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Abstract—Device authentication is an essential security feature
for the Internet of Things (IoT). Many IoT devices are deployed
in the open and in public places, which makes them vulnerable
to physical and cloning attacks. Physical Unclonable Functions
(PUFs) have emerged as a promising technology to address
the challenges in the development of lightweight authentication
protocols in these environments. PUFs can facilitate high levels
of security, while simultaneously minimizing the computational
resource requirement per device. This article presents the current
progress and challenges in designing PUF-based authentication
protocols for IoT-devices. We first present state-of-the-art design
approaches for constructing secure authentication protocols by
considering ideal-PUFs, noisy-PUFs, and Machine Learning at-
tacks on PUF. Subsequently, we describe the challenges faced
by these approaches and future expectations for designing PUF-
based security solutions.

Index Terms—Mutual authentication, Physically uncloneable
functions, IoT.

I. INTRODUCTION

Consumers and industries have benefited significantly from
a diverse range of autonomous electronic devices. Many of
these devices are interconnected by communication tech-
nologies, thereby forming the Internet of Things (IoT) [1].
The IoT has started to become pervasive in our daily lives,
finding applications in industries, homes, medicine, public
infrastructure, etc. With the increasing deployment of IoT
devices and systems, security issues associated with them
have gained prominence, and security incidents that exploit
IoT devices have drawn increasing public attention. Security
for IoT devices is challenging due to two main factors:
(i) Many IoT devices have limited processing, storage, and
energy capabilities, which limit the applicability of existing
cryptographic tools; (ii) IoT devices generally operate without
any human intervention and thus have to store secret keys
in their memory, making them vulnerable to a number of
physical and side channel attacks. For example, keys stored
in the memory may be read off a physically captured device
and used by an adversary to launch attacks. Therefore, security
against physical attacks is a major concern in IoT.

P. Gope, is with Department of Computer Science, National Univer-
sity of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077. (E-mail:
prosana.nitdgp@gmail.com)

B. Sikdar is with Department of Electrical and Computer Engineering,
National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
119077. (Email: bsikdar@nus.edu.sg)

A. PUF as an Imperative Security Primitives for IoT

The use of hardware security primitives for generating and
processing secret keys is a promising way to provide security
to IoT devices in face of the complex threat landscape that
they face. Since they were first proposed in 2002, physical
unclonable functions (PUFs) [2-3] have emerged as a leading
contender for hardware-based security solutions. The operation
of PUFs is based on exploiting the variations in the circuit-
level micro-structures that are created during the integrated
circuit (IC) manufacturing process to provide functions that
uniquely (at the chip level) map an input binary string to
an output. It is impossible to control these micro-structural
variations in the IC during the manufacturing process (even
by using the same equipment and photo-lithography mask),
thereby providing the basis of security for PUFs. As the PUF
output depends on the physical characteristics of the IC, any
attempt to tamper with the PUF changes its behavior and
renders the PUF useless. Due to this unique property, PUFs
have gained popularity as a paradigm for physical security of
resource constrained IoT devices such as RFID tags, sensors,
etc.

PUF-based authentication protocols for IoT systems have
to consider the following requirements: (i) avoid the storing
of secret keys in the device memory (where the secret is
required during the execution of the protocol); (ii) ensure
security even under noisy conditions; (iii) resilience against
machine-leaning or modeling attacks; (iv) scalability so that
it can work for IoT applications with a large number of
devices. Even though PUFs have emerged as a promising
security primitive for ensuring physical security of IoT devices
(e.g., against tampering and cloning), this article highlights
several challenges that PUF-based authentication protocol may
face. To provide context, we first present four state-of-art
design approaches for constructing authentication protocols
for IoT devices by considering ideal-PUFs, noisy-PUFs, and
machine learning attacks on PUFs. Subsequently, we describe
possible challenges that security protocols based on these
approaches may encounter. Finally, this article describes future
expectations for designing PUF-based security solutions. The
contributions of this article can be summarized as:

• It presents state-of-art methodologies for using PUFs in
authentication protocols for IoT devices with physical
security issues while considering challenges such as noise
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and machine learning attacks.
• It presents a comparative analysis of the design ap-

proaches.
• It outlines open research issues and future expectations

for PUF-based security solutions for resource constrained
IoT devices.

