in earlier sections). All the experi-
ments have to go through this interface to be distributed among
the workers. The farmer is the center of this infrastructure,
which controls and synchronizes the operations of dispatchers
and workers. The workers are the actual experiment executers
leading to a dramatic speedup. Since each parameter state space
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point corresponds to a simulation experiment which can be exe-
cuted by the worker, our on-line simulation model naturally fits
as an application of this infrastructure. All the communication
between the components in this scheme is through TCP sockets.
Therefore, the dispatchers, farmer and workers can be located
anywhere in the network (or a backend computational facility),
allowing us to maximize the utilization of computing resources.

B. Topology Decomposition

The farmer-worker method is effective only when the experi-
ment designer sends out a batch of experiments every time and
then waits for the results. Its speedup level is dependent on the
size of each batch, or minimally the size of each simulation ex-
periment. The topology decomposition method is used to ex-
pedite the execution ofa single simulation experimentin this
model. For example, we have found that the running-time of a
simulation is not linearly proportional to the simulated network
size. Fig. 4 shows the simulation results on a network with a
simple star topology. Using the least squared method to fit the
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Fig. 4. Execution time vs. simulation size

experiment results of execution time and network size, we can
get the following approximate formula:

T (n) = 3.49 + 0.8174× n + 0.0046× n2 (1)

Here T is the execution time of the simulation, andn is the
number of nodes in the simulation. The approximate formula
estimation is also shown in Fig. 4, which demonstrates a good
match with the experiment data.

From the above, we can see that the execution time of a net-
work simulation may hold a quadratic relationship with the net-
work size. Therefore, it is possible to speed up the network sim-
ulation more than linearly by splitting a large simulation into
smaller pieces and paralleling the execution of these pieces.

Traditional decomposition only splits up the network topol-
ogy, but the simulation is still executed as a whole. Therefore,

the decomposed parts have to exchange a lot of information to
keep them synchronized with each other. Our approach is to
first execute these split simulations independently; then repeat
each of these split simulations with the output of the other parts
as the input; and then repeat again and again until there is no
significance difference between the results of two consecutive
iterations of split simulations. This approach greatly simplifies
the synchronization between parallel parts, and can significantly
speed up the simulation of large networks. Some simulations
have been done and the results show a very fast convergence.
While this approach fits the simulation of simple non-TCP traf-
fic very well, we are investigating issues with respect to TCP
traffic.

VI. PERFORMANCE ANALYSIS OFON-LINE SIMULATION

To test the validity of our on-line simulation scheme, we first
implemented a simple on-line simulator undernsand used it to
control some network algorithm. This is indeed a simulation
within a simulation! We then observed how this affected the
performance of the network which was also being simulated.
In the experiment, we adopted Random Early Detection (RED)
queueing management algorithm [2] as the underlying network
algorithm to be adjusted because of its sensitivity to parame-
ter settings. Another reason is that it has also been indicated
that deciding the parameter setting of RED for different net-
work conditions is not a trivial task[2], and the automation of
its parameter adjustment will be very meaningful. However, it
should be noted that the applicability of the on-line simulation
scheme is not limited to RED or other queueing management
algorithms. Any other network protocol or algorithm, which is
sensitive to the parameter setting, can be tuned with our on-line
simulation system.

A simple network topology with one bottleneck link has been
used for the purpose of proof-of-concept, which is shown as
Fig. 5. The router on the source side is configured with a RED
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Fig. 5. Test network topology

queue, and an on-line simulator is used here to control the RED
queue. The experiment varies the traffic conditions on the bot-
tleneck link:4 FTP connections in the first period of4 seconds,
then8 FTP connections in the second period, then4 FTP con-
nections again in the third, and finally16 FTP connections in the
last.

Our objective is to achieve the best throughput. The simu-
lation results are shown in Fig. 6 (without on-line simulation)
and Fig. 7 (with on-line simulation). We can see from these fig-
ures that when the number of FTP connections changes from
4 to 8 and from4 to 16, the on-line simulation is able to tune
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Fig. 6. nssimulation: RED average queue size and link utilization (without on-line simulation control)
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Fig. 7. nssimulation: RED average queue size and link utilization (with on-line simulation control)

up the parameters of RED queue, such as maximum threshold
and minimum threshold, to reduce oscillation in the queue size
and maintain a more stable queueing status. As a result, the uti-
lization is better than the experiment without on-line control, in
which we can find that when the traffic conditions change, the
utilization drops dramatically for a while when traffic conditions
change.

