
SAFE-IoT: Attesting Firmware in IoT Swarms
using Volatile Memory and a Mixture of Experts

Varun Kohli
Electrical and Computer Engineering

National University of Singapore
Singapore

varun.kohli@u.nus.edu

Muhammad Naveed Aman
School of Computing

University of Nebraska-Lincoln
United States of America

naveed.aman@unl.edu

Biplab Sikdar
Electrical and Computer Engineering

National University of Singapore
Singapore

bsikdar@nus.edu.sg

Abstract—Advances in 5G mobile networks and artificial
intelligence have led to rapid growth in the Internet of Things
(IoT) as part of various smart initiatives. Embedded IoT micro-
controllers are an easy target of firmware and network attacks,
which become the root cause of various node-level and device-
to-device (D2D) propagated anomalies. Thus, firmware integrity
is essential to ensuring IoT security. Although several existing
techniques require a legitimate copy of the device’s firmware,
authentic firmware may not be available. In addition, the
available literature also has limitations in terms of scalability,
computational complexity, low availability, and the need for
specialized hardware. This paper presents Swarm Attestation
of Firmware in Embedded-IoT (SAFE-IoT) to solve these
problems using a Mixture of Denoising Autoencoder Networks
(MoDAE) framework and is the first to use Static Random
Access Memory (SRAM) to attest firmware in IoT swarms.
We present a volatile memory dataset for swarm attestation,
which contains thirteen network scenarios that capture various
D2D relationships. SAFE-IoT achieves a 99+% attestation rate
on authorized firmware, a 100% detection rate on anomalous
firmware, and a 95+% detection rate on D2D propagated
anomalies. The proposed method has a latency of 10−4 seconds
per node. Lastly, we analyze robustness against perturbation of
SRAM traces.

Index Terms—Internet of Things (IoT), Swarm Attestation,
Mixture of Experts (MoE), Static Random Access Memory
(SRAM), Machine Learning, Anomaly Detection

I. INTRODUCTION

The present decade has seen rapid development in the
Internet of Things (IoT), and billions of devices are deployed
worldwide across initiatives for smart factories, homes, grids,
intelligent transportation, healthcare, and defense owing to
development in 5G communication, edge computing, and
artificial intelligence technologies [1]. Embedded devices
such as microcontrollers are a significant portion of these
networks. They are usually found in swarm settings, a typical
example of which is the intra-vehicle Controller Area Net-
works (CAN) deployed in automobiles, which comprise up to

This research is supported by the National Research Foundation, Singa-
pore and Infocomm Media Development Authority under its Future Com-
munications Research Development Programme, under grant FCP-NUS-
RG-2022-019. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore and Infocomm Media
Development Authority.

seventy microcontrollers performing different tasks ranging
from sensing to control [2].

A recent study revealed that over 95% of vulnerabilities in
IoT devices were related to their firmware [3]. Furthermore,
abnormal behavior originating at one node in a swarm
may have downstream effects due to device-device (D2D)
propagation of information in the swarm. Thus, ensuring
the authenticity of firmware on IoT devices is essential
to the security of IoT networks, and various firmware at-
testation techniques have been proposed in the literature.
Traditional methods involve the computation of a hash over
the prover’s flash memory over multiple iterations [4–6].
However, such approaches require a copy of the firmware,
which may not be available due to intellectual property (IP)
rights. They also have high computational complexity and
latency, which is undesirable in real-time scenarios. Various
hardware-based attestation approaches have been proposed
to solve the complexity problem, which, however, require
specialized hardware that may not be available on the IoT
devices [7–9]. Hybrid attestation techniques such as [10, 11]
cause low availability in IoT devices. Various swarm attesta-
tion methods have also been proposed [12–14], which have
relatively high latency and involve complex cryptographic
computations on the devices.

A study from 2022 introduced Static Random Access
Memory (SRAM) as a potential feature for firmware attes-
tation at the node level [15]. The SRAM has a significantly
smaller size, by several orders of magnitude, than the flash
memory dump and contains run-time information of the
firmware running on the device. Inspired by their work, this
paper proposes an SRAM-based swarm attestation scheme
that achieves scalability, low latency, and high availability
of the microcontrollers while overcoming the IP problem. It
highlights the ability of the SRAM to help detect source and
downstream anomalies originating from anomalous firmware
in different parts of the swarm. To the best of our knowledge,
this is the first study on volatile memory-based attestation of
IoT swarms. The contributions of this article are as follows:

1) A novel attestation approach, SAFE-IoT, is proposed
using a combination of fully connected and convo-
lutional Denoising Autoencoders Experts (DAEs) or-

0 5
Data Byte

0

5

10

15

20

Sa
m

pl
e

100

105

110

115

120

(a) Six bytes of random binary data
(ASCII of ’a’ or ’z’, x-axis) over
twenty-five samples generated at an
arbitrary node, Ni.

0 5
SRAM Byte

0

5

10

15

20
Sa

m
pl

e

0

20

40

60

80

100

120

(b) Received data embedded in the in-
teger equivalent of hexadecimal con-
tent in the SRAM (x-axis) at node,
Ni+1.

Fig. 1: Relationship between data shared by a sender and the SRAM contents
of the receiver.

ganized as a Mixture of Experts (MoE). This work
provides a proof of concept for using the devices’
SRAM contents for the reliable attestation of IoT
swarms.

