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Abstract— Space based multicast switches use copy net-
works to generate the copies of the input packets. In any
time slot, the sum of the number of copies requested by the
active inputs of the copy network may exceed the number of
outputs and some copy requests will need to be dropped or
buffered. We present an exact model to calculate the over-
flow probabilities in an unbuffered Lee’s copy network [2].
Our exact show that the Chernoff bounds on the overflow
probability is very loose and the difference can be as large
as a factor of more than 10.

I. Introduction

Various space division packet switches architectures sup-
porting multicasting have been proposed in literature [1],
[2], [5]. The general structure of a space-based space divi-
sion multicast switch is that of a copy network followed by
a routing stage. In a copy network, in any slot, the sum of
the number of copies requested by the active inputs may
exceed its capacity and some of the copy requests may need
to be queued or dropped. Our interest in this paper is on
the modelling and analysis of this overflow probability in
space based copy networks.

In [2], Lee studies the performance his copy network by
using Chernoff bounds to calculate the overflow probabili-
ties at each input port of the copy network. Comparision
with simulation results showed that these bounds are very
loose. An approximate analysis for calculating the loss
probability of packet copies in the shuffle exchange copy
network has been given by Liew in [3]. In this paper, we
present an exact solution to calculate the overflow proba-
bilities in Lee’s copy network. This analysis may be used
for the shuffle exchange based copy network with deadlock
resolution. Our analysis is for the case when no buffers are
present at the inputs of the copy network. For calculat-
ing the overflow probabilities, we use a technique similar
to finding the normalisation constant in a product form
queueing network with an inequality constraint on the state
space. We then propose a contour integral approach for
evaluating these probabilities.

II. Copy Network Architecture

Lee’s copy network [2] is shown in Fig. 1. Time is slot-
ted and all the inputs are synchronised such that packet
arrivals occur at the beginning of a slot. An M × N copy
network, inputs numbered from 1 to M , works as follows:
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Fig. 1. Lee’s Copy Network for a Multicast Packet Switch [10]

at the beginning of a slot let ci be the number of copies
requested by port i. A running adder network determines
the order in which the copy requests at the input ports are
served in each slot. In the simplest case, an acyclic service
discipline can be used in which the running adder begins
at the top of the network and obtains the running sum of
ci starting from port 1 in every slot. In this service pol-
icy port i is serviced (all the copies requested by the input
packet are made) if

∑i
j=1 cj ≤ N in that slot. Alterna-

tively, a cyclic service scheme that works as follows could
be used. If port i is the last port served in slot n, then in
slot n + 1 ports i + 1, i + 2, ....i + k will be served. (All
additions are modulo M + 1 and 1 ≤ k ≤ M .) In this pol-
icy, port m is served if

∑m
j=i+1 cj ≤ N . Another variation

would be to introduce fanout splitting in which a part of a
copy request will be served whenever possible and the rest
of the request will be served in subsequent slots.

III. Evaluation of the Overflow Probabilities

In an M × N copy network, the number of copies that
can be generated in a slot is limited to N . In each slot
the running adder starts summing the copy requests of the
packets at the head of the input queues sequentially, be-
ginning with port number 1 (acyclic service without fanout
splitting). Overflow occurs in the copy network when the
sum of the copy requests of the packets at the head of the
queues at the input is greater than N . In the following, we
present an exact solution for the overflow probabilities in
this model.



Packet arrivals to port i is a Bernoulli process with rate
ρi and the copy requests have a probability mass function
qi(k). Let Xi be the random variable for the number of
copies requested by the input port i (regardless of it being
active). Then,

fi(xi) ≡ Pr {Xi = xi} =
{

1 − ρi, xi = 0
ρiqi(xi), xi = 1, · · ·N (1)

The copy request of port i is served if X1 +X2 + · · ·+Xi ≤
N . Thus, Ploss(i), probability of loss at port i, is

Ploss(i) = 1 −
∑

∑i

j=1
xj≤N

i∏
j=1

fj(xj) (2)

The summation on the RHS of the above equation is car-
ried out over all possible combinations of copy requests
from ports 1 to i that sum to less than or equal to N .
This summation is similar to obtaining the normalisation
constant in a product form queueing network with an in-
equality constraint on the state space. Therefore, following
[4], we can obtain the Ploss(i)s as follows. Define

ΦN(k) ≡
{

1 for k ≤ N
0 for k > N

(3)

ΦN (k) can be represented by the following contour integral
in the complex plane with the unit circle as the contour of
integration.

ΦN(k) =
∮ [

z(N+1) − 1
z − 1

] [
zk

z(N+1)

]
dz (4)

We can use ΦN(k) to represent the summation in Eqn. 2.
This representation and the attendant simplifications are
derived below.

1 − Ploss(i) =
N∑

x1=0

· · ·
N∑

xi=0

i∏
k=1

fk(xk)ΦN(x1 + · · ·+ xi)

=
N∑

x1=0

· · ·
N∑

xi=0

i∏
k=1

fk(xk)

∮
z(x1+···+xi)

[
z(N+1) − 1

z − 1

] [
1

z(N+1)

]
dz

=
∮ N∑

x1=0

f1(x1)zx1 · · ·
N∑

xi=0

fi(xi)zxi

[
z(N+1) − 1

z − 1

] [
1

z(N+1)

]
dz

=
∮ [

z(N+1) − 1
z − 1

] [
1

z(N+1)

] i∏
k=1

Fi(z)dz (5)

where Fi(z) is the moment generating function of fi(xi).
From the residue theorem, the contour integral of Eqn. 5
can evaluated by summing the residues of the integrand at
poles inside C. It is easily seend that for the integrand in
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Fig. 2. Overflow probabilites in a 64 × 64 copy network with de-
terministic copy requests of size 2,3,4,5 and 6. The broken lines
denote the Chernoff bounds while the smooth lines represent the
exact results.

Eqn. 5 the only poles inside the unit circle is at z = 0. The
Chernoff bounds on the overflow probabilities are

PCh(i) = Pr {X1 + · · ·+ Xi > N} ≤ e−sN
i∏

k=1

Fi(es) (6)

Figure 2 compares the exact Ploss with PCh.

IV. Conclusions

In this paper, we presented an analytical tool for cal-
culating the exact overflow probabilities in a space based
multicast ATM switch. These results are a considerable
improvement over the Chernoff bounds given by Lee [2].
The technique developed here can be used to carry out a
queueing analysis of space based multicast switches.
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