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Abstract—It is well known that clustering IoT devices will
help to alleviate the network scalability problem in IoT net-
works. However, clustering also provides an opportunity for an
adversary to compromise a set of nodes by simply compromising
their gateway. In such scenarios, one of the strategies available
to an adversary to degrade the performance of a network is
by corrupting the packets to be forwarded by the gateway.
In this paper, a centralized detection system for detecting the
presence of such a malicious gateway is proposed. The proposed
system uses the packet drop probability as a means to monitor
the gateways. An algorithm is presented to design the key
parameters of the proposed system. Results are presented to
verify the detection statistics and show the effectiveness of the
system.

I. INTRODUCTION

With the ability to automate everything around us and
to the potential to generate extra revenue, the popularity
of Internet of Things (IoT) is increasing day by day. Many
applications like smart grid, smart home, intelligent transport
system, etc. can be realized using IoT [1]. With more than
fifty billion devices estimated to be connected to the Internet
by 2020 [2], there is a need to revisit many issues like
scalability, security, etc. To achieve the network scalability
objective, researchers in the past have developed various
clustering techniques [3]–[5]. In the case of a clustered
network, each cluster is assigned a gateway which forwards
the packets to and from the base station, assuming that a
cellular architecture is used to provide Internet access to
the IoT nodes. A node with superior resources is chosen as
a gateway. Capturing or compromising the gateway would
affect all the nodes in the cluster, and therefore, gateway
security attacks need to be guarded against.

Inadequate hardware and energy resources inherent in IoT
devices make them prone to various attacks [6]–[8] and
also make it difficult to deploy many traditional security
algorithms. Employing Intrusion Detection Systems (IDS)
is therefore necessary to detect any malicious activity, in
addition to other defenses like secured pairing, integrity
verification and secured architectures. The three strategies
for the deployment of an IDS are [8]:

1) Centralized Intrusion Detection (CID) System: The
IDS is located at the base station (in case of a cellular
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architecture) or the access point (in case of wireless
LANs). This approach adds extra latency to the network
but helps in prolonging the battery life of the IoT device.

2) Distributed Intrusion Detection (DID) System: The
IDS is located in every IoT device. No extra latency
is incurred but it negatively impacts the lifetime of the
IoT device.

3) Hybrid Intrusion Detection (HID) System: There are
two types of such systems. The first one is where the
IDS is hosted by the cluster head or the gateway. The
second one is where additional nodes called monitor
nodes are deployed to detect changes in the network.

One of the ways to degrade the performance of the network is
by compromising the gateways and corrupting the communi-
cation between the nodes and the base station. Researchers
in the past have tried to investigate the behavior of such
nodes [9]–[14]. In [9], [10] the data is received over two
different paths, and the two received messages are compared
to determine the presence of any malicious forwarding node
or relay (referred to as a gateway in this paper). In [11],
tracing bits (whose location is not known to the gateway)
are embedded into each packet sent by the node to detect the
presence of malicious gateways. An optimization algorithm
is also presented where the number of tracing bits and parity
bits have to be balanced. In [13]–[16] the detection systems
require the sensor nodes to listen to specific tracing signals
for detection, which will lead to additional consumption
of energy and bandwidth. Machine learning algorithms
presented in [17] can also be used to detect such malicious
gateways but the performance is limited by the size of
training data. Further, injecting packets into the network
to build the training data may be difficult. In [18], the
author has proposed a mechanism which exploits the signal
(sent to the relay by the node) overheard at the destination
to classify the relay.

In this paper, the detection system presented does not
require any training data and is based on theoretical founda-
tions that have not been throughly explored in the existing
literature. In comparison to a previous work in [19] we
now propose a detection system which does not require the
information to be sent to the base station (or the access point)
via multiple paths (or via multiple relays). The key novelty
behind the IDS proposed in this paper is to monitor the gate-
ways by monitoring the downlink channel of the network.



Fig. 1: Network Model Illustration.

Such scenarios with downlink channel being equally active
as uplink are common in IoT networks that employ sensors,
actuators and controllers for providing their services (e.g.
Intelligent traffic lighting system [20]). Secondly, we use a
side channel from the IoT device to the base station which
will be elaborated upon later in the paper. Lastly, we present
a method to estimate the parameters of the adversary required
for the detection system.