II. PRELIMINARIES

A. Physical Unclonable Functions

PUFs exploit the intrinsic random variability in the physical
micro-structure of ICs to produce a unique output in the form
of a “response”, R, to an input called the “challenge”, C. PUFs
can be considered as a challenge-response system modeled as
R = f(C) where the function f(·) models the input-output
relation of the PUF. The function f(·) is governed by the
variations in the circuits’ internal parameters. PUF security
leverages on the difficulty of measuring or estimating these
parameters and the difficulty of creating two chips with the
same parameters (i.e., unclonability). A PUF may be classified
as either strong or weak, based on the number of unique
challenges it can process. A weak PUF can only process
a small number of challenges while a strong PUF has the
ability to process a number of challenges that is large enough
to make the complete measurement of all challenge-response
pairs (CRPs) within a limited time-frame unfeasible.

One of the first PUF implementations was an optical PUF
where the response (speckle pattern) depends on the input laser
location/polarization (challenge) [2]. Owing to their higher
cost and the need for well-calibrated external measurement
devices, subsequent efforts have focused on the development
of semiconductor based PUFs. Examples of silicon based
PUFs that exploit manufacturing variability in gate and wire
delays as the source of unclonable randomness include arbiter
PUFs and its variations (e.g., XOR arbiter PUFs) and ring
oscillator PUFs. Other examples of PUFs include mismatch
based silicon PUFs such as SRAM PUFs, latch PUFs, ip-
op PUFs, butterfly PUFs, and analog PUFs based on silicon
such as current-based PUFs and nonlinear current mirror
based PUFs (that exploit nonlinear characteristics of current
or voltage) [4]. Hardware embedded with PUFs as well as
PUF-based security solutions are also becoming commercially
available (e.g., Xilinx Zynq Ultrascale+ MPSoC, Intrinsic ID,
and PUF solutions and designs from Quantum Trace, ICTK,
and Quantum Base [new citation, should be [4]]).

Advantages of PUFs over standard secure digital storage
include [3]:
• The hardware for PUFs uses simple digital circuits that

require lower power and chip-area than EEPROM/RAM
solutions with anti-tamper circuitry.

• Security applications using PUFs do not need expen-
sive cryptographic hardware such as those required for
efficient execution of secure hash algorithm (SHA) or
public/private key encryption algorithms.

• Security of a PUF is derived from the physical micro-
structure of the chip, making the execution of invasive
attacks more difficult.

• Producing a physical clone of a PUF is extremely hard.

• PUFs are easier to manufacture and operate than non-
volatile EEPROMs or battery-backed RAMs that require
external always-on power sources.

B. Fuzzy Extractor
One of the limitations of PUFs is their sensitivity to ambient

and operating conditions such as temperature and voltage
levels. As a result, the response of a PUF to the same challenge
may vary based on prevailing conditions. Fuzzy extractors
have been proposed as an efficient solution for this problem. A
fuzzy extractor [10-12] converts a PUF’s output into a uniform
pseudorandom secret that serves as a secret key during the
authentication phase. Pseudorandom functions are applied in
our protocol for creating uniformly random session keys. A
fuzzy extractor (d, λ, ε) consists of two procedures: Gen(·)
and Rec(·). Gen(·) outputs a keying element K and helper
data hd , i.e., (K, hd) = FE.Gen(R) for a given input bit
string R. Rec(·) takes a noisy input R′ and helper data hd and
outputs the key K, i.e., K = FE.Rec(R′, hd), if the Hamming
distance between R′ and R is at most d.

