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Data Sharing with IOTA and IPFS in IoT-based
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Abstract—The recent rise in cyber-attacks has jeopardized the
protection and secrecy of data in Medical Cyber-Physical Systems
(MCPS). Existing encryption methods prioritize system architec-
ture over end-user concerns, necessitating innovative data man-
agement approaches. In this article, we develop a decentralized
patient health data-sharing system using IOTA tangle and Inter
Planetary File System (IPFS) technologies. Our method employs
Brakerski/Fan-Vercauteren (BFV) homomorphic encryption and
fragmentation and dispersion techniques to store and share data
securely. This ensures data privacy even if the transmission media
and cryptographic keys are compromised. Emphasizing a patient-
centric approach, our design places data protection on the end
user’s trusted device, like a smartphone, granting users control
over data access and sharing, thus bolstering overall MCPS
security.

Index Terms—Medical Cyber-Physical Systems (MCPS), In-
ternet of Things (IoT), Healthcare, Homomorphic encryption,
Security and Privacy.

I. INTRODUCTION

Healthcare applications store sensitive user information on
medical servers and execute computational tasks to aid various
patient diagnoses. The increasing frequency of cyber-attacks
targeting hospital systems leads to the extortion of user data
[1]. Additionally, mathematical computations performed on
cloud-stored data are vulnerable to exploitation by exter-
nal entities lacking trustworthiness, who exploit the sale of
confidential data for monetary profit. The mobile electronic
health (e-health) system, supported by cloud technology, facil-
itates the sharing of electronic health data between healthcare
providers and patients. However, this raises concerns about
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security and privacy related to the e-health data. Despite
these concerns, sharing Electronic Health Records (EHRs) is
crucial for efficient healthcare delivery within Medical Cyber-
Physical Systems (MCPS). The increasing interconnectivity of
healthcare systems enhances the patient outcomes through the
real-time monitoring as well as advanced analytics. However,
at the same time, it also raises concerns about the security,
privacy, and integrity of sensitive medical data across various
decentralized networks. Homomorphic encryption on the other
hand offers a promising solution by allowing computations on
encrypted data without revealing the underlying information,
and thus, it ensures the privacy throughout the data’s lifecy-
cle. Integrating homomorphic encryption with decentralized
technologies like IOTA’s Tangle architecture and IPFS helps
in achieving secure, scalable, and efficient data sharing. More-
over, this approach ensures data integrity and compliance with
healthcare regulations in a decentralized healthcare ecosys-
tem. This article proposes a robust framework integrating
IOTA, Inter Planetary File System (IPFS), and Brakerski/Fan-
Vercauteren (BFV) homomorphic encryption to facilitate se-
cure EHR sharing in MCPS.

MCPS integrates smart medical devices, software, and
networking, revolutionizing healthcare capabilities. Despite
these advancements, EHR sharing faces data privacy, integrity,
and interoperability obstacles. Various approaches have been
proposed, such as Attribute-Based Encryption (ABE) [2], ad-
versarial ML-based cloud architecture [3], differential privacy
techniques [1], and so on. Most cannot achieve the desired
security for sharing medical cyber-physical system data. Ad-
dressing these challenges necessitates innovative solutions.
Therefore, Fully Homomorphic Encryption (FHE) can serve
as a counterpart, enabling individuals to manage data access
through end-to-end encryption while utilizing FHE for data
analysis. Moreover, the cost of data transfer limits the free
flow of information. Advanced data management systems offer
various solutions, including Distributed Ledger Technologies
(DLT) like blockchain [4] and Directed Acyclic Graph (DAG).
IOTA, a DAG-based protocol, addresses blockchain limitations
in its early stages. The Inter Planetary File System (IPFS)
supplements DLT protocols for effectively managing large-
scale data, leveraging content-addressing and peer-to-peer net-
working.