The rest of the paper is organized as follows. In Section
II, the network and the adversary models are described. In
Section III, we propose the detection system, derive the ex-
pressions for the false alarm and miss detection probabilities,
and design the key parameters of the system. In Section
IV, results are presented to verify the detection statistics
and show the effectiveness of the system. In Section V, we
provide some concluding remarks and directions for future
research.

II. SYSTEM MODEL

A. Network Model

An IoT network with M IoT devices is considered. These
devices are assumed to be clustered into G groups with each
group having its own gateway. The IoT devices exchange
information with a secured access point (AP) via the gateway.
A set of IoT devices Mj = {Dj

i , i = 1, · · · ,Mj} have
the device Cj as their gateway. Each device is connected
to only one gateway i.e. Mi ∩Mj = ∅, for all i 6= j. All
the nodes in the network use CSMA as the MAC protocol.
The network model is illustrated in Fig. 1. One possible
way to implement such a model is to follow the IEEE
802.11ah specification where the gateways in the network
operate as “decode and forward” relays [21]. The dashed
lines representing direct links between IoT devices and the
AP are low-rate connections that may be enabled by the
longer range of the HaLow system.

Whether the system is implemented with HaLow technol-
ogy or not, it is assumed that every IoT device has the ability
to directly communicate with the access point wirelessly.
Before the IoT device associates itself with the access point,
it will disassociate itself from its gateway. The same channel
will be used by the proposed detection system which will be
elaborated upon in Section III.

For any network in normal operation, there is a non-
zero probability of decoding the bits in a packet in error

due to various naturally occurring channel and network non-
idealities, and/or protocol level behavior. In such a case, the
average packet drop probability (PDP) of a packet received
by an IoT device Dj

i is assumed to be known and denoted
by αij (i.e. downlink PDP). One of the possible ways to
estimate the natural or normal PDP is by measurements when
the network is operating normally.

B. Adversary Model

We now describe the strategy employed by the adversary.
Suppose that gateway Cj is compromised by the adversary.
The adversary tries to disrupt the communication between
the access point and IoT devices connected to Cj . This is
achieved by corrupting a packet which needs to be forwarded
either to the access point (uplink) or an IoT device (down-
link), or both. In general, a received packet is said to be
corrupted when at least one of the bits is received in error.
The adversary can achieve this by executing either one or
both of the following strategies:

1) The attacker can corrupt the channel pilots which
are used for channel estimation and equalization. By
sending modified pilots, the estimated channel will be
incorrect and incorrect decoding of the bits in the
payload will occur with a high probability. Such an
attack has a low probability of detection because the
transmitted PHY-layer frame appears to be valid.

2) The attacker can flip some of the bits of the physical
layer payload. Such an attack is easier to implement
than the one above, but is also easier to detect since
the received PHY-layer frame will fail the cyclic redun-
dancy check (CRC) almost surely.

A corrupted packet will be dropped and will have to be re-
transmitted. By deliberately introducing bit (and therefore
packet) errors, the attacker can adversely impact the battery
lifetime of the IoT devices and at the same time degrade the
performance of the network as measured by other quality of
service parameters such as throughput and delay.

Assume that there are g compromised gateways. Hence,
the probability of a randomly selected gateway being com-
promised is given by:

q =
g

G
. (1)

Each compromised gateway is assumed to corrupt the packet
to be forwarded with a probability p. In the presence of
such an attack, a packet can be dropped either due to the
network non-idealities or the action of the gateway. Hence,
the packet drop probability observed by an IoT device Dj

i

communicating to the AP via malicious gateway is given by:

βij = p+ (1− p)αij (2)

III. INTRUSION DETECTION SYSTEM

In this section, we present our intrusion detection system
(IDS) which is to be established at the access point. The
IDS will identify the presence of any malicious gateway
implementing the attack mentioned in Section II-B. In the



presence of an attack, it is evident from (2) that the PDP
increases due to the malicious nature of the gateway. Hence,
we use the observed PDP as a decision statistic to identify a
malicious gateway. The IDS algorithm for gateway Cj per-
forms a binary hypothesis test with the following hypotheses:
• H0: Gateway Cj is not compromised
• H1: Gateway Cj is compromised.

Given the description of the adversary in Section II-B, the
prior probabilities of the hypotheses are:

P (H0) = 1− q (3)
P (H1) = q. (4)

The intrusion detection system requires the IoT devices to
execute the following additional tasks:

1) All the IoT devices will track the number of packets
dropped at their respective ends.