VII. R EAL-WORLD IMPLEMENTATION AND TEST

To verify the simulation results of our scheme under real net-
works, we have built a Linux testbed with 20+ machines and 3
subnets. The network topology is basically like the one shown
in Fig. 5. We adopted Linux as our test platform for its open
source policy and great popularity. Furthermore, a variety of
traffic management algorithms have already been implemented
in Linux kernel, such as RED, CBQ. Although these traffic con-
trol elements are still in the experimental stage, we found them
quite stable in our experiments. We ported our on-line simulator
into Linux platform and created an interface so that the simula-
tor can interact with the traffic management algorithm in Linux
kernel and adjust the algorithm parameters automatically. The
configuration and assumption are almost the same as those in
the previous section. We have usednetperf[15] traffic generator
to generate massive TCP traffic from one side of the bottleneck
link to the other side and observe the performance of RED on
the bottleneck with the on-line simulator applied for dynamic
control. For testing purposes, we assume the simulator already
has all the information about the network conditions and hence
can simulate the network accurately.

The simulation results are shown in Fig. 8. We can see that

there is a large oscillation in the average queue length of RED.
This is because that we have chosen its parameter at random in
the beginning and this parameter setting may not fit the current
network conditions at all. Then in the middle of the simulation,
we started our on-line simulator to search for the settings with
low average queue length. Very quickly, the simulator found a
much better setting and applied back to RED queue. This results
in a dramatic reduction of the average queue length, as shown in
Fig. 8 after the test starts for about70 seconds, and at the same
time, the oscillation looks much smaller than before and the link
utilization is not affected.

VIII. O N-LINE SIMULATION FOR IMPROVING ROUTING

STABILITY

As mentioned before, the application of on-line simulation
scheme is not limited to the network management algorithm.
For example, a similar approach can also be applied to rout-
ing, and an improvement in the end-to-end performance can be
achieved by tuning the parameters of routing algorithm [14].

Adaptive routing is known to improve the network perfor-
mance by increasing throughput and lowering the end-to-end
packet delay. But it has been largely abandoned in the Inter-
net due to the problems associated with routing oscillations.
We have identified various parameters of an adaptive routing
scheme which affect its performance and stability. The simula-
tion based study indicates that these parameters may be tuned
using on-line simulation to achieve a stable routing with im-
proved performance. Moreover, the adaptive routing scheme
may be deployed in the existing routers using OSPF. The param-
eters in this algorithm which we consider for tuning areuFactor
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Fig. 8. Real network test: RED average queue length and link utilization

and bFactor, which represent the weights associated with the
link utilization and buffer utilization when the link cost is given
by

linkCost = defaultCost× (1 + uFactor × Util )

where,Util may be the exponentially averaged link or buffer
utilization. These parameters are representative of the adaptive-
ness of the routing to the congestion. Another parameter that
we considered isThresholdwhich reflects the minimum change
in the cost to trigger a Link State Advertisement with updated
metric value. Also,Interval between the routing updates is an-
other parameter that we consider as it represents the tradeoff be-
tween the responsiveness of the routing algorithm and the max-
imum computational and bandwidth overheads associated with
frequent route changes. We have demonstrated tunability of the
parametersuFactor andbFactor to achieve significantly bet-
ter end-to-end throughput and delay performance. The tuning
of parameterinterval was found to increase the throughput at
the same time when it minimizes the number of route changes.
However, the parameterthreshold does not affect the network
throughput or the end-to-end delay, but may be tuned to mini-
mize the route changes. This will achieve a TCP-friendly rout-
ing as frequent route changes may lead to out-of-order packets,
timeouts and result in a poor performance due to the flow control
mechanism of TCP. However, testing on experimental testbed
network with on-line simulation to tune the routing parameters
is a goal for future work.

IX. CONCLUSION

In this paper, we describe a collaborative on-line simulation
architecture to perform the dynamic, scalable and effective net-
work control. To realize this scheme, the problems faced in the
areas of network modeling, network simulation and parameter
search are addressed and some solutions are presented. We de-
sign and implement various methods to maintain the appropri-
ate mix of traffic composition and generate realistic traffic. We
use farmer-worker scheme to distribute experiments and paral-
lel their execution on multiple computing resources. In addition,
we also use topology decomposition method to speed up the ex-
ecution of a single simulation. In parameter search, we use a
best-effort, increasingly improving strategy to search for better
parameter setting within the limited time frame. We also pro-
pose a new hybrid search algorithm, which aggressively takes

advantage of the known information of the parameter space to
perform highly efficient search.

Various software components have been developed innsand
Unix/Linux. Preliminary experiments and simulation were ex-
ecuted on traffic management algorithms for the demonstration
of our collaborative on-line simulation concept. These tests pro-
duced very promising and encouraging results. All the softwares
and results are available on line[16].

The current work is limited to proof-of-concept stage. There
is still a lot of work to be done to realize the goal of scalable and
effective on-line control in operational networks. Further work
needs to address the problem of how to collect data from the
network and build a good model from the data. The scalability
and cooperativity of the on-line simulation continue to be issues
worthy of investigation.
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