This study focuses on enhancing privacy protection while
improving data access for healthcare institutions. The proposed
architecture allows individuals to manage their Personal Health
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Records (PHRs) through a Decentralized System (DS), where
encrypted PHR data is stored using individual encryption
keys. The study presents a comprehensive framework for
secure Electronic Health Record (EHR) sharing within Med-
ical Cyber-Physical Systems (MCPS), utilizing IOTA, IPFS,
and BFV homomorphic encryption. By harnessing these tech-
nologies, the framework fosters patient-centered healthcare
delivery while ensuring the confidentiality and integrity of
medical records.

The paper is organized as follows. Section II provides a
review of the existing literature on EHR sharing, while Section
III explains the preliminaries. Section IV details the proposed
methodology. Section V focuses on the security analysis,
followed by Section VI, which presents the experimentation
results and performance evaluation. Finally, Section VII offers
the conclusions.

II. BACKGROUND AND RELATED WORK

Numerous auditing solutions, effective for Public Key In-
frastructure (PKI), rely on certificate-based systems, incurring
additional certificate administration expenses. Consequently,
such schemes fail to support cloud-based MCPS as they
necessitate bilinear-pairing schemes for auditing by Third
Party Auditors (TPAs). Shabisha et al. [5] proposed a pairing-
based encryption technique for storing data in the cloud.
However, real-time applications do not employ this method.
Conversely, cloud-assisted data warehouses can accommodate
vast medical records, emphasizing data integrity. Zhang et al.
[6] proposed an identity-based mechanism called Distributed
Public Integrity Verification (DOPIV) for cloud storage. In
this case, the DOPIV permits the original owner to create and
outsource signatures to the cloud while enabling the legitimate
proxy. They also guaranteed that their approach maintains
identity-based systems while avoiding complicated certificate
management procedures. However, assessing remote physical
access and processes is challenging for most cyber-physical
systems [7]. A deep Q-network is used by Leong et al. [8]
to propose a Markov Decision Process (MDP) that securely
determines how to convey numerous states of remote and
changing processes. They also ensured that their model could
function online.

Nguyen et al. [9] proposed BEdgeHealth, a decentralized
health architecture that combines Mobile Edge Computing
(MEC) and blockchain technology to facilitate data offloading
and sharing within distributed hospital networks. This ap-
proach includes a data offloading scheme that enables mobile
devices to transfer health data to nearby MEC servers for
efficient computation while maintaining privacy. Salim et al.
[10] introduced a privacy-preserving scheme utilizing homo-
morphic encryption to protect medical plaintext data from
potential attackers. By secret sharing, computations are dis-
tributed across multiple virtual nodes at the edge, concealing
all arithmetic operations. This configuration prevents untrusted
cloud servers from obtaining insights into the tasks performed
on the encrypted patient data. Leveraging cloud computing
resources, virtual edge nodes adeptly manage computationally
intensive mathematical functions, thus reducing latency in data

transmission between devices and edge nodes. In the scheme
by Akbulut et al. [11], integration of IOTA Tangle, DLT,
IPFS protocols, Application Programming Interfaces (APIs),
Proxy Re-encryption, and access control mechanisms secure
patient medical records and IoT medical devices. Their system
empowers patients with full control over their health records.
Liu et al.’s scheme [12] relies on a consortium blockchain,
emphasizing both security and privacy. Encrypted EHRs are
stored on the IPFS, with the resulting hash addresses logged
on the blockchain. Through the proxy re-encryption algorithm,
users can grant decryption authorization to specific individuals,
guaranteeing that only intended persons can access EHR
files. Table I shows the comparative analysis of the existing
techniques.

A. Motivation
MPCS provides wide-ranging opportunities for researchers

and diverse sectors to tackle security and privacy concerns.
However, discussions on numerous issues, including security,
privacy, and trust in various cyber-physical systems, are preva-
lent within MPCS. IOTA is favored over Hyperledger for
IoT-based MCPS due to its lightweight, scalable, and energy-
efficient Tangle consensus mechanism, which eliminates tra-
ditional miners and reduces computational overhead. Unlike
Hyperledger’s complex peer-based infrastructure, IOTA’s cryp-
tographic security and feeless transactions make it ideal for
decentralized, resource-constrained IoT networks.