2) A set of devices Sj ⊆ Mj will regularly update the
access point about the observed number of packets
dropped using the side channel mentioned in Section
II-A. The design of Sj will be discussed later in the
paper.

A. Detection Algorithm

We now derive the IDS for gateway Cj . Denote the
number of downlink packets dropped by the IoT device Dj

i

out of a total of N packets by Nij (where i = 1, 2, · · · , Sj).
Since the packet drops are assumed to be independent under
H0, the probability distributions of Nij , i ∈ {1, · · · , Sj}
follow the binomial distribution and are defined as follows:

P (Nij = k|H0) = γ0,ij(k) =

(
N

k

)
(αij)

k(1− αij)
N−k

(5)
We can assume that the wireless channels used by the
nodes in the network are independent. Using this assump-
tion the probability distributions of the variables Nij , i ∈
{1, · · · , Sj} are independent. The joint probability distribu-
tion is now defined below, where Nj = [N1j , · · · , NSjj ] and
nj = [n1j , · · · , nSjj ].

P (Nj = nj |H0) =

Sj∏
i=1

γ0,ij(nij). (6)

Similarly, in the presence of an attack on gateway Cj , the
individual distributions of the variables Nij , i ∈ {1, · · · , Sj}
are:

P (Nij = k|H1) = γ1,ij(k) =

(
N

k

)
(βij)

k(1− βij)N−k

(7)
where βij is defined in (2). The joint distribution of the vari-
ables Nij , i ∈ {1, · · · , Sj}, in the presence of an attack on
Cj that randomly chooses packets to corrupt with probability
p, is:

P (Nj = nj |H1) =

Sj∏
i=1

γ1,ij(nij). (8)

The Likelihood ratio test (LRT) [22], which is known
to maximize the probability of detection for any given
probability of false alarm, gives us the detection rule. The
likelihood ratio is denoted by L(nj). The LRT decides in
favor of H1 if and only if the following holds:

L(nj) =
P (Nj = nj |H1)

P (Nj = nj |H0)
> γ (9)

⇒
Sj∏
i=1

(βij)
nij (1− βij)N−nij

(αij)nij (1− αij)N−nij
> γ (10)

⇒
Sj∏
i=1

a
nij

ij > γb (11)

⇒Wj =

Sj∑
i=1

nij log(aij) > log(γb) = Tj (12)

where,

aij =
βij

αij(1− p)
and b =

(
1

1− p

)NSj

.

The design of the threshold Tj will be discussed in a later
section.

We now derive the maximum likelihood estimates (MLE)
of the probabilities p and q [23]. The MLE will be based
on the joint probability distribution of the variables Nj , j ∈
{1, · · · , G}. The probability mass function P (Nj = nj) =
γj(nj) can be calculated as follows ∀j ∈ {1, 2, · · ·G}:

γj(nj) =P (Nj = nj |H0)P (H0)

+ P (Nj = nj |H1)P (H1)

=(1− q)
Sj∏
i=1

γ0,ij(nij) + q

Sj∏
i=1

γ1,ij(nij) (13)

The joint probability mass function of the variables Nj , j ∈
{1, · · · , G} is now defined below:

P (N1 = n1, · · · , NG = nG) =

G∏
j=1

γj(nj) (14)

By maximizing the PMF in (14), we can estimate the
probabilities p and q. One of the possible ways to find the
values of p and q is by solving the problem numerically.
The estimated values are given by p̂ and q̂.

B. Performance of the IDS

To characterize the performance of the IDS for gateway
Cj using the decision rule in (12), one generally uses the
false alarm (PFA

j ) and miss detection (PMD
j ) probabilities.