C. Reverse Fuzzy Extractor
The underlying error decoding algorithms of fuzzy extrac-

tors and secure sketches are typically complex and time con-
suming. Thus, reverse fuzzy extractors have been developed
for fast implementation of secure sketch and fuzzy extractors
[7]. With reverse fuzzy extractors, PUF-enabled devices need
not perform the computationally intensive reconstruction algo-
rithm. Instead, the devices execute the helper data generation
algorithm. Consequently, a new helper data hd is generated
each time a PUF is queried and the verifier corrects the
reference value R of its database to the noisy PUF response
R′, which is different each time the PUF is evaluated.

D. Fractional Hamming Distance
Hamming weight, HW(R), counts the number of 1s in

vector R. Let L(R) denote the length of R, as used in, e.g.,
the fractional Hamming distance FHD(R,R∗) = HW(R ⊕
R∗)/L(R) between vectors R and R∗.

E. Pseudorandom Function
A pseudorandom function PRF: {0, 1}k × {0, 1}∗ →
{0, 1}k′

takes a secret key sk ∈ {0, 1}k and a message
m ∈ {0, 1}∗ and provides an arbitrary string PRF(sk ,m) that
is indistinguishable from a random string. Security of the PRF
can be defined by the following game between a challenger C
and the adversaryA. Challenger C first selects a coin bU←−{0, 1}
and secret key sk U←−{0, 1}

k. Then, C creates a truly random
function RF. The adversary A can adaptively issue an oracle
query to the challenger C to obtain a response from a function.
When A sends m, then C responds with PRF(sk ,m) if b = 1.
On the other hand, if b = 0, then C inputs m to RF and
responds with its output. Finally, A outputs a guess b′ and wins
the game if b′ = b. Here, the advantage of the adversary to win
the game can be defined as AdvPRF

A (k) = |2Pr[b′ = b] − 1|.
A PRF is said to be ε−secure if for any polynomial time
adversary A, AdvPRF

A (k) ≤ ε holds.
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Figure 1. Authentication under ideal PUF conditions (Protocol 1).

Figure 2. Authentication under noisy PUF condition with fuzzy extractor (Protocol 2)

III. CONSTRUCTION OF PUF-BASED AUTHENTICATION
PROTOCOLS FOR IOT DEVICES

Depending upon the constructional requirements, PUF-
based authentication protocols can be divided into four cat-
egories: ideal PUF-based construction, noisy PUF-based con-
struction with fuzzy extractor, reverse fuzzy extractor-based
construction, and the machine-learning resilience-based con-
struction. The ideal PUF-based design protocol provides a
baseline for the design of PUF-based protocols and is useful
for supporting the authentication process by generating secret
stable PUF-response at run-time under controlled operating
conditions (discussed in detail in Section III-F). In cases
where the operating conditions are variable and/or noisy,
fuzzy extractor and reverse fuzzy extractor-based protocols
can be used for authentication. However, if the execution
of the FE.Rec algorithm is too heavy for an IoT device
and the device can afford a non-volatile-memory (NVM)
for storing the secret key, then the reverse fuzzy extractor-
based protocol is more preferable than fuzzy extractor and

can also ensure two-factor security. Finally, protocols based
on the above three approaches are insecure against machine-
leaning (ML) or modeling attacks (discussed in detail in
Section III-D). Therefore, we need a ML-attack-resilience-
based authentication protocol. In this section, we first present
these four approaches for designing PUF-based authentication
schemes for IoT devices. Note that most of the existing PUF-
based protocols (such as [4-8]) use these approaches in their
design construction. Subsequently, we highlight the challenges
faced by each of these approaches.

A. Protocol 1: Ideal PUF-based Construction

This section presents the design methodology for a
lightweight authentication scheme for IoT devices when the
PUF is ideal [4-5].

Setup Phase: Execution of this phase is carried out through
a secure channel. To start execution of this phase, an IoT
device Dj sends it’s identity to the server and requests the
server for registration. After receiving the request, the server
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generates a set of challenges C = {C1, C2, · · · , Cn} and
then sends C to the device. Upon receiving the request, the
device extract the PUF outputs R = {R1, R2, · · · , Rn} =
PUFDj

(C1, C2, · · · , Cn), and sends R to the server. Then, the
server stores all the challenge-response pairs (CRPs) (C,R) =
{(C1, R1), (C2, R2), · · · , (Cn, Rn)} for n interactions with
the device. Note that when all the CRPs are used up, then the
server generates a new set of challenges and asks the device
to send the corresponding responses through the execution of
this phase.

Authentication Phase: The device generates a nonce Nd

and then sends Nd along with its id Dj to the server. After
receiving the request, the server first searches its database
for Dj and its security credentials, and then selects a CRP
(Ci, Ri). The server then generates a nonce Ns and computes
N∗s = Ri ⊕Ns and V0 = h(Nd||Ri||N∗s ). Finally, the server
composes a message MA2

: {Ci, N
∗
s , V0} and sends it to the

device. Upon receiving MA2
, the device first uses the challenge

Ci and generates its PUF response Ri = PUFDj (Ci). It then
computes and verifies the parameter V0 . If the verification
is unsuccessful, then the device aborts the execution of this
phase. Otherwise, the device computes Ns = Ri ⊕ N∗s and
V1 = h(Ns||Ri), and sends V1 to the server. Upon receiving
V1, the server validates it. If the validation is successful, the
server authenticates the device. Then, both the device and the
server delete the CRP (Ci, Ri). Details of this phase are shown
in Fig. 1.

Challenges in this construction: First consider the case
where the PUF (PUFDj ) used in this construction is a weak-
PUF (such as SRAM). In this scenario, the security of the
system is compromised when the responses arising from the
PUF are read out by invasive means. This is in principle
comparable to the security of a secret key stored in NVM,
even though the PUF-response exists in the system only for a
short time. This inherent attack point of weak PUFs has been
successfully exploited in literature (e.g., [17]). Even if care is
taken to prevent SRAM PUF values from ever being read over
standard on-chip channels, attacks using laser stimulation can
reveal cell states in a powered SRAM PUF [17].

In the case where the PUF (PUFDj ) used in this con-
struction is a strong-PUF, the protocol is susceptible against
machine-learning or modeling attacks (as discussed in Section
III.D). Note that the cloning and invasive attacks that are
practical on weak PUFs, are less applicable on strong PUFs
since the adversary requires knowledge of all possible CRPs
(a large number) in order to perform such attacks (and weak
PUFs are limited in the number of CRPs). Finally, although
differential design methodologies do improve reliability, noise
is still a factor in PUF design. Even in optimal environmental
conditions, noise will result in one or several of the output bits
of the PUF to be incorrect for any given challenge. Hence, the
scheme above will not work for noisy PUF conditions. Modern
PUF designs employ multiple error-correction techniques to
correct bits for improving reliability. The following sections
present two approaches for designing authentication schemes
for noisy PUF conditions.

B. Protocol 2: Noisy PUF-based Construction With Fuzzy
Extractor

This section presents a construction for lightweight authen-
tication schemes for IoT devices using fuzzy extractor under
noisy PUF conditions [5-6].

Setup Phase: To start execution of this phase, an IoT
device Dj sends it’s identity to the server and requests for
registration through a secure channel. Upon receiving the
request, the server generates a set of random challenges
C = {C1, C2, · · · , Cn} and sends C to the device. Upon
receiving C, the device extracts the PUF outputs R =
{R1, R2, · · · , Rn} = PUFDj

(C1, C2, · · · , Cn), and sends R
to the server through a secure channel. Next, for each CRP
(Ci, Ri), the server computes (Ki, hdi) = FE.Gen(Ri) and
composes the set of challenge-helper data pairs (C, hd) =
{(C1, hd1 ), (C2, hd2 ), · · · , (Cn, hdn)} and the challenge-key
data pairs (C,K) = {(C1,K1), (C2,K2), · · · , (Cn,Kn)},
and sends the challenge-helper data pairs (C, hd) to the device.
Finally, the server stores {Dj , (C,K)} in its database and
the device needs to store (C, hd) in its memory for further
interactions.