To ensure secure data sharing, Homomorphic Encryption
(HE) enables computations on encrypted medical data with-
out decryption. The BFV scheme is chosen for its precise
arithmetic, making it suitable for medical applications like
ECG analysis and glucose monitoring. BFV balances security
and efficiency, allowing real-time encrypted processing on IoT
devices with limited computational power.

Integrating BFV with IOTA and IPFS enhances data secu-
rity and integrity. IPFS provides decentralized storage, while
IOTA’s tamper-proof ledger ensures authenticity. Compared
to other Fully Homomorphic Encryption (FHE) schemes,
BFV optimizes encryption and decryption, supporting essen-
tial arithmetic operations. This combination enables privacy-
preserving analytics, regulatory compliance, and decentralized
trust in MCPS.

Generally, several challenges associated with MCPS include
aspects such as modifiability, performance, and dependability.
Furthermore, some attacks within MCPS are as follows:

1) Data Breach Perpetrators: These attackers, relying on
malware, aim to infiltrate healthcare industries to extract
highly sensitive medical information. Subsequently, they
may sell this information for personal gain.

2) Social Engineering Exploiters: These adversaries target
the security systems of healthcare networks by focusing
on hospital staff. They achieve this by sending deceptive
emails and enticing staff to click on links that facilitate
the exposure of passwords and other sensitive data.

3) Insider Threat Actors: These attackers, comprising dis-
gruntled and criminally motivated employees, harbor
intentions of turning against their organization due to
past grievances.
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TABLE I
COMPARISON OF RELATED WORKS

Scheme Purpose Security Goals Platform used Limitations
[9] Patient health data sharing Data privacy Blockchain and smart contracts Cost-effectiveness and protection of patient data from

leaking
[10] Secure medical data sharing Data confiden-

tiality
Homomorphic encryption Greater computational and communication costs

[11] Secure personal health records
management

Data privacy IOTA tangle, DLT and IPFS
protocol

Distributed storage in IPFS and IOTA lacks full decen-
tralization due to coordinator nodes

[12] Electronic Medical Record
(EHR) data sharing

Data privacy Elliptic curve cryptography and
IPFS

No formal security analysis proof

III. PRELIMINARIES

This section describes the basic background knowledge of
the terms used in the proposed technique.

1) Inter Planetary File System (IPFS):: It is a decentral-
ized protocol that enables direct network storage and sharing
of digital content on the web. IPFS leverages a distributed
network of nodes to store and retrieve files efficiently while
ensuring fault tolerance.

2) Brakerski–Fan–Vercauteren (BFV) Encryption Scheme::
BFV, is a somewhat homomorphic encryption (SHE), consist-
ing of three algorithms [13]:

• Key Generation Algorithm (KEYGENBFV): This algo-
rithm utilizes security parameter k as input, produces
public key PUk along with a secret key PRk.

• Encryption Algorithm (ENCBFV): This algorithm re-
quires a given message m, a public key PUk, and a
random polynomial as inputs. It outputs a ciphertext c.

• Decryption Algorithm (DECBFV): The decryption algo-
rithm takes c and a secret key PRk to compute the
original plaintext message m.

The details of these algorithms can be found in [13].
3) IOTA Tangle:: It is a distributed ledger similar to

blockchain, based on the mathematical concept of a DAG.
It consists of various layers and components, including trans-
actions, client nodes, APIs, and network types. The Comnet
serves as primary network intended for testing and devel-
opment purposes. Transactions on the Tangle are organized
into bundles, each containing essential components such as
the transaction hash, value, confirmation status, tag, address,
bundle, nonce, signature message fragment, and the address
of the parent transaction. Moreover, the developers can apply
the Tangle’s API to test transactions and develop applications.