2) A dataset1 for SRAM-based swarm attestation is pre-
sented. It encompasses thirteen network scenarios of a
four-node IoT swarm with two normal, two physical
twins, and nine anomalous scenarios. It may be used
for firmware attestation using anomaly detection, clas-
sification, and time-series tasks. The linked drive folder
contains the dataset and preliminary analysis presented
in Section V.

3) Detection results are shown for nine anomalous scenar-
ios and two physical twin cases to show attestation and
repeatability on production networks. In addition, ex-
perimental analyses on latency and robustness against
byte-incremental noise are also presented.

4) A thorough literature review is conducted, and SAFE-
IoT is compared with relevant past works regarding
latency and detection.

The remainder of this article is organized as follows:
Section II discusses related works on single-node and swarm
attestation in IoT networks. The network and threat model
considered in this study is introduced in Section III. The
proposed method, SAFE-IoT, is discussed in Section IV
followed by details of the experimental setup, SAFE-IoT
dataset, and some preliminary analysis presented in Section
V. Section VI presents the experimental results, and the study
is concluded in Section VII.

1https://drive.google.com/drive/folders/1R5XSLNPmd3PTGzZfMvjC7N
mZk Crq9dh?usp=sharing

II. RELATED WORKS

In this section, we present some of the related works
on firmware attestation. We look at three overall research
types: software-based, hardware-based, and hybrid firmware
attestation. Lastly, we will look at some swarm attestation
techniques and highlight the benefits of SAFE-IoT over the
discussed literature.

Notable studies on software-based attestation include
SWATT [4], SCUBA [5], SAKE [6], [16] and [15]. To
compute a collective hash, [4] requires nearly fifty thousand
iterations to detect anomalies, while [5, 6] use a similar
technique for malicious sensor nodes. These studies require
complicated computation on the devices, have high latency,
and are difficult to scale. They also require a copy of the
device’s firmware to perform the attestation, which may
not be available due to the IP rights of manufacturers.
[16] proposes a more efficient method to attest firmware
by taking partial checksums of the flash memory, however,
at the cost of the device’s availability since the attestation
routine must run uninterrupted on the embedded device.
Furthermore, flash memory does not provide information
about D2D relationships, which is a crucial task in swarms.
[15] presents a more suitable SRAM-based approach to detect
malicious firmware. The authors propose a classification-
based approach to distinguish between normal and malicious
firmware for a limited number of anomalous classes and
achieve a 96% accuracy in their proposed task. However,
this is not practical in a real scenario because an adversary
can make any number of changes in the firmware, and the
method is not scalable. Furthermore, the entire SRAM is used
for this purpose, and we show that we only need a part of it
to perform the attestation.

Hardware-based attestation techniques solve the latency
problem by relying on TPMs for complex cryptographic
computation, and some notable studies include [7–9]. While
they have high detection rates and low latency, an assumption
of the availability of TPMs on IoT devices will not apply in
most cases since most lightweight IoT devices do not have
an in-built TPM. Furthermore, replacing the monumental
number of devices already deployed in present-day use cases
worldwide will be expensive.

Various hybrid attestation techniques have been proposed
to find a balance between the complexity of software-based
techniques and the hardware requirements of hardware-based
techniques [10, 11, 17–19]. These solutions require the
attestation routines to run uninterrupted on the IoT device,
which hampers the device’s regular function and is also
not applicable to roving malware. Furthermore, [17] is also
susceptible to a single point of failure.

Lastly, some existing works on swarm attestation include
FeSA [12], PADS [13], and ESDRA [14]. The authors of [12]
propose a distributed attestation protocol that uses federated
learning to attest swarms by assigning security and privacy
levels to evaluate attestation periods that avoid redundancy
during attestation. The proposed method achieves an average

accuracy of 87.7% while preserving the data’s privacy and
has a lower run-time than software attestation techniques.
[13] presents an attestation protocol using the concept of self-
attestation that achieves a 2-second evaluation latency for
large swarms. While the approach is scalable and has low
latency, it limits the availability of the devices during the
attestation. Authors of [14] propose a many-to-one attestation
scheme based on reputation. However, the proposed method
requires computationally intensive tasks on the cluster head.

Looking at the above discussion, it is evident that the
existing literature has limitations regarding latency, device
availability, scalability, hardware requirements, and the need
for firmware copies. Inspired by the work of [15], this
paper explores volatile memory (SRAM) as a solution for
efficient swarm attestation since it stores information on
the firmware’s runtime. An SRAM-based approach does not
require complicated hardware, a copy of the firmware, and
ensures availability during the attestation. Recent studies on
SRAM-based fingerprinting [20] showed that the SRAM
may be divided into the data section and the stack. The
latter is helpful for hardware fingerprinting since the pseudo-
random initializations of the stack are unique to each de-
vice. However, the data section, which contains runtime
information, has different sizes based on the firmware, has
similar behavior for the same firmware loaded on different
devices. Therefore, we only use the data section in this paper.
Furthermore, a preliminary experiment on D2D relationships
shown in Figure 1 highlights that the data collected and sent
from an arbitrary node in a swarm (Figure 1 (a)) is embedded
in the SRAM contents of the receiving node (Figure 1
(b)). We show that this property helps detect downstream
anomalies.