Authentication Phase: The IoT device generates a random
number Nd and then sends Nd along with its identity Dj

to the server. Upon receiving the request, the server first
finds the security credentials of device Dj and then selects
a challenge-keying data pair (Ci,Ki). After that, the server
generates a nonce Ns and computes N∗s = Ki ⊕ Ns and
V0 = h(Nd||Ki||N∗s ). Finally, the server composes a message
MB2

: {Ci, N
∗
s ,V0} and sends it to the device. Upon receiving

message MB2 , the device first uses the challenge Ci and
locates challenge-helper data pair (Ci, hdi). Then, the device
generates its PUF response R

′

i = PUFDj
(Ci), calculates

Ki = FE.Rec(R
′
i, hdi), and then checks the parameter V0.

If the verification is successful, then the device authenticates
the server, computes Ns = Ki ⊕ N∗s and V1 = h(Ns||Ki),
and sends V1 to the server. Upon receiving parameter V1,
the server validates it. If the validation is successful, the
server authenticates the device. Finally, the device deletes the
challenge-helper data pair (Ci, hdi) from its memory and the
server deletes the challenge-keying data pair (Ci,Ki) from its
database. Details of this phase are shown in Fig. 2.

Challenges in this construction: Even though the protocol
above works for noisy PUFs, the device needs to execute the
computationally expensive reconstruction phase (which limits
its applicability for resource limited IoT devices). In addition,
in this protocol, the device needs to store the set of challenge-
helper data pairs (C, hd) which results in additional storage
cost at the device. Also, the fuzzy extractor used by the PUF
in this protocol to deal with noise has certain limitations as
reported in [16] and this creates some security issues as well.
For instance, the security requirement for fuzzy extractors is
that the key is uniform even to a (computationally unbounded)
adversary who has observed the helper data hdi . However, this
requirement is harder to satisfy as the allowed error tolerance
increases, because it becomes easier for the adversary to guess
key Ki. This attack is enabled by the functionality of the fuzzy
extractor. Therefore, it is important that the fuzzy extractors
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should ensure that helper data does not leak the full PUF
response.

C. Protocol 3: Noisy PUF-based Construction With Reverse
Fuzzy Extractor (Two-Factor Security)

This section shows how reverse fuzzy extractors may be
used to construct a lightweight authentication scheme for IoT
devices under noisy PUF conditions [7-8].

Setup Phase: Execution of this phase is carried out through
a secure channel. First, an IoT device Dj sends its identity
to the server. Then, the server generates a set of random
challenges C = {C1, C2, · · · , Cn}, and sends C to the device.
Upon receiving the request, the device first extracts the PUF
outputs R = {R1, R2, · · · , Rn} = PUFDj

(C1, C2, · · · , Cn),
and then sends R to the server. Next, the server randomly
generates a key, Kds , and sends it to the device. The server
stores the key along with the challenge-response pairs (C,R)
for the next n interactions with the device.

Authentication Phase: The device generates a random
number Nd, computes N∗d = Kds ⊕ Nd, composes a request
message MC1

: {Dj , N
∗
d }, and sends MC1

to the server. After
receiving MC1 , the server locates the security credentials
of Dj and selects the secret key Kds and a challenge-
response pair (Ci, Ri). Then, the server generates a nonce
Ns, and computes Nd = Kds ⊕ N∗d , N∗s = Kds ⊕ Ns ,
and V0 = h(Nd||RKi ||N ∗s ). The server the composes a
response message MC2

: {Ci, N
∗
s , V0} and sends it to the

device. Upon receiving MC2 , the device first uses the chal-
lenge Ci and computes and verifies the parameter V0 . If the
verification is successful, then the device extracts the PUF
response R

′

i = PUFDj
(Ci) and calculates Ns = Kds ⊕ N∗s ,

(ki, hdi) = FE.Gen(R
′

i), hd∗ = h(Kds ||Ns) ⊕ hdi , and
V1 = h(Ns||ki||hd∗). Finally, the device composes a message
MC3

: {V1, hd∗} and sends it to the server. Upon receiving
MC3

, the server computes hdi = h(Kds ||Ns) ⊕ hd∗i and
ki = FE.Rec(Ri, hdi), and verifies V1. If the verification
is successful, the server authenticates the device. Lastly, the
server deletes the CRP (Ci, Ri) from its database. Details of
this phase are depicted in Fig. 3.