IV. PROPOSED METHODOLOGY

The proposed MCPS’s architecture, shown in Fig. 1, con-
sists of the following: 1) Data Publisher, 2) IPFS Data Storage,
3) IOTA Tangle, and 4) Data Subscriber.

A. Data Publisher

Patients in the architecture are considered Data Publishers
and are nothing but data owners; in general, Body Area
Networks (BAN) sensors provide the data or the patient’s past
medical history and can also become EHR. In the proposed
architecture, Data Providers perform the following responsi-
bilities:

1) Data collection onto mobile: In this phase, sensors
periodically collect the patient’s health condition and
then send it to the mobile device.

2) Data processing: After receiving sensor data, it separates
the collected sensor data into public and private data.
Afterward, BFV homomorphic encryption encrypts both
public and private sensor data.

3) Sending of public features onto IPFS: Later, the mobile
device sends the cipher public health data onto IPFS and
stores the hash received from the IPFS nodes.

4) IOTA Tangle channel creation: A channel is first estab-
lished using a secret channel key, Then the publisher can
encrypt data with the data subscriber’s public key, and
then use a channel key and publish it into IOTA Tangle.

5) Sharing of private HER features to data subscriber: In
this phase, upon receiving of EMR request from the data
subscriber, Mobile apk places encrypts the data using the
Subscriber’s private key and then places cipher EMR
onto the Tangle. A protected IOTA Tangle is used in the
experimentation, where a user knows the secret key to
access the data.

B. IPFS Data Storage

The main characteristics of IPFS includes:
1) Assign a unique address derived from the hash of the

file’s content, referred to as a Content Identifier (CID).
2) Combine the file’s hash with a unique identifier for

the hash algorithm into a single string. IPFS currently
employs the Secure Hash Algorithm (SHA-256), which
generates a 256-bit (32-byte) output, encoded using
Base58.

C. IOTA Tangle Data Sharing Platform

IOTA Tangle, using the “masked authenticated messaging
(MAM) communication protocol”, is responsible for sharing
private features securely with the doctor.

D. Data Subscriber

In the proposed technique the doctor treating the patient is
termed a data subscriber and is responsible for the following
operations.

1) Receive private data from the IOTA Tangle.
2) Collect a secret key from a data subscriber, which

is used to decrypt the private data received from the
IOTATangle.
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3) Decrypt the patient private data using his/her private key.
4) Collect encrypted public data from IPFS using the CIDs

received from the IOTA Tangle.
5) Decrypt the received public data using the data

provider’s public key.
Biological or medical data in the MCPS setting is gener-

ated by smart medical devices and stored as EHR files, as
illustrated in of Fig. 1. This EHR is being accessible for
treatment/analysis by data subscribers. At first, a direct and
offline connection is established between the medical devices
and smartphones to enable data transmission. During this
process, smartphones receive the health data, from the sensors
attached to patient body, as input. Selective Feature Engineer-
ing (SFE) method on smartphone fragment the features and
selectively encrypt the data. Depending on the sensitivity of
the feature, the features will be identified, and only the less
critical data pieces (referred to as public features in Fig. 1)
will be transmitted to IPFS. Meanwhile, the more critical data
pieces (private fragments in Fig. 1) will be stored locally on
the smartphones in encrypted form. This approach ensures
efficient utilization of resources while maintaining security
levels appropriate to the sensitivity of the data.

In EHR data sharing, data publisher can initially take a
decision whether to share their private fragment data with Data
Subscriber by directly controlling the data sharing settings on
their smartphones. Once the institutions are authenticated to
access a patient’s EHR, the public fragment can be retrieved
from cloud server. On the other hand, private fragment can
be shared anonymously after removing sensitive information,
such as identity. This cloud server deployment serves as
an efficient data storage and sharing middleware, ensuring
comprehensive functionality and helping to prevent data leaks.

