2001 Conference on Information Sciences and Systems, The Johns Hopkins University, March 21-23, 2001

The Effect of TCP on the Self-Similarity of Network Traffic !

Biