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Abstract—This paper proposes a simple non-iterative tech-
nique for detecting false data injection attacks on alternating
current (AC) state estimators. The proposed method uses the
nodal power injections and line power flows from the supervisory
control and data acquisition (SCADA) system and voltage magni-
tudes and angles from phasor measurement units (PMUs) to the
detect the false data injection attack. As the proposed method is
independent of the state estimation outputs and does not depend
on any other energy management system (EMS) functionality,
it can be used to test the quality of the data even before the
execution of the state estimation algorithm. The proposed method
has been tested in the IEEE 118 bus system where false data
with a magnitude ranging from 1% to 10 % is injected in four
pairs of line power flows and one voltage measurement. It has
been demonstrated that the proposed method can detect such
attacks even when the attack magnitude is as small as 1%, which
is not able to be deducted by conventional bad data detection
techniques.

Index Terms—Cyber-security, Smart Grid, SCADA, False Data
Injection Attack, AC State Estimation, Bad Data Detection

I. INTRODUCTION

Supervisory Control and Data Acquisition systems have
historically been used by electric utilities to facilitate the
monitoring, operation and control of power system networks.
In addition to this SCADA system, various new components
like Phasor Measurement Units, smart meters, and intelligent
relays have recently started to be added to the grid. This
evolving electricity grid with sensors, information and com-
munication networks along with distributed controllers has
been termed as a “Smart Grid”. Smart grids can accommodate
distributed generation, renewable integration, electric vehicles
and other new technologies. Though this new evolution of
the grid had brought various benefits for the utility and the
end user, it had made the grid vulnerable to cyber threats.
Consequently, research on cybersecurity of electric grids has
received increasing attention in the recent past as it is a critical
infrastructure and failure of power system network will lead
to tremendous consequences [1].

The Energy Management System is the key component of
an electric grid that carries out the computations required
for monitoring, operation and control of the power system
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network. If the EMS is compromised by the attackers, then
the decisions taken by the outputs provided by EMS may
be erroneous and can lead to a disastrous consequences.
An attacker can compromise the EMS in three ways: by
attacking the sensors that measure the parameters of the grid,
by infiltrating into the communication network that is used
in the grid, or by directly attacking the EMS in the load
dispatch center. In all these three attack scenarios, the attacker
may disrupt the original information that is measured in the
grid and replace it with a corrupted value which can harm
the power system operation and control. These attacks are
broadly classified as false data injection attacks. In addition
to directly disrupting the grid’s operation, any suspicion of
such attacks can also negatively impact the operators. Even if
there is any doubt in the minds of the operators that such an
attack has occurred, it brings an element of disbelief on all the
measurements that have been reported and eventually it will
affect the observability. Thus it is critical to develop efficient
and accurate techniques that can detect false data injection
attacks on power grids.

As false data injection attacks artificially modify the mea-
sured values, the resulting values may not have the natural
distribution of error. Hence such attacks may not be detected
by existing methods that are used to detect the random errors
in measurement values. False data injection attacks are also
complex because the attacker may execute the attack in a
coordinated fashion in order to make it difficult to detect.
Many papers in existing literature have focused on studying
the impact of such false data injection attacks in power system
state estimation and developing methodologies for detecting
such attacks. One of the pioneering works in this area is
presented in [2] which shows that conventional methods which
use the analysis of residuals for detecting bad data will not able
to detect the attack if the attacker possesses the information of
the power system network. The authors of [3] showed that the
non linear representation of power balance equations (which is
well known as AC state estimation) is quite robust against false
data injection attacks as compared to the direct current (DC)
state estimation (which uses certain assumptions to simplify
the non linearity). Bi and Zhang proposed a method which uses
the topological information to detect cyber attacks on DC state
estimation [4]. Ashok et. al. have proposed an algorithm to
detect false data injection attacks where other applications of
EMS like economic dispatch and load flow are being involved978-1-5386-0683-4/17/$31.00 c© 2017 IEEE



for the detection process [5]. In [6], the data from the PMUs
are used to estimate the line parameters which are compared
against the actual values in order to identify whether the data
is corrupted by the attacker or not. A majority of the false data
detection techniques available in the literature are focused on
DC state estimation and such techniques may not be applicable
for AC state estimation. So an attempt has been made in this
paper for the detection of false data injection attacks on AC
state estimators which are also computationally efficient to be
practical in online environments.

In this paper, a simple non iterative method has been
developed for detecting false data injection attacks on a power
system network. The principle behind the proposed method is
that each of the values in the state variable should satisfy
the governing equations not only for its respective node but
also for all the nodes. In simple terms, the proposed method
is based on verifying whether the measured values satisfy
the governing equations with a reasonable tolerance. This
proposed method is tested on the IEEE 118 bus system
where the attack is carried out in such a manner that it can
bypass the traditional bad data detection technique. It has been
demonstrated that the proposed method is able to detect false
data injection attacks whose magnitudes is as small as 1%.

This rest of the paper is organized as follows. In Section II,
the threat model and our assumptions regarding the false data
injection attacks has been presented. Section III details the
proposed technique for detecting false data injection attacks
and Section IV presents the simulation results to evaluate the
performance of the proposed method, obtained using the IEEE
118 bus system. Finally, Section V provides the conclusion of
this paper.

II. BACKGROUND

This section reviews background material that are relevant to
the proposed method for data injection attack detection, start-
ing with the methodology for power system state estimation
and bad data detection. This section also presents the threat
model of false data injection attack.

A. State Estimation and Bad Data Detection

In a power system network, the nodal power injections,
line power flows and voltage magnitudes are measured and
transmitted by Remote Terminal Units (RTU) over the SCADA
network and it is delivered to the EMS. PMUs will also send
the measured magnitudes and angles of voltage to the EMS
system. As the measurements have noise and in general all
nodes do not have a PMU, it required to estimate the voltage
magnitudes and angles using the measured quantities by means
of a state estimator which is available in the EMS system. As
the power balance equations are non linear, the Gauss-Newton
method is typically used for estimating the system states and
this method is termed as AC State estimation.

Let z be the m dimensional vector that contains all the
measured values and f(x) be the nonlinear function that maps
the state variables x to the quantities that are measured. In
power system state estimation, x represents the magnitudes
and angles of node voltages and its dimensional size n is less
than that of the measurements. In other words, n < m in order

to make it an over-determined system. As the measurements
have noise, the mapping of the state variables to the measured
values can be written as

z = f(x) + e (1)

where e is the noise that is added to the true quantity. This
mapping is nothing but the set of power balance equations
and it is non linear in nature. Hence the process of estimating
the states is usually iterative. At the ith iteration, the state
correction vector is written as

∆xi =
(
HT (xi)R−1H(xi)

)
\HT (xi)R−1

(
z − f(xi)

)
(2)

where H(xi) is the Jacobian matrix for the function f(xi)
and R is the measurement covariance matrix. Using the state
correction vector, the values of the state variables for the next
iteration can be updated as

xi+1 = xi + ∆xi. (3)

This iteration process is repeated until the values of the state
variables converge to a reasonable tolerance limit. In this
power system model, by assuming that the voltage magnitudes
are close to rated value and the difference of voltage angles
in a line are extremely small, the equations may be linearized
and can be solved fairly simply but with a trade-off in terms
of the accuracy. Such a technique is popularly known as DC
state estimation.

After convergence of the AC state estimation algorithm, bad
data detection techniques [7] are used to detect the presence
of any incorrect data. For this process, residuals are calculated
as

r = ‖z − f(x)‖2 . (4)

A threshold value τ is obtained from the error distribution
(which is assumed to be known) and using the theory of
χ2 testing. Using the threshold value and the residual, the
condition r < τ is verified. If this condition is not satisfied, it
will trigger the EMS with an indication that bad data is present
in the measurement.

B. Threat Model

As AC state estimation is a iterative technique, it requires
a initial value for the states that are to be estimated. Consider
that the initial value of state x̂ is close to the actual solution.
Then the mapping function can be written in a linear form as

z = Ĥx̂+ e. (5)

The expression above holds because AC state estimation is
an iterative process and it will be approximately linear at the
last iteration before convergence. In [2], it has been shown
that if the attacker has the knowledge of the Ĥ matrix,
then the attacker can inject false data in the state variables
without being detected by the conventional bad data processing
technique. Let za = z + Ĥc be the measurement vector that
is modified by the attacker so that the state vector can be
modified as x̂a = x̂ + c. As shown in [2], the residue value



with this modified measurement vector will be the same as the
original vector which can be written as∥∥∥za − Ĥx̂a∥∥∥

2
=
∥∥∥z − Ĥx̂∥∥∥

2
. (6)

As the Ĥ matrix is constant in DC state estimation, with this
kind attack, it is possible to inject an attack vector of any
magnitude without triggering the bad data detection technique.
However, as the values in the H matrix changes in every
iteration in AC state estimation, this kind of attack will be
able to bypass the bad data detection algorithm only when the
magnitude of the attack vector is considerably small.

For developing the false data detection technique, it is
assumed that the attacker has the access to the network
information which in turn can be used to find Ĥ . Also, we
assume that the attacker is able to modify the measurements
to any desired value za.

III. FALSE DATA DETECTION MECHANISM

In this section, we present the proposed method for de-
tecting false data injection attacks. The proposed method
is based on the intuition that the equations governing the
power flow should hold across the network. Thus the proposed
method computes the values of voltages (both magnitudes
and angles) at each node using the given values of nodal
power injections, line power flows and voltage magnitudes. It
then compares the computed values with the measured given
values in order to detect any data modification. This section
covers the methodology for handling the measurements of
nodal power injections and line power flows, along with the
voltage magnitude measurements.

A. Handling Nodal Power Injections

Consider that the values of nodal power injections (both
real and reactive) and voltage magnitudes are available for all
the nodes in a n bus system. Let S̃ and Ṽ be the vectors
of complex power injections and complex voltages at all the
nodes respectively. Let Ỹ be the bus admittance matrix of the
given power system network. Assume that node 1 serves as
the reference bus where the voltage angle is 0. The notation
∗ indicates the complex conjugate operation. The notation
diag(x) indicates a function that converts the vector x into
a diagonal matrix with all the diagonal elements formed from
x. The power balance equation for this nodal injections can
be written in complex form as

S = diag(Ṽ ) (Ỹ Ṽ )∗ (7)

where

S̃ =
[
S1 S2 . . . Sn

]T
(8)

Ṽ =
[
V1 V2 . . . Vn

]T
(9)

Ỹ =


Y11 Y12 . . . Y1n
Y21 Y22 . . . Y2n

...
...

. . .
...

Yn1 Yn2 . . . Ynn

 . (10)

By simple algebraic manipulations, (7) can be written as

Y V + Y1V1 = diag(Ṽ ∗)−1S̃∗ (11)

= diag
([

0
V ∗

])−1
S∗ + V −11 S̃1 (12)

where

S =
[

0 S2 . . . Sn

]T
(13)

S̃1 =
[
S1 0 . . . 0

]T
(14)

V =
[
V2 . . . Vn

]T
(15)

Y1 =
[
Y11 Y21 . . . Yn1

]T
(16)

Y =


Y12 . . . Y1n
Y22 . . . Y2n

...
. . .

...
Yn2 . . . Ynn

 . (17)

Finally (12) can be written in standard linear form as(
diag

(
S∗

|V |2

)
− Y

)
V = (Y1 −

1

|V1|2
S̃∗1 )V1 (18)

V = (ATA)−1AT b (19)

where

A = diag

(
S∗

|V |2

)
− Y (20)

b = (Y1 −
1

|V1|2
S̃∗1 )V1 (21)

diag

(
S∗

|V |2

)
=



0 0 0
S∗2

|V2|2
. . . 0

...
. . .

...

0 . . .
S∗n

|Vn|2


. (22)

It can be seen that (19) is a function which gives complex
voltage values (both magnitudes and angles) as output by
taking nodal power injections and voltage magnitudes as input.
So if the data is not corrupted, the absolute value of the
solution of (19) should be equal to the voltage magnitudes
which provided as the input. Hence in order to satisfy this
condition, the attacker needs to modify all the values of nodal
power injections and voltage magnitudes in all the nodes
which is difficult to achieve in practice. It can be easily
seen that the Y matrix stays constant for the given topology
and only the diagonal terms of the matrix A will change
for the measurements of nodal power injections and voltage
magnitudes over the time-line. So by using results from matrix
theory [8, Page 166], the inversion of matrix A can be obtained
with very low computational effort for every change in its
diagonal elements. Hence a detection method based on this
approach can be easily incorporated in online environment.



B. Handling Line Power Flows

Let Fij be the complex line power flow in the line that
connect nodes i and j with line impedance zij . Let yij be the
inverse of the line impedance zij . The power balance equation
of the line power flow Fij can be then written as

Fij = Vi ((Vi − Vj) yij)∗ . (23)

By simple algebraic manipulations, (23) can be written as

[
0 . . . yij −

F ∗ij

|V1|2
. . . − yij . . . 0

]


...
Vi
...
Vj
...


= 0 . (24)

It can be seen that (24) can be easily appended in (18) for
handling the line power flow measurements. Thus along with
the measurements of nodal power injections and voltage mag-
nitudes, the line power flows which are obtained from SCADA
devices can be used for the verification of its untaintedness.
This can be done by calculating the complex voltages by
the proposed method and its magnitudes can be verified with
the voltage magnitudes that are given as input. However as
the measurements have some noise component, the calculated
and the input magnitudes may not be equal and hence it is
compared with a fixed threshold limit.

C. Proposed Algorithm

The proposed algorithm for detecting the false data injection
attack is shown in Algorithm 1 where S, F, |V | are the
measurements of nodal power injections, line power flows
and voltage magnitudes, respectively, and τ|V | is the threshold
limit between the calculated and the input voltage magnitudes.
So when the output of this Algorithm a is 1, it signifies the
presence of false data and vice versa.

Algorithm 1 Detection of False Data Injection
1: function DETECT(S, F, |V |)
2: Find the elements of A and b using S, F, |V |
3: Vc = (ATA)−1AT b
4: if ‖|Vc| − |V |‖∞ > τ|V | then
5: a = 1
6: else
7: a = 0
8: end if
9: return a

10: end function

D. Practical Considerations

It is not always possible to obtain the measurements of nodal
power injections, line power flows and voltage magnitudes
from all the nodes. But if the system is observable, then
the proposed method will provide a solution because the
line power flows are used to compensate for unavailable
nodal power injections and vice versa. The values of voltage
magnitudes can be obtained from the measurements taken by

SCADA devices or PMUs or even the output of the state
estimator can be used. As the solution of (19) gives both
magnitudes and angle values, it can be directly compared with
the measurements taken by PMUs. It is to be noted that in the
proposed method, the voltage magnitude at the reference bus
V1 is a input parameter but it is not at the output whereas
the voltage magnitudes at other nodes are at both input and
output. Even though V1 is not computed, any modification
from its true value will be reflected in the voltages computed
at the other nodes.

IV. RESULTS AND DISCUSSION

In order to demonstrate to effectiveness of the proposed
algorithm, it has been tested on the IEEE 118 bus system.Since
the AC state estimator program requires the measurements of
voltage magnitudes and line flows, the power flow program is
used to generate these values. From the power flow solution,
118 measurements of voltage magnitudes, 118 pairs of active
and reactive power injections and 186 pairs of active and
reactive power flows in each line were obtained. These values
are provided as input to the AC state estimator. The AC state
estimator and the proposed algorithm for false data detection
have been coded in MATLAB environment. The tolerance
limit for convergence for the AC state estimator is set as
10−4. In the original measurements which are obtained from
the power flow solution, the attack vectors are injected whose
magnitudes are varied from 1% to 10%. These attacks are
carried out such that they may bypass the bad data detection
algorithm as given in [2]. The attack is carried out on the
values of power flows in the lines that are connected to bus
110 and also on the power injection and voltage magnitude
measurement taken at bus 110.

This analysis is carried out at fully loaded condition, 3/4th

load condition and half loaded condition. As the residuals
are used for verification of the measurements in the bad
data detection technique, the residual of the solution provided
by AC state estimator has been computed in each scenario
for further analysis. These residuals are tabulated in Table I
for each of the loaded conditions along with the maximum
difference in the calculated and the input voltage magnitudes
using the proposed method. From the results, we see that there
is no appreciable difference in the residuals of the AC state
estimator in the no attack case and when the attack magnitude
is low. The determination of a threshold is difficult in such
scenarios and thus traditional methods are unable to detect
such attacks or have high false positives and negatives. In
contrast, the proposed method shows clear difference between
the no attack and attack cases, making it easy to select a
threshold and accurately detect attacks with even very small
magnitudes.