Traditional encryption algorithms, like “Advanced Encryp-
tion Standard (AES)” handles key management to secure
EHRs stored on cloud servers. It emphasizes the risk of data
leakage if the encryption key is exposed., especially when
users reuse keys across multiple platforms. Fragmentation is
proposed to prevent complete data exposure, even if the key
is compromised. Lossless transformations like the discrete
wavelet transform (DWT) are suggested to fragment digital
files into segments with varying importance levels. However,
this approach is deemed unsuitable for EHR protection due to
the nature of EHRs being comprised of multiple files rather
than large data chunks.

The proposed method involves breaking down digital data
to establish connections among different segments. A small
fraction of the data is used to safeguard the remaining seg-
ments efficiently, which are then protected using encryption
techniques and a key. A dispersion strategy is used for storage:
the encrypted portion is kept on the user’s device, while the
rest is stored on IPFS for cost efficiency. This setup ensures
that even if the encryption key is compromised, the data on
IPFS remains inaccessible since the key cannot decrypt those
segments. As a result, this approach prevents data leakage
resulting from password reuse, even if the encryption key is
exposed.

We now introduce an algorithm to selectively encrypt sen-
sitive features and store them using a dispersion method.

Parameters from Table 1 are utilized to accommodate various
file formats of Electronic Health Record (EHR) data. Initially,
the EHR data input (Dinput), which could be in the form of
an image or a database file, undergoes pre-processing to create
a file header (Dhead) containing all necessary markers for the
format. The content (C) of Dinput is then split into Dhead and
C. The size of Dhead is typically negligible compared to C
and is stored locally in plaintext. Subsequently, C is processed
by the Selective Encryption Algorithm (SAE) using keys (PUk

and PRk) and a counter set to 0. BFV key generation creates
public and private keys for patients and doctors. The algorithm
outputs encrypted private fragment (PRFc) and encrypted
public fragment (PUFc). Further details are provided in
Algorithm 1.

Algorithm 1 Selective Features Encryption
Input: Data Dinput, PRk and PUk
Output: Public and private fragments: EPUFc and EPRFc

1: Dinput ←− Dhead + C
2: C = (C1, C2, · · · , CN )
3: PRFc = {∅}; PUFc = {∅} {Initialize the public and private

fragments to null set}
4: feature ←− private features
5: for i← 1 to N do
6: if Ci in feature then
7: PRFc ←− Add(PRFc, Ci) {Ci is collected onto PRFc }
8: else
9: PUFc ←− Add(PUFc, Ci) {Ci is collected onto PUFc

}
10: end if
11: end for
12: EPRFc ←− ENCBFV(PRFc, PUk) {PRFc is protected by

patient’s public key}
13: EPUFc ←− ENCBFV(PUFc, PRk) {PUFc is protected by

patient’s private key }
14: return (EPRFc, EPUFc)

In lines 1-2, we initialize the algorithm to configure param-
eters and read the input EHR data content C as N features
with each feature onto (C1, C2, · · · , CN ). Then, the patient
finalizes the features that are considered private onto feature
in line 4. Each data unit Ci is processed in line 5. In lines 7-12,
we identify which features will be designated as the private
fragments and which will become the public fragments. In this
algorithm, the sequence of C is processed using a for loop.
However, it can be parallelized to enhance performance, which
allows simultaneous processing of the sequence of C.