In this paper, we use an MoE architecture [21] for DAE
networks to attest swarms.

III. NETWORK AND THREAT MODEL

This section introduces the network and threat models
considered in the study.

A. Network Model

A swarm attestation routine includes two parties: a verifier
and a swarm of provers. The verifier is a trusted entity that
sends attestation requests to the provers and has sufficient
computational power to analyze the attestation responses.
Conversely, provers are lower-power IoT nodes that receive
attestation requests from the verifier and respond with their
SRAM dump. In the network presented in Figure 2, the
verifier sends an attestation request to the swarm’s local
master node, N0, which responds with its own SRAM trace
and prompts its slave nodes N1, N2 and N3 to respond with
their corresponding SRAM dumps directly to the verifier.
Therefore, the “swarm response” is a collection of the
memory dumps (Ri) of each node Ni in the network. Such a
scenario was created to observe different D2D behaviors and
may be found in in-vehicle networks (CAN). Also, please

1

4

3

2

Verifier

Attestation
Request

Pre-
processed

SRAM
Traces

Mixture of Experts

Swarm
Response

Trust
Decision

N0 N1

N2N3

Prompt

D
ata

Processed Data

P
ro

m
p

t

Prom
pt

Sensing
Local

Master

Control Processing

IoT Swarm

Fig. 2: Network Model.

note that the swarm forms a directed graph where N0 sends
attestation prompts to N1, N2, and N3, while N1 − N3

share information with each other in the said order. This
simple swarm aims to observe the effect of firmware and
network anomalies on the SRAM of the anomalous nodes
and downstream nodes they communicate with.

IoT device may be categorized into three overall types
based on their function. Sense-type nodes collect (or gener-
ate) data from sensors, process-type nodes process the data
to make decisions, and control-type nodes control output
devices. While devices may have more than one function
in a practical scenario, we consider the simple (yet complex)
IoT swarm, shown in Figure 2, to observe the behavior of
each type in a swarm setting. N1, N2, and N3 are sense,
process, and control-type nodes, respectively.

In a real-world scenario, a development network may be
used to collect data and train attestation schemes. At the same
time, a physical twin of the development network (also called
a production network) may be deployed on the users’ end.
Manufacturers may send firmware updates to the production
networks. In such cases, any attestation scheme designed
on the development network should be repeatable on the
physical twin.

B. Threat Model

An adversary may update a node in the swarm with
malicious firmware or launch a network attack. There may
also be data faults at sensor nodes. Such anomalies may lead
to abnormal behavior in downstream nodes.

1. Firmware anomalies: An adversary may upload mali-
cious firmware to one or more nodes in the swarm. The
anomalous firmware may have a minimal or significant
difference in functionality from the authentic firmware.
Consequently, depending on the tampered functionality,
the adversarial node may affect downstream nodes.

2. Network attacks: An adversary may act as a man-in-
the-middle and tamper with the data shared between
nodes or the SRAM traces sent from the nodes to
the verifier. An adversary may launch a denial of

Trust Decision = {F0 , ... , FN-1}

V0 VN-1

P0 PN-1

DAE Selection

Thresholding

CS

Preprocessing

{V0 , ... , VN-1}

Vm

Pm

Swarm Response = {R0 , ... , RN-1}

DAE1 DAEm DAEN-1

Fig. 3: The proposed MoDAE framework.

service attack, drop messages between nodes, or drop
attestation responses from the nodes.

3. Data faults: There may be a malfunction at the sense-
type nodes, leading to the propagation of faulty data,
which has downstream effects. While such an anomaly
may not be caused by an adversary, we show that it
can be detected during the attestation.

4. Propagated anomalies: Firmware anomalies at ad-
versarial nodes, network anomalies, and data faults
may create downstream anomalies propagating in the
direction of communication. For example, in the swarm
shown in Figure 2, faulty data sent from N1 or dropped
messages at N2 may lead to faulty control signals at
N3.

IV. PROPOSED METHOD: SAFE-IOT

We use the MoDAE framework shown in Figure 3 to
perform firmware attestation of the swarm. Each node Ni

in the swarm is assigned a lightweight DAEi that learns to
reconstruct the SRAM distribution of normal firmware and
then detects anomalous behavior. This is achieved in two
stages.

A. Training Phase

During the training phase, a verifier in a development
network samples training data by sending attestation requests
to the master node. The sampled data is preprocessed, and

each DAEi learns to reconstruct a trainseti perturbed with
Gaussian noise of mean and standard deviation of 0 and
1, respectively. Once trained, the DAEs are tested on the
trainset, and Cosine Similarity (CS) scores are evaluated
between the prediction and the input using the equation:

CS(x, y) =
x · y
|x||y|

(1)

Where x and y are vectors. Subsequently, the CS scores of
the trainset are sorted in ascending order, and the detection
thresholds Ti are calculated using the equation:

Ti = 0.99 ∗ CS(Ni)i,1% (2)

Where CS(Ni)i,1% is the CS score of the first percentile
datapoint in the sorted CS score array. Such a selection of
detection thresholds is intuitive for percentage-like metrics
such as CS and provides a consistent way of selecting accu-
rate thresholds. Please note that while Mean Squared Error
(MSE) is typically used as the thresholding metric in anomaly
detection tasks, CS was chosen in this study instead due to
the simplicity of selecting thresholds (regardless of the node)
using Equation 2. In addition, being a similarity metric, Ti is
a lower bound of normal behavior. The attestation parameters,
i.e., (DAE, T), are then deployed onto the verifier of a
production network.