By choosing the attack vector as a linear combination of the
columns of the Jacobian matrix, the residuals are supposed to
be constant for any magnitude of attack. But the values of
the residuals from the AC state estimator as given in Table I
tend to reduce gradually if the attack magnitude goes beyond
a certain limit. This is due to the iterative procedure of AC
state estimation [3] and hence the Jacobian matrix tends to



TABLE I
COMPARISON OF PROPOSED METHOD WITH BAD DATA DETECTION TECHNIQUE

Attack
Magnitude

Full Load 3/4th Load Half Load
Residuals of AC
State Estimator ‖|Vc| − |V |‖∞

Residuals of AC
State Estimator ‖|Vc| − |V |‖∞

Residuals of AC
State Estimator ‖|Vc| − |V |‖∞

No Attack 1.02E-03 1.10E-12 4.70E-04 1.51E-12 8.24E-04 3.27E-12
1 1.02E-03 1.11E-09 4.70E-04 4.65E-09 8.23E-04 4.58E-09
2 1.02E-03 2.27E-09 4.69E-04 9.47E-09 8.23E-04 9.34E-09
3 1.02E-03 3.48E-09 4.68E-04 1.45E-08 8.23E-04 1.43E-08
4 1.02E-03 4.74E-09 4.66E-04 1.97E-08 8.21E-04 1.94E-08
5 1.01E-03 6.06E-09 4.63E-04 2.51E-08 8.16E-04 2.47E-08
6 1.01E-03 7.43E-09 4.59E-04 3.08E-08 8.06E-04 3.03E-08
7 9.97E-04 8.87E-09 4.53E-04 3.67E-08 7.90E-04 3.61E-08
8 9.83E-04 1.03E-08 4.45E-04 4.28E-08 7.69E-04 4.21E-08
9 9.66E-04 1.18E-08 4.34E-04 4.92E-08 7.48E-04 4.84E-08
10 9.54E-04 1.31E-08 4.20E-04 5.58E-08 7.39E-04 5.49E-08

change in every iteration. Also the loading conditions did not
significantly affect the values of residuals which are increasing
in a gradual manner as the attack magnitude is increased.
Hence it is difficult to fix a threshold which is robust against
noise and the false positives they may induce. Also, if the
threshold in the traditional method is chosen to be high in
order to accommodate noise, it may not be possible to detect
attacks with small magnitudes, leading to false negatives.

It is important to accurately detect false data injection
attacks of small magnitudes because they may also cause sig-
nificant damage to the power system operation. For example,
if the power system network is operating under critical loaded
conditions then if an attack takes place with a magnitude of
around 5% on the line flows, then it may not cause suspicion
to the operator and it may lead to load shedding. On the other
hand, 5% of either increase or decrease in voltage will tend the
operator to adjust the reactive power controls and transformer
taps which may lead to instability in the system and also lead
to tripping by the protection system.

By using the proposed method whose results are shown in
Table I, the difference in voltage magnitudes in the proposed
method has a significant jump from the order of 10−12 in a
“No Attack” scenario to an order of 10−9 in a attack with a
magnitude of 1%. Since there is a sharp shift, the threshold
value can be chosen easily by heuristic methods even though
the error distribution is not known. Thus even in a varying load
situation, by fixing a threshold between 10−9 to 10−13, the
proposed method is able to detect false data injection attacks
without producing any false positives or false negatives.

V. CONCLUSION

In this paper, we have developed a simple non-iterative
technique for detecting false data injection attacks on AC

state estimation. This method does not depend on any other
functionalities of EMS software. Since it is non-iterative and
only the diagonal terms of the matrix change with each set of
data, it can be quickly solved and can be easily incorporated
for online detection. The proposed method is implemented
and tested on the IEEE 118 bus system. It has been shown
that the proposed algorithm can detect the attack even if
the attack magnitude is as low as 1%. While many of the
existing schemes focus on DC state estimation, the proposed
method works with AC state estimation and does not need the
assumption that some set of measurements is secure.
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