Challenges in this construction: The above approach also
works for noisy PUFs and each IoT device maintains two
factors (secret key Kds and its PUF PUFDj ) for proving
its legitimacy to the server. However, in this solution, if the
attacker can obtain the secret key Kds stored in the non-
volatile memory (NVM) of the device, then the attacker can
decrypt the helper data. Repeated exposure of the helper
data may result in additional min-entropy loss [12], since
the helper data reveals information about the PUF response.
Each execution of the helper data generator Gen(·) on a
different noisy version of the same PUF response reveals
new helper data. However, reverse fuzzy extractors give no
guarantee about the min-entropy of the PUF response in case
multiple helper data for different noisy variants of the same
response is known [12], [16]. Hence, reverse fuzzy extractors
may leak the full PUF response, when Gen(·) and Rec(·) are
based on a conventional fuzzy extractor. One option to address
this issue is to replace the conventional fuzzy extractor with

the fractional Hamming distance, which can even lower the
computational overhead at the device end (as shown in Table
II.)

D. Protocol 4: Train-PUF-Model-based Construction

Machine learning (ML) modeling attacks have emerged as
the primary security issue for PUF-based security protocols.
In such attacks, the ML algorithm collects and analyzes the
CRPs from a PUF and uses them to create a model for the
PUF. The attack starts with the adversary generating multiple
PUF models with different parameters. These models are then
trained using the collected CRPs, and the PUF model with
the challenge-response behavior closest to observed CRPs is
selected among the generated PUF models. Additionally, the
parameters of the selected PUF model are randomly mutated
so that new PUF models are generated, and this process is
repeated until the final PUF model produces a response similar
to that of the original PUF. All three protocols described
earlier are vulnerable to such ML-attacks [13-14]. This section
presents a train-PUF-model-based [15] authentication protocol
that is resistant to ML-attacks (by limiting the ability of attack-
ers to collect the CRPs). In this approach, the PUF supports
a mode of operation available only during the setup phase,
where, instead of storing explicit CRPs for each device, a train-
PUF-model is stored instead. The train-PUF-model extracts a
linear amount of manufacturing variation information about
the PUF to train an authentication verification model.

Setup Phase: During the setup phase, instead of storing
the security credentials for each device Dj , the server stores a
train-PUF-model TPMj . The setup interface is then disabled.

Authentication Phase: During the execution of the au-
thentication phase, the device generates a challenge Cd

j and
composes a message MD1

: {Dj , C
d
j } and sends MD1

to the
sever. Upon receiving MD1

, the sever uses TPMj to compute
TPMj (C

d
j ) = Rd

j1||Rd
j2, where Rd

j1 and Rd
j2 constitute the

PUF-response Rd
j (i.e., Rd

j = Rd
j1||Rd

j2). Then, the server
generates a new challenge Cs

j , composes a message MD2
:

{Rd
j1, C

s
j }, and sends MD2 to the device. Upon receiving MD2 ,

the device first generates the PUF response PUFDj
(Cd

j ) =
Rd∗

j1 ||Rd∗
j2 and if FHD(Rd∗

j1
, Rd

j1) > τ , then the device aborts
the execution of the protocol. Otherwise, the device computes
PUFDj

(Cs
j ) = Rs∗

j1 ||Rs∗
j2 , composes a message MD3

: {Rs∗
j2 },

and sends MD3
to the server. The server then uses the train-

PUF-model TPMj (C
d
j ) and if FHD(Rs∗

j2
,Rs

j2 ) > τ , it aborts
the authentication process. Otherwise, the server considers the
device as legitimate. In this protocol, the server and the device
jointly generate the challenge for the PUF, and the attacker
cannot impersonate either party for the purpose of completely
controlling the PUF challenge information. Details of this
phase are depicted in Fig. 4.