B. Attestation Phase

The procedure for attestation is shown in Algorithm 1.
The verifier loads the DAEi and Ti for all Ni in the swarm
and initializes the swarm response V and trust decision F .
An attestation request is then sent to the local master N0,
and each Ni in the swarm responds to the verifier with its
SRAM dump, which is preprocessed and updated into V .
The nodes’ responses are assigned to their respective DAE,
which subsequently reconstruct the input traces. Similarity
scores are evaluated between the predictions and the prepro-
cessed traces using Equation 1 for each node, which are then
compared to the previously assessed thresholds, T . If Ni’s
score lies above Ti, it is flagged as “S” (safe); otherwise,
it is flagged as “A” (anomalous). In the case where a node
does not respond with its memory dump within the timeout
from receiving the attestation request, it is flagged “NR” (no
response). In this way, the trust decision F is obtained for
the entire swarm.

V. EXPERIMENTAL SETUP

This section details the experimental testbed and the col-
lected dataset.

A. Hardware, Communication, and Software

1) Hardware: All nodes in the swarm shown in Figure
2 are variants of Arduino and Elegoo UNO rev3, each
with an ATmega328P microcontroller and 2KB SRAM.
The verifier device is a personal computer with a 14th-
generation Intel i9 processor, 64 gigabytes of DRAM,
and an Nvidia RTX 4080 GPU.

Algorithm 1: Attestation algorithm

// Load dependencies
1 DAE, T ← load(swarm)
2 V ← [[], ..., []] // numNodes empty arrays
3 F ← [0, ..., 0]
4 score← [0, ..., 0]
// Request - Response

5 request(N0)
6 while time ≤ timeout do
7 V [i]← preprocess(receive(Ni))

// Evaluate the swarm response
8 i← 0
9 while i ≤ numNodes do

10 if V [i] == [] then
11 F [i]← NR // No response
12 else
13 pred← DAE[i].predict(V [i])
14 score[i]← CS(pred, V [i])
15 if score[i] > T [i] then
16 F [i]← S // Safe
17 else
18 F [i]← A // Anomaly

19 i← i+ 1

// Return trust decision
20 return([F0,, FnumNodes−1])

2) Communication Protocols: N1, N2, and N3 commu-
nicate with each other using the Inter-integrated Circuit
(I2C) protocol, while N0 sends attestation prompts
to them using the Serial Peripheral Interface (SPI)
protocol. Each node sends its SRAM trace to the
verifier via the serial monitor. Since N0 broadcasts
a prompt to all nodes, the nodes can simultaneously
print their memories onto the serial monitor, which
takes about 1.2 seconds for the whole swarm on
average and is the same for an even larger number of
connected devices. The read operation for the verifier
takes minimal time, making the attestation process very
efficient. Please note that the protocols used in the
network are purely for ease of data collection using the
selected devices and have no effect on the attestation
and detection rates of SAFE-IoT. In a real application,
devices may communicate with each other via wireless
communication channels such as Bluetooth, Bluetooth
Low Energy (BLE), WiFi, Zigbee, etc. SAFE-IoT can
be applied to SRAM data collected from any wired or
wireless network.

3) Software: The firmware uploaded onto the nodes is
designed using C++ in Arduino IDE 2.3.2, while the
codes deployed on the verifier for data collection,
statistical analysis, and the attestation framework are
developed in Python 3.8. The main Python libraries

used in this study are pyserial 3.5, numpy 1.26.4,
pandas 2.2.2, tensorflow 2.16.1, and keras 3.3.3.

B. Firmware

The Input (I/P), main Functionality (F), Output (O/P),
Attestation Sub-routine (ASR), and data thresholds (d) of
normal and anomalous firmware are shown in Table I.
N0 is the swarm’s master device. It receives attestation

requests from the verifier and prompts the slave nodes to
execute their respective ASR. The anomalous variant of
this node emulates a firmware anomaly at N0, given its
added functionality of generating three random integers. This
anomaly poses a relatively tricky challenge during attestation,
but it does not affect the behavior of the slave nodes.
N1 is a sense-type node that generates six floating-point

numbers in unique ranges to emulate variant sensor data.
In its anomalous variant, N1 generates data in an extended
range. This emulates a firmware anomaly at N1 and a
network attack or possible data fault when observed from N2

and N3; the latter is challenging since the variables may or
may not lie simultaneously in their original ranges. However,
it does not affect N0 since there is no communication in that
direction.
N2 is a process-type node that receives data from N1 and

generates a six-byte binary control signal using which N3

controls its LEDs. In its anomalous variant, N2 drops the
data it receives from N1 and generates a random control
signal that may contain abnormal values. The anomalous
variant thus emulates a firmware anomaly at N2 and a
possible network attack or data fault when observed from
N3. However, it does not affect N0 and N1 since there is no
communication in those directions.
N3 is a control-type node that controls six output LEDs

based on the control signal received from N2. In the anoma-
lous variant, N3 drops the actual control signal and randomly
turns the LEDs on or off, thus emulating a firmware anomaly.
It does not affect any other node in the swarm.