The algorithm employs BFV homomorphic encryption (HE)
to encrypt both public and private fragments. Thus, PRk is
used to encrypt PUFc, and PUk is used to encrypt PRFc as
detailed in lines 13-14. This process generates EPRFc and
EPUFc. Next, EPUFc is uploaded to the IPFS network.
A CID is created and returned to the mobile device after
successful storage. To access the patient’s public features,
the doctor needs to retrieve the CID and view it on the
IPFS network (https://ipfs.io/ipfs/) using the CID. Private
information, however, remains encrypted. After receiving the
CID, the handling unit creates a transaction that includes the
CID and metadata describing the shared data, such as the “data
owner, data type, a brief description, and decryption keys” for
the IPFS content. Transactions can be published in various
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Fig. 1. Architecture of peer-to-peer MCPS based on IOTA Tangle and IPFS.

privacy modes. In our method, the transaction is published
in a restricted mode, requiring an additional key to access the
content, and thus, it allows the data publisher to manage access
flexibly. The decryption algorithm requires PUk to decrypt
EPUFk, and PRk must be known to decrypt EPRFc.

V. SECURITY ANALYSIS

This section describes the following attacks that are resisted
by the proposed system.

1) Stolen Verifier Table Attack: The proposed scheme em-
braces IOTA’s distributed ledger architecture, eliminating any
entity needing to maintain the verifier table. This protects
against the risk of the verification table being stolen, thereby
making the proposed protocol resilient to stolen verifier table
attacks.

Fig. 2. IPFS Configuration

2) Black Box Attacks: A black box attack on Homomor-
phic Encryption (HE) occurs when an adversary gains access
to encrypted data but lacks the secret key necessary for
decryption. In this scenario, the adversary aims to extract
information about plaintext data by analyzing the output of
homomorphic operations performed on the encrypted data.
IOTA’s capabilities for private transactions ensure that transac-
tion details, including sender, receiver, and transaction amount,

are obscured from external observers. Encrypting transaction
data and limiting access to authorized parties enhances the
privacy of transactions within the Tangle, making it more
difficult for attackers to analyze and exploit vulnerabilities.

3) Data Breach Perpetrators: BFV enables end-to-end data
encryption, ensuring that sensitive information remains en-
crypted at rest and in transit. Even if attackers gain unau-
thorized access to the encrypted data, they cannot decipher
it without the corresponding private key. So, the proposed
technique is secure against Data Breach Perpetrators.

4) Social Engineering Exploiters: BFV allows for secure
data sharing and collaboration while maintaining confidential-
ity. Encrypted data can be shared among authorized parties
without the risk of exposure to unauthorized individuals,
reducing the likelihood of social engineering exploiters gaining
access to sensitive information through deceptive means.

5) Indistinguishability under CPA: In a chosen-plaintext
attack (CPA), an adversary A selects two messages m0 and
m1, and then receives an encryption of one of them. The
adversary’s goal is to determine which message was encrypted.
Here, cb = Enc(mb) = (a, as + e + ∆mb) mod q, where
b ∈ {0, 1}. Given that adversary A must guess b with
probability significantly greater than 1

2 . Since a is chosen ran-
domly from Zq and e follows a discrete Gaussian distribution,
the value of b (which determines mb) is statistically hidden
in the noise term. The encryption outputs (a, b) resemble
random values from Z2

q under the Learning With Errors (LWE)
assumption, where it makes difficult for A to distinguish
between encryptions of different plaintexts. Assume λ is the
security parameter. Then, for any polynomial-time adversary
A, the distinguishing advantage is also negligible, where
Pr[A(Enc(m0)) = 1]−Pr[A(Enc(m1)) = 1] ≤ ε(λ), which
is a negligible function.

VI. PERFORMANCE EVALUATION

We perform an experimental analysis on a well-established
heart disease dataset available in JSON format from the HL7
FHIR repository. Based on the “HL7 FHIR (Fast Healthcare
Interoperability Resources) standard”, this dataset ensures
structured and interoperable medical data exchange. The
“Observation” resource specifically tracks body temperature
measurements, featuring a unique observation ID, a meta-
profile linking to the FHIR vital signs structure, and a
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Fig. 3. IPFS Execution

category classifying it under “Vital Signs.” Additionally, the
“code” field incorporates a standardized “LOINC (Logical
Observation Identifiers Names and Codes) identifier (8310-5)”
for “Body temperature,” promoting semantic interoperability
in medical data sharing. To enable decentralized and
tamper-proof data storage, HL7 FHIR data was uploaded
to the IPFS using its API [14], [15]. Upon successful
upload, Fig. 2 shows a content identifier as follows: “CID:
QmWne2o16JgWsSCgJJurBYDeJjsq6LcYhjWU6f5qJjZsUM”
was generated and provided to the patient. An IPFS node
was also established to facilitate secure and authenticated
communication.