Challenges in this construction: Even though the protocol
above is secure against ML-attacks, one of its major issues
is that of scalability. The server needs to maintain a train-
PUF-model for each device, which incurs significant storage
cost. Moreover, during the authentication process, the server
needs to load the train-model into its memory, which is a
time consuming process [15]. Another issue with this protocol
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Figure 3. Authentication under noisy PUFs with reverse fuzzy extractor (Protocol 3).

Figure 4. Train-PUF-Model-based authentication protocol for resilience against ML-attacks (Protocol 4).

is the possibility of repeated measurements using the same
challenge. This problem can easily be addressed if the server
keeps track of the used challenge. However, this requires
additional resources since the server needs to record the
challenges used in each session of the protocol and both the
server and the device are not permitted to reuse the same
challenge.

E. Comparative Analysis

This section presents a comparative analysis of the four
design approaches of PUF-based protocols for IoT devices.
We first compare the design approaches in terms of desir-
able imperative features (DIF) for IoT-based authentication
schemes using PUFs. Table 1 shows that all four protocols
ensure mutual authentication. While Protocol 3 achieves most
of the DIFs, it does not provide protection against ML-attacks

on PUFs. Besides, in this construction the device needs to
have a secure NVD for maintaining the secret-key, which
would require additional cost at the device end. On the other
hand, while Protocol 4 ensures resilience against ML-attacks,
it has scalability issues. As discussed in Section III, all existing
PUF-based protocols in literature use one of these approaches
(shown in Protocol 1 through Protocol 4).

Next, we evaluate the systems performance of the above
four protocols. For that, we consider a SRAM PUF that
is implemented on a Xilinx XC5VLX30 with system clock
of 1.84 MHz and 16KByte of program memory. In order
to evaluate our noisy-PUF-based solutions (i.e., protocol 2,
protocol 3, and protocol 4), before execution of each phase
of the above protocols, we power cycle the device to re-
initialize the SRAM-PUF. This gives us a real SRAM PUF
noise profile. Next, for protocol 2 and protocol 3 we construct
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Table I
COMPARATIVE ANALYSIS BASED ON THE DESIRABLE IMPERATIVE FEATURES (DIF)

Schemes DIF1 DIF2 DIF3 DIF4 DIF5
Protocol 1 Yes No No Yes No
Protocol 2 Yes Yes No Yes No
Protocol 3 Yes Yes Yes Yes No
Protocol 4 Yes Yes No No Yes
DIF1: Mutual Authentication; DIF2: Handling Noisy Conditions; DIF3:Two-Factor Security;

DIF4:Scalability; DIF5: Handling Machine-Learning or Modeling-Attacks;

Table II
BENCHMARK ANALYSIS OF THE PUF-BASED SOLUTIONS

Computation Cost (at the Device) Execution Time (in clock cycles)
Protocol 1 P+2H+RNG 7,284+2×32,145+16,552 = 88,126
Protocol 2 P+2H+FE.Rec+RNG 7,284+2×32,145+412,968 +16,552 = 501,094
Protocol 3 P+3H+FE.Gen+RNG 7,284+3×32,145+ 268,820+16,552 = 389,091
Protocol 4 2P+FHD+RNG 2×7,284+11,670+16,552 = 42,790

P: PUF Operation; H: Hash Operation (SHA-256); FE.Gen:Key Generation Algorithm;
FE.Rec: Reconstruction Algorithm; FHD: Fractional Hamming Distance; RNG: Random Number Generation;

the helper data from a (63,16,23)-BCH code [12]. From Table
II, we can see that the Train-PUF-based solution (protocol
4) takes significantly less computation cost and execution
time as compared to the others, since in this protocol the
IoT device does not require to perform the computationally
expensive FE.Rec, FE.Gen, and H (hash) operations but this
construction suffers from the scalability issues. From Table
II, we also note that the execution time of the protocol 2 is
much higher than others. Also, in this construction the device
needs store a set of pairs of the challenge-helper data pairs
(C, hd) = {(C1, hd1 , · · · , (Cn, hdn)} that cause additional
storage overhead at the device end, which could be an issue
for resource limited IoT devices. Therefore, in a nutshell, it
can be easily argued that the existing PUF-based authentication
protocols for IoT devices suffer from various challenges (as
shown in Table I and Table II).