C. Dataset

The dataset was collected from the experimental setup
discussed in prior subsections. It covers thirteen scenarios,
as shown in Table II, of which, D1, D2, P1 and P2 are
safe network scenarios while AN0 - AN0123 are anomalous
ones. Data for D1 and D2 is collected from two independent
initializations of the development network, while that for
P1 and P2 is collected from two physical twins of the
development network. The anomalous scenarios are labeled
ANi, representing a primary firmware anomaly at Ni, and
there may be more than one primary anomaly as seen in
AN12, AN13, AN23, AN123 and AN0123. The primary and
secondary anomalies are also highlighted in the table. Each
scenario has four hundred samples of SRAM dumps at each
node. The collective memory dump at any given index (or
instance in time) represents a synchronized network state
since the SRAM data is collected after the nodes complete
their message exchanges.

TABLE I: Comparison of input data, output data, functionality, ASR, and .data section lengths between normal and malicious firmware samples.
Node Normal variant Anomalous variant

N0 (Master)

I/P Receives attestation requests from the verifier. Receives attestation requests from the verifier.

F Prompts slave devices to print SRAM contents. Prompts slave devices to print SRAM contents.
Generates three random integers.

O/P Sends a one-byte prompt to N0, N1, N2. Sends a one-byte prompt to N0, N1, N2.

ASR Prints the SRAM contents onto the serial monitor. Prints the SRAM contents onto the serial monitor.

d 191 195

N1 (Sense)

I/P Receives a one-byte prompt from N0. Receives a one-byte prompt from N0.

F Generates six floating point numbers in fixed, unique ranges. Generates six floating point numbers in a larger range.

O/P Sends 32 bytes to N2 32 bytes (containing the generated data) to N2

ASR Prints the SRAM contents onto the serial monitor. Prints the SRAM contents onto the serial monitor.

d 450 438

N2 (Process)

I/P Receives a one-byte prompt from N0.
Receives thirty two bytes from N1

. Receives a one-byte prompt from N0.
Receives thirty two bytes from N1.

F Extracts six floating point numbers from the received bytes.
Generates a six-byte control signal

Discards received data.
Generates a random six-byte control signal.

O/P Sends a six-byte control signal to N3. Sends a six-byte control signal to N3.

ASR Prints the SRAM contents onto the serial monitor. Prints the SRAM contents onto the serial monitor.

d 516 414

N3 (Control)

I/P Receives a one-byte prompt from N0.
Receives six bytes from N2.

Receives a one-byte prompt from N0.
Receives six bytes from N2.

F Extracts the control signal from the received bytes.
Controls six output LEDs using the extracted signal.

Discards the received control signal.
Controls six output LEDs at random.

O/P N/A N/A

ASR Prints the SRAM contents onto the serial monitor. Prints the SRAM contents onto the serial monitor.

d 406 386

TABLE II: Network scenarios in the dataset.

S.No. Scenario Type Samples/
node

Primary
Anomaly

Secondary
Anomaly

1 D1 S / train 400 - -
2 D2 S / train 400 - -
3 P1 S / test 400 - -
4 P2 S / test 400 - -
5 AN0 A / test 400 N0 -
6 AN1 A / test 400 N1 N2, N3

7 AN2 A / test 400 N2 N3

8 AN3 A / test 400 N3 -
9 AN12 A / test 400 N1, N2 N3

10 AN13 A / test 400 N1, N3 N2

11 AN23 A / test 400 N2, N3 -
12 AN123 A / test 400 N1, N2, N3 N2

13 AN0123 A / test 400 All -

D. Preprocessing

Each SRAM sample consists of 2048 integer equivalents
(i.e in the range [0,255]) of the hexadecimal bytes stored in
the 2KB SRAM of each device. For further analysis, the data
of each node is truncated to the data thresholds of that node’s
authentic firmware regardless of the network’s anomalous
state. This is because normal data and the data threshold
of the authentic firmware are the only prior information we

have while developing the attestation framework. The data
is then scaled down by a factor of 255 to bring it to a [0,1]
range.

E. Denoising Autoencoder Experts

Two types of DAEs are used. DAE0 and DAE3 have a
convolutional encoder with 16 filters and a fully connected
decoder of 50 neurons, each followed by a dropout of 0.1,
while DAE1 and DAE2 use a fully connected encoder and
decoder of 96 neurons, each followed by a dropout of 0.2. All
layers are activated using the Rectified Linear Unit (ReLU)
activation function. The DAEs are optimized to minimize
MSE using the Adam optimizer at a 0.01 learning rate for
100 epochs. Each model occupies nearly 1MB of verifier
memory.