In Fig. 3, we show the peer ID which uniquely identifies
the node within the distributed IPFS network “PID:
12D3KoowC3VSwQsxo7JHLRNDe48AVvZuMN3eYG35
Ldcq-7enNLo”, while the public key is as “CAE-
SIEUJ652eRASfH8c3dKE0NsQ27Fs4Km1TPqwHuOGi”
that enhances cryptographic security for data exchange and
verification. IPFS’s cryptographic hash-based addressing
system ensures data integrity, as any modifications generate
a new hash. When a doctor required access, the patient
shared the CID, enabling retrieval of the stored data via
IPFS, ensuring efficient, decentralized access to public health
information.

For secure storage and transmission of sensitive health
data, we implemented BFV homomorphic encryption using
the “Pyfhel library in Python 3.10.12”. The encryption and
decryption processes were executed on an “Intel(R) Xeon(R)
CPU @ 2.20GHz in a Google Colab” environment. Upon
a doctor’s request for access to a patient’s sensitive health
record, the patient encrypted the data with the doctor’s public
key before transmitting it over the IOTA Tangle network via
the PYOTA package available at https://pyota.readthedocs.io/
en/latest/. The doctor then used their private key to decrypt

and securely access the health information.
Table II shows the proposed technique’s computation time

of encryption and decryption time. The key generation is
done by considering polynomial modulus (n) was varied
among 1024, 2048, and 4096, with corresponding coefficient
modulus (q) values of 27, 52, and 86. The results, shown in
Table II, reveal that encryption consumes roughly 48% of the
processing time, decryption consumes 52%, and the addition
calculation step takes up less than 1% of the total time.
These data transactions on IOTA Tangle could be published in
different privacy modes, such as public and private or restricted
modes, where an extra key is required for access, allowing
the data publisher to control the data. Restricted access mode
is preferred to do data transactions. Once the transaction is
published on the IOTA Tangle, the doctor treating the patient
only knows about the channel key used to receive transactions
from the IOTA Tangle. Later, the doctor uses his/her private
key with a BFV homomorphic algorithm to decrypt patient-
sensitive information.

The data transaction on IOTA Tangle focused on three
primary tasks in publishing and fetching transactions: create,
attach, and fetch. For the create task, the time taken to
generate transactions before publishing them to IOTA nodes
was measured, termed as “create time,” utilizing the IOTA
API to create transaction objects from data payloads. Next, the
attached task involved publishing the transaction objects to the
IOTA network, including conducting a Proof-of-Work (PoW)
consensus algorithm and storing transactions by nodes. The
time taken for this step was labeled as “attach time.” Finally,
the fetch task encompassed retrieving transactions from the
IOTA network, achieved by querying the private Tangle, and
the corresponding execution time was measured and termed
as “fetch time.”

In evaluating the performance of a scheme, communication

https://pyota.readthedocs.io/en/latest/
https://pyota.readthedocs.io/en/latest/
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TABLE II
BFV ALGORITHM PERFORMANCE

n q Enc(ms) Add(ms) Dec(ms)

1024 27 2.37 0.012 2.58
2048 52 2.36 0.012 2.47
4096 86 2.44 0.012 2.66
σ 0.044 0 0.095

Note: Enc: Encryption time; Add: Addition time; Dec: Decryption time; σ:
Standard deviation

TABLE III
COMPUTATION AND COMMUNICATION COSTS

Metrics [9] [10] [11] [12] Proposed
Data storage
time (sec)