F. Suitable Applications

The four protocol constructions have their relative strengths
and may find applications based on the requirements of
the underlying scenario. This section describes suitable IoT
applications for the above four protocol. Since operating
conditions (such as temperature variations) may influence the
PUF operation, specially in terms of noise, Protocol 1 is not
suitable for environments with varying conditions. However,
Protocol 1 can be used in closed-IoT platforms such as
smart-home environments, smart-door locks, etc. In protocol
2, the device needs to perform a computationally expensive
Rec(·) function and also needs to store helper data. Hence,
this construction is better suited for IoT devices with more
computational power and storage capacity (e.g., smart phones).
In Protocol 3, the device needs to maintain a secret key
in order to avoid performing the computationally expensive
Rec(·) function. Any loss of this key makes this construction
insecure. Hence, this construction will be suitable for closed

IoT platform devices such as smart-meters, smart tokens, etc.
Finally, since scalability is the major issue in Protocol 4,
this construction is better suited for IoT applications with
limited number of devices such as IoT-based control-system
applications, where the server may regularly check the status
of a limited number of devices.

IV. OTHER CHALLENGES AND FUTURE EXPECTATION

Apart from the protocol level challenges described above,
existing PUF-based security solutions for IoT systems may
face the following issues in the aspects of efficiency and
reliability.

1) PUFs have gained popularity in the security domain as
an useful paradigm for hardware-based root of trust for
resource constrained devices. However, the requirement
of a specially manufactured IC for PUF-based devices
(such as IoT device) is an issue since such hardware is
not widely available at this moment. Therefore, despite
of its advantages, PUF-based solutions are still not
widely used in practice for security of IoT devices. As
a result, these devices are often exposed to hardware
attacks such as cloning and tampering of the devices.
However, PUFs have received considerable interest in
the industry recently (e.g., hardware and solutions from
Xilinx, Intrinsic ID, Quantum Trace, ICTK, and Quan-
tum Base [4]) and it is expected that more devices with
in-built PUFs will be available in the near future.

2) The quality of existing PUFs is another concern, as it
directly affects the reliability and security. Reliability of
a PUF refers to its ability to operate correctly under
a wide range of external circumstances and to have
a sufficiently long lifetime. Operating conditions that
influence PUF behavior include: temperature, core volt-
age, and electromagnetic radiation. On the other hand,
the amount of randomness or entropy present in the
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PUF is an important parameter for security. Achieving
sufficient entropy in the PUF output is a challenging
design problem and lack of entropy may cause breaches
in PUF-based security solutions. There have have been
many recent initiatives towards the design of high en-
tropy PUFs (e.g., ring oscillator based PUFs [3]), and
more solutions are expected in the near future.

3) Machine learning or modeling attacks have become one
of the main security challenges for PUF-based security
solutions. One solution to address this problem that has
been explored in literature is through interesting PUF-
constructions (such as [11]). However, most of them
have been proven to be insecure [12]. On the other
hand, although a few protocol level approaches have
been proposed in literature (e.g., [15]), they are not
scalable, making them unsuitable for IoT environments.
Considering the ongoing research interest in this area,
new PUF-constructions as well as new protocol-level
solutions that are scalable and provide protection against
ML-attacks can be expected in the near future.

V. CONCLUSION

This article presented the state-of-art approaches for de-
signing PUF-based authentication protocols for resource con-
strained IoT devices. Protocols specific to ideal and noisy
PUF conditions were presented. Moreover, a protocol level
approach to deal with ML-attacks on PUFs was also presented.
A comparative analysis was presented to show the effective-
ness and weaknesses of of the four design approaches. Finally,
the article discussed the challenges that PUF-based security
solutions may face, and future expectations in this area.
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