F. Metrics

Since SAFE-IoT is posed as a binary classification task
(safe vs. anomalous behavior), we use the true negative rate
as the attestation rate (AR) of the anomaly detection task and
the true positive rate as the anomaly detection rate (DR). The
metrics may be evaluated using the equations:

AR = TN/(TN + FP) (3)

0.98 0.99 1.00
0

50

100

Sa
m

pl
es

AR: 100.0% | DR = 0.0%

N0
T0

0.6 0.8
0

50

100

AR: 0.0% | DR = 100.0%

N1
T1

0.900 0.925 0.950 0.975
CS

0

50

100

150

Sa
m

pl
es

AR: 8.5% | DR = 91.5%

N2
T2

0.900 0.925 0.950 0.975
CS

0

50

100

150
AR: 1.25% | DR = 98.75%

N3
T3

(a) AN1

0.98 0.99 1.00
0

50

100

Sa
m

pl
es

AR: 100.0% | DR = 0.0%

N0
T0

0.96 0.98
0

50

100

150
AR: 100.0% | DR = 0.0%

N1
T1

0.4 0.6 0.8
CS

0

50

100

150

Sa
m

pl
es

AR: 0.0% | DR = 100.0%

N2
T2

0.94 0.96 0.98
CS

0

50

100

150
AR: 40.75% | DR = 59.25%

N3
T3

(b) AN2

Fig. 4: Performance of a purely similarity-based approach in difficult
scenarios.

DR = TP/(TP + FN) (4)

Where TN , TP , FN , and FP are true negatives, true
positives, false negatives, and false positives, respectively.

G. Preliminary Analysis

It is valuable to show some preliminary statistical results
to help understand the difficulty of different detection tasks.
Upon receiving an attestation request, each Ni responds with
its SRAM dump R, which the verifier then truncates to obtain
the data section as:

vSi = (b0, b1,, bd)
S
i (5)

Where bj is the jth SRAM byte, d is the data threshold of
Ni, and S is the scenario. We compute the golden reference
Gi of Ni from the concatenated distribution D1||D2 using
the equation:

Gi = (b0,avg, b1,avg,, bd,avg)
D1||D2

i (6)

We now perform a sample-wise comparison of data from
each scenario with the node-wise Gi by selecting a suitable
threshold for separating normal and anomalous behavior. At-
testation is achieved using thresholds Ti selected for each Ni

using Equation 2; however, in this case, the CS is evaluated

TABLE III: Summary of AR/DR in all test scenarios.
S.No. Scenario N0 N1 N2 N3

1 P1 100 100 100 100
2 P2 100 98.25 99.5 100
3 AN0 100 98.25 100 100
4 AN1 100 100 98 100
5 AN2 100 99.5 100 96
6 AN3 100 99 100 100
7 AN12 100 100 100 96.25
8 AN13 100 100 98.25 100
9 AN23 100 99.25 100 100

10 AN123 100 100 100 100
11 AN0123 100 100 100 100

TABLE IV: Comparison of latency (in seconds for 1000 devices) and average
detection rate with related works.

S.No. Category SAFE-IoT [15] [12] [13] [14] [4] [10]
1 ASR 1.2 1.6 - - - - -
2 Evaluation 10−1 4 0.6 2 0.4 103 102

3 AR/DR 99.5% 96% 87.7% - - - -

between each sample and Gi instead of the input and output
of a DAE. The AR and DR for two difficult tasks AN1 and
AN2 are shown in Figure 4. As Figure 4 (a) shows, the DR
of anomalies at N2 is 91.5% while that at N3 is 98.75%. The
performance is much worse in the case of AN2, as shown
in Figure 4 (b); the downstream anomalous samples at N3

are detected at only 59.25%. The poor performance in D2D
propagated anomalies can be explained by the loss of useful
information about distributions after averaging that machine
learning approaches may otherwise learn. In addition to
the above metrics, we also attempted to use other distance
metrics, such as Jensen-Shannon Divergence and Kullback-
Leiber Divergence, which were not fruitful to the study.
However, the preliminary experiments show differences in the
SRAM distributions for various node-level and downstream
cases.

VI. EXPERIMENTAL RESULTS

This section presents the results of SAFE-IoT on firmware
attestation, robustness, and latency.

A. Detection rates on the SAFE-IoT dataset

The AR and anomaly DR scores of our best-performing
initialization of SAFE-IoT on the dataset are shown in Figure
5 and summarized in Table III. The MoDAE has a 100% DR
on primary firmware anomalies in all scenarios. Furthermore,
it has significantly higher performance than the results shown
in Figure 4 on downstream anomalies, with 98.25% and
100% DR at N2 and N3 respectively in AN1 and 96.25% DR
at N3 in AN2. Furthermore, the performance is consistent in
scenarios with multiple firmware anomalies (AN12-AN0123).
There are instances of false positive anomalies in P1 and P2,
which occur since the detection thresholds T are selected
very close to the lower bound of CS scores on the training
data (as seen from Equation 2) to detect D2D anomalies,
data faults, and perturbation-type anomalies, However, in use
cases where there is flexibility in terms of attestation rate,