22-90 15-50 15-50 0.5 0.5

Data access
time (sec)

9-40 7-35 2-15 0.173 0.25

Data storage
length (bits)

10240 2560-
11264

1792 2880 2464

Data access
length (bits)

11980 2880-
10264

1536 3296 4864

TABLE IV
COMPARATIVE ANALYSIS WITH EXISTING TECHNIQUES

Feature [9] [10] [11] [12] Proposed
Data Confidentiality ✓ ✓ ✓ ✓ ✓
Data Integrity ✓ ✓ ✓ ✓ ✓
Stolen Verifier Table Attack ✓ × ✓ × ✓
Black box attacks × ✓ × ✓ ✓
Data Breach Perpetrators × ✓ × ✓ ✓
Social Engineering Attacks × × × ✓ ✓
Decentralization ✓ × ✓ × ✓
Decentralized Storage ✓ × ✓ × ✓
Traceability ✓ × ✓ × ✓

overhead is also another important factor. In Table III, we
will compare the communication overhead of the proposed
scheme with other existing schemes. Firstly, in the data storage
phase, the patient needs to send encrypted public medical
record information to IPFS for storage, including encryption
of patient personal details like name, age, blood group, and
address with a size of 400 + 24 + 32 = 456 bits. Then
IPFS returns the hash value to the patient and uploads it to
IPFS for storage, including hash value, name, age, and blood
group, with a size of 256 bits. The message length in the data
storage phase is 256 + 456 = 712 bits. A total of 19 bytes
of patient-sensitive data (like cp, trestbps, chol, fbs, restecg,
thali, exacting, old peak, slope, ca and thal) is stored in cipher
form, encrypted using BFV is stored in the patient system.
The storage size required for the storage is of 760 bits. Next,
in the data access phase, the doctor needs to send a request to
the patient, including a request message and other messages,
with a total size of 256 bits. The patient sends hash value and
other information, totaling 256 + 160 = 416 bits. Then, the
doctor accesses IPFS to retrieve the EMR information using
the hash address and decrypts it into 256 bits using the private
key. The message length in the data access phase is 256 + 416
+ 760 = 1422 bits.

The performance of the proposed technique in terms of se-
curity services is shown in Table IV. All the existing methods
ensure data confidentiality using HE and ECDSA algorithms,
with data integrity verified at the recipient’s end. Social
engineering attacks exploit human behavior rather than tech-

nical vulnerabilities, meaning technologies like blockchain,
IOTA, and HE alone are insufficient. Integrating technological
solutions with human-centered security practices is crucial
to preventing such attacks. The methods discussed in [10]–
[12] may not fully address these social engineering threats.
Preventing Stolen Verifier Table Attacks requires secure cre-
dential storage, strong hashing, and multi-factor authentica-
tion. However, if data is stored on the cloud instead of in
a decentralized system, decentralized storage, and traceability
cannot be achieved, making the countermeasures in [11] and
[12] potentially inadequate for this attack. Table IV shows that
the proposed technique provides more security features and
can protect patient health data from various attacks in MCPS.

VII. CONCLUSION

This article introduces a patient-centric EHR data-sharing
system for MCPS, utilizing advanced technologies, such as
BFV HE, IOTA Tangle, and IPFS. The aim is to address
data safety threats from end users’ behaviors, such as key
reuse and leakage. An SFE algorithm with fragmentation and
dispersion techniques was proposed for data storage to protect
against leaks of both the encryption key and public EHR
data fragments. BFV HE secures sensitive patient data, while
a DAG-structured IOTA Tangle ensures high scalability, low
cost, and tamper-resistance in data sharing. IPFS also handles
the challenge of large-volume data storage. Test results confirm
the algorithm’s ability to prevent data recovery even with
compromised keys and public fragments. One future work
is to deploy the system in practical healthcare environments,
potentially integrating with patient health prediction using
machine learning and deep learning approaches.
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