Using the expressions of these probabilities, the system
parameters Sj and Tj are also designed to minimize PMD

j

for a given maximum allowable PFA
j . The probability that

the detection system decides on H1 in the absence of
an attack is defined as the false alarm probability. The
probability that the detection system decides on H0 in the
presence of an attack is defined as the the miss detection



probability. In this subsection, we derive the expressions for
these two probabilities, for an ideal case where probability
p is estimated without error, as follows:

PFA
j = P (Wj > Tj |H0) (15)

PMD
j = P (Wj ≤ Tj |H1). (16)

For sufficiently large N , the binomially distributed vari-
ables Nij , i ∈ {1, · · · , Sj} become approximately Gaussian
due to the Central Limit theorem under both the hypotheses.
In other words, under H0, Nij ∼ N (Nαij , Nαij(1− αij))
and under H1, Nij ∼ N (Nβij , Nβij(1−βij)), as N →∞.
The sum Wj in (12) then becomes a linear combination of
i.i.d. Gaussian random variables, and is itself Gaussian. The
mean and variance of Wj under hypothesis H0 are µj,h0

and σ2
j,h0 respectively and under hypothesis H1 are µj,h1

and σ2
j,h1 respectively. These are easily shown to be:

µj,h0 =

Sj∑
i=1

Nαij log(aij)

σ2
j,h0 =

Sj∑
i=1

Nαij(1− αij)(log aij)
2

µj,h1 =

Sj∑
i=1

Nβij log(aij)

σ2
j,h1 =

Sj∑
i=1

Nβij(1− βij)(log aij)2.

Hence, the approximate values of PFA
j and PMD

j can be
calculated as:

PFA
j = Q

(
Tj − µj,h0

σj,h0

)
(17)

PMD
j = 1−Q

(
Tj − µj,h1

σj,h1

)
(18)

where,

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du.

C. Threshold Design

Since the IoT devices have limited battery storage, it is
desirable to have only a subset of them to report their Nij in
order to limit the adverse impact on the battery lifetime. This
would also limit the number of side channels required from
the IoT devices to the AP. To find the minimum number of
IoT devices that should report to the access point about their
gateway, we solve the following optimization problem:

Minimize Sj (19)

Subject to PFA
j ≤ ε1 (20)

PMD
j ≤ ε2. (21)

Since the constraints are not elementary expressions, we
propose to solve the problem numerically. To estimate the
optimum value of Sj , we first initialize the set Sj to Mj .

Sub case RMSE (p̂) RMSE (q̂)
(1) 0.0364 0.0480
(2) 0.0273 0

TABLE I: RMSE - Estimates of Adversary parameters

Then, using the Neyman-Pearson lemma [24], we find the
threshold that minimizes the miss detection probability and
also satisfies Constraint (20). According to this lemma, the
miss detection probability is minimized when PFA

j = ε1.
If the value of PMD

j obtained satisfies the Constraint (21),
then the device which has the least battery life is removed
from Sj . After this, the process is repeated for the new set
Sj . This will continue till the Constraint (21) is violated, at
which point the algorithm stops. The cardinality of the set
before the last device was removed is the optimum value of
Sj . The performance of this proposed algorithm will be
discussed in our future work.

IV. RESULTS

In this section, we present a number of simulation results.
The simulations were performed using MATLAB. We first
present the effectiveness of the estimation algorithm using
the root mean square error (RMSE) for a network setup
having one access point, four gateways and four IoT devices
under each gateway. In the network adopted, two out of the
four gateways are malicious. Hence, from (1) it is evident
that q is set to 0.5. The value of N is set to 50. The downlink
SNR used for generating the results is 20dB for all the nodes.
We consider two sub cases in this scenario:

1) Probability p is set to 0.25.
2) Probability p is set to 0.75.

The values of p̂ and q̂ obtained over 50 × 104 Monte
Carlo simulations for both the sub cases are shown in the
histogram plotted in Figure 2. The RMSE obtained for both
the sub cases are tabulated in Table I. From the RMSE values
obtained, it is evident that the residual variance between the
actual value and estimated values is significantly less.

We now present our simulation results to verify the derived
detection statistics in (17) and (18). For the same, we used
a network which has one access point, two gateways and
five IoT devices associated with each gateway and placed
equidistant from their respective gateways. One of the two
gateways in the network is malicious. The downlink SNR
used for generating the results is 20dB at all the nodes.
To verify the false alarm and miss detection probabilities
in (17) and (18), we obtained the simulated probabilities by
averaging over 106 Monte Carlo simulations for the scenario
where the attack probability p was set to 0.2 and the value
of N to 100. In this case, all the IoT devices are used in the
IDS algorithm. The results are plotted for the following sub
cases:

1) Probability p is estimated using the method presented
in Section III-A.

2) Probability p is assumed to be perfectly known.