0.980 0.985 0.990 0.995
0

50

100

150
Sa

m
pl

es

AR = 100.0% | DR = 0.0%

N0
T0

0.98 0.99
0

100

200
AR = 100.0% | DR = 0.0%

N1
T1

0.98 0.99
CS

0

100

200

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N2
T2

0.985 0.990 0.995
CS

0

50

100

AR = 100.0% | DR = 0.0%

N3
T3

(a) P1

0.98 0.99
0

100

200

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N0
T0

0.96 0.98 1.00
0

100

200

300

AR = 98.25% | DR = 1.75%

N1
T1

0.96 0.98
CS

0

100

200

300

Sa
m

pl
es

AR = 99.5% | DR = 0.5%

N2
T2

0.985 0.990 0.995
CS

0

50

100

150
AR = 100.0% | DR = 0.0%

N3
T3

(b) P2

0.8 0.9
0

50

100

150

Sa
m

pl
es

AR = 0.0% | DR = 100.0%

N0
T0

0.98 0.99
0

50

100

150

AR = 98.25% | DR = 1.75%

N1
T1

0.98 0.99
CS

0

100

200

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N2
T2

0.985 0.990 0.995 1.000
CS

0

50

100

150
AR = 100.0% | DR = 0.0%

N3
T3

(c) AN0

0.98 0.99
0

50

100

150

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N0
T0

0.6 0.8 1.0
0

50

100

150
AR = 0.0% | DR = 100.0%

N1
T1

0.925 0.950 0.975
CS

0

50

100

150

Sa
m

pl
es

AR = 2.0% | DR = 98.0%

N2
T2

0.925 0.950 0.975
CS

0

50

100

150

AR = 0.0% | DR = 100.0%

N3
T3

(d) AN1

0.980 0.985 0.990 0.995
0

100

200

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N0
T0

0.98 0.99
0

100

200
AR = 99.5% | DR = 0.5%

N1
T1

0.4 0.6 0.8 1.0
CS

0

50

100

150

Sa
m

pl
es

AR = 0.0% | DR = 100.0%

N2
T2

0.94 0.96 0.98
CS

0

50

100

150
AR = 4.0% | DR = 96.0%

N3
T3

(e) AN2

0.980 0.985 0.990 0.995
0

50

100

150

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N0
T0

0.98 0.99
0

50

100

150

AR = 99.0% | DR = 1.0%

N1
T1

0.98 0.99
CS

0

100

200

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N2
T2

0.4 0.6 0.8 1.0
CS

0

50

100

AR = 0.0% | DR = 100.0%

N3
T3

(f) AN3

0.98 0.99
0

50

100

150

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N0
T0

0.6 0.8 1.0
0

50

100

150
AR = 0.0% | DR = 100.0%

N1
T1

0.5 1.0
CS

0

50

100

Sa
m

pl
es

AR = 0.0% | DR = 100.0%

N2
T2

0.94 0.96 0.98
CS

0

50

100

150
AR = 3.75% | DR = 96.25%

N3
T3

(g) AN12

0.98 0.99
0

50

100

150

Sa
m

pl
es

AR = 100.0% | DR = 0.0%

N0
T0

0.6 0.8 1.0
0

50

100

150
AR = 0.0% | DR = 100.0%

N1
T1

0.925 0.950 0.975
CS

0

50

100

150

Sa
m

pl
es

AR = 1.75% | DR = 98.25%

N2
T2

0.50 0.75 1.00
CS

0

50

100

150

AR = 0.0% | DR = 100.0%

N3
T3

(h) AN13

0.8 0.9
0

50

100

150

Sa
m

pl
es

AR = 0.0% | DR = 100.0%

N0
T0

0.4 0.6 0.8 1.0
0

50

100

150
AR = 0.0% | DR = 100.0%

N1
T1

0.25 0.50 0.75 1.00
CS

0

50

100

Sa
m

pl
es

AR = 0.0% | DR = 100.0%

N2
T2

0.4 0.6 0.8 1.0
CS

0

50

100

150
AR = 0.0% | DR = 100.0%

N3
T3

(i) AN0123

Fig. 5: Performance of SAFE-IoT on various test cases.

a more lenient threshold may be selected by using a 0.98
scaling factor in Equation 2. Overall, the MoDAE has a 98+%
AR on safe behaviors, 100% DR on anomalous firmware
and a 95+% DR on downstream anomalies. On average,
the proposed approach has a 99.5% AR/DR, which is an
improvement over past works, as shown in Table IV.

B. Robustness against tampering

To show robustness against data faults and tampering,
the MoDAE was tested on a patched dataset comprising
normal data perturbed with noisy patches of varying sizes.
The results of this experiment are shown in Figure 6. The
MoDAE has a 95% DR on average at around 8 bytes (two
floating point variables) of random noise across all nodes.
Adjusting the threshold to be closer to the lower bound of

CS scores on the train data helps improve the performance in
this task; however, it is at the expense of the AR on authentic
firmware. Thus, the present setting best balances consistent
performance on normal and anomalous behavior.

C. Latency analysis

The latency of the ASR and evaluation are shown in
Table IV. The entire swarm takes, on average, 1.2 seconds
to complete one request-response routine for 2kB of SRAM
contents, which corresponds to the communication overhead.
Since the ASR runs on all nodes simultaneously, it has nearly
the same latency for a larger number of devices. The MoDAE
has an evaluation latency (preprocessing + reconstruction +
threshold) of the order 10−4 seconds per device. Simulating
a scenario with 1000 such devices scales the latency to the

0 5 10 15 20 25
Number of Randomized Bytes

20

40

60

80

100

An
om

al
y

De
te

ct
io

n
Ra

te

N0
N1
N2
N3
95%

Fig. 6: Performance on byte-incremental randomization of normal behavior.

order 10−1 seconds, faster than past works at the same swarm
size.

D. Limitations

While SAFE-IoT’s MoDAE framework has high detection
capabilities, the DR varies significantly in the case of down-
stream effects depending on parameter initialization. This
makes it difficult to reliably and intuitively select an accurate
model. Taking AN1 as an example, the DR at N2 can be
as low as 90% in some initialization despite having nearly
100% DR on malicious firmware. Future works may explore
using graph learning as an alternative due to its robustness
in handling graph-structured data.

VII. CONCLUSION

This article proposed a novel technique called SAFE-IoT
for firmware attestation in IoT swarms using volatile memory
and denoising autoencoders organized as an MoE. It also
presented the first dataset for SRAM-based attestation of
IoT swarms. A preliminary statistical analysis was conducted
to highlight the difficulty of different anomalous behav-
iors. The proposed method could attest authentic firmware
at 99+% and detect 100% firmware anomalies and 95+%
propagated anomalies, respectively. Robustness experiments
showed 95% detectability at 8 bytes against added noise. The
proposed method took 1.2 seconds for the request-response
routine and 10−4 seconds per device to evaluate the entire
swarm.

REFERENCES
[1] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A

survey on iot security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[2] M. Khodari, A. Rawat, M. Asplund, and A. Gurtov, “Decentralized
firmware attestation for in-vehicle networks,” in Proceedings of the
5th on Cyber-Physical System Security Workshop, 2019, pp. 47–56.

[3] L. Ilascu, “When their firmware is vulnerable, its up to you to protect
your smart devices,” Accessed: May, vol. 5, 2019.

[4] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt: Software-
based attestation for embedded devices,” in IEEE Symposium on

Security and Privacy, 2004. Proceedings. 2004. IEEE, 2004, pp.
272–282.

[5] A. Seshadri, M. Luk, A. Perrig, L. Van Doorn, and P. Khosla, “Scuba:
Secure code update by attestation in sensor networks,” in Proceedings
of the 5th ACM workshop on Wireless security, 2006, pp. 85–94.

[6] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” in Distributed Computing in Sensor
Systems: 4th IEEE International Conference, DCOSS 2008 Santorini
Island, Greece, June 11-14, 2008 Proceedings 4. Springer, 2008, pp.
372–385.

[7] S. Agrawal, M. L. Das, A. Mathuria, and S. Srivastava, “Program
integrity verification for detecting node capture attack in wireless
sensor network,” in Information Systems Security: 11th International
Conference, ICISS 2015, Kolkata, India, December 16-20, 2015. Pro-
ceedings 11. Springer, 2015, pp. 419–440.

[8] H. Tan, W. Hu, and S. Jha, “A tpm-enabled remote attestation protocol
(trap) in wireless sensor networks,” in Proceedings of the 6th ACM
workshop on Performance monitoring and measurement of heteroge-
neous wireless and wired networks, 2011, pp. 9–16.

[9] W. Yan, A. Fu, Y. Mu, X. Zhe, S. Yu, and B. Kuang, “Eapa: Efficient
attestation resilient to physical attacks for iot devices,” in Proceedings
of the 2nd International ACM Workshop on Security and Privacy for
the Internet-of-Things, 2019, pp. 2–7.

[10] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings of the
52nd annual design automation conference, 2015, pp. 1–6.

[11] M. N. Aman and B. Sikdar, “Att-auth: A hybrid protocol for industrial
iot attestation with authentication,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 5119–5131, 2018.

[12] B. Kuang, A. Fu, Y. Gao, Y. Zhang, J. Zhou, and R. H. Deng,
“Fesa: Automatic federated swarm attestation on dynamic large-scale
iot devices,” IEEE Transactions on Dependable and Secure Computing,
2022.

[13] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani, and S. Ranise,
“Pads: Practical attestation for highly dynamic swarm topologies,” in
2018 International Workshop on Secure Internet of Things (SIoT).
IEEE, 2018, pp. 18–27.

[14] B. Kuang, A. Fu, S. Yu, G. Yang, M. Su, and Y. Zhang, “Esdra:
An efficient and secure distributed remote attestation scheme for iot
swarms,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8372–
8383, 2019.

[15] M. N. Aman, H. Basheer, J. W. Wong, J. Xu, H. W. Lim, and B. Sikdar,
“Machine-learning-based attestation for the internet of things using
memory traces,” IEEE Internet of Things Journal, vol. 9, no. 20, pp.
20 431–20 443, 2022.

[16] B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
efficient software-based attestation for industrial control devices with
arm processors,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017, pp. 425–436.

[17] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure
and minimal architecture for (establishing dynamic) root of trust.” in
Ndss, vol. 12, 2012, pp. 1–15.

[18] M. N. Aman, M. H. Basheer, S. Dash, J. W. Wong, J. Xu, H. W. Lim,
and B. Sikdar, “Hatt: Hybrid remote attestation for the internet of
things with high availability,” IEEE Internet of Things Journal, vol. 7,
no. 8, pp. 7220–7233, 2020.

[19] M. N. Aman, M. H. Basheer, S. Dash, A. Sancheti, J. W. Wong, J. Xu,
H. W. Lim, and B. Sikdar, “Prom: passive remote attestation against
roving malware in multicore iot devices,” IEEE Systems Journal,
vol. 16, no. 1, pp. 789–800, 2021.

[20] V. Kohli, M. N. Aman, and B. Sikdar, “An intelligent fingerprinting
technique for low-power embedded iot devices,” IEEE Transactions on
Artificial Intelligence, 2024.

[21] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture
of experts,” IEEE transactions on neural networks and learning
systems, vol. 23, no. 8, pp. 1177–1193, 2012.