Fig. 2: (a) Histogram of p̂ when actual values of p and q
are 0.25 and 0.5. (b) Histogram of p̂ when actual values of
p and q are 0.75 and 0.5. (c) Histogram of q̂ when actual
values of p and q are 0.25 and 0.5. (d) Histogram of q̂ when
actual values of p and q are 0.75 and 0.5.

105 110 115 120
Threshold Variation

10-10

10-5

100

P
F
A

(a)

PFA Simulation

PFA Analytical

105 110 115 120
Threshold Variation

10-10

10-5

100

P
M

D

(b)

PMD Simulation

PMD Analytical

105 110 115 120
Threshold Variation

10-10

10-5

100

P
F
A

(c)

PFA Simulation

PFA Analytical

105 110 115 120
Threshold Variation

10-10

10-5

100

P
M

D

(d)

PMD Simulation

PMD Analytical

Fig. 3: (a) Simulated and Analytical PFA using estimated
p. (b) Simulated and Analytical PMD using estimated p. (c)
Simulated and Analytical PFA using perfectly known p. (d)
Simulated and Analytical PFA using perfectly known p.

The false alarm probability curve corresponds to the
unattacked gateway and the miss detection curve corresponds
to the compromised gateway. The probabilities obtained us-
ing the simulation results and the analytical results calculated
using the approximations derived in (17) and (18) for the
scenario are shown in Fig. 3. It can be observed from
Fig. 3(c) and 3(d) that the false alarm and miss detection
probabilities obtained using (17) and (18) are reflected ac-
curately in the simulation results when the probability p is
assumed to be perfectly known. Whereas in Fig. 3(a) and
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Fig. 4: Performance of the IDS - comparison. Attack Prob-
ability is set to 0.2.

3(b) where the probability p is being estimated, the false
alarm and miss detection probabilities seem to deviate from
the analytically obtained values. This is mainly due to the
erroneously obtained p̂ because of the finite sample size
(N ).

We now present the effect of incorporating more nodes in
the detection system using a network which has one access
point, one gateway and five IoT devices associated with the
gateway. The attack probability p is set to 0.2. The downlink
SNR used for generating the results is 20dB for all the nodes.
We consider three sub cases in this scenario:

1) Only one IoT Device is used in the IDS algorithm.
2) Three IoT devices are used in the IDS algorithm.
3) Five IoT devices are used in the IDS algorithm.

Using the derived analytical results in (17) and (18), we have
presented the variation of the miss detection probability w.r.t.
various false alarm probabilities in Fig. 4. It can be observed
from both the figures that for a given false alarm probability,
the miss detection probability decreases as the number of
nodes increases.

To prove the effectiveness of the proposed IDS, we
compared it with the detection system presented in [18].
The network setup adopted for comparison has one access
point, one gateway and five IoT devices placed equidistant
from the gateway. It can be observed from [18] that for
false alarm probabilities ranging from 10−3 to 10−1, the
miss detection probabilities vary between 10−3 and 10−1. To
compare the performance of our IDS, we used the analytical
approximations derived in (17) and (18). We varied the false
alarm probabilities for the attack probabilities 0.1, 0.15 and
0.2 to calculate the corresponding miss detection probability.
The obtained results are shown in Fig. 5. It is evident from
the figure that for our proposed detection system, when the
attack probability is greater than 0.1, we obtain lower miss
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detection probabilities for the same false alarm probabilities.

V. CONCLUSION AND FUTURE DIRECTIONS

A novel approach for detecting an adversary who is
corrupting the communication between an IoT device and
the access point by compromising the gateway is presented.
The condition for detection is derived using the likelihood
ratio test and is based on the number of packets dropped
by the IoT devices. The estimates for the probabilities p
and q are obtained using Maximum Likelihood Estimation.
An algorithm for designing the key parameters for optimum
performance of the system is presented. Results presented
verify the derived statistics when the probability p is assumed
to be perfectly known and also prove the effectiveness of the
system by comparing with previous work.

In this paper, we assume that the packet is corrupted at
the PHY layer. As a part of our future work, we would
consider an attack where the adversary is changing the
data without affecting the protocol. In this paper, it is also
assumed that the IoT devices are secure i.e. they are not
compromised by the adversary. As a part of our future work,
we will evaluate the effectiveness of this algorithm when a
fraction of the devices are compromised and update incorrect
information about the gateway to the access point. We have
not considered the situation where the malicious gateways
can affect the uplink packets of the IoT devices. We will
be addressing this problem in our future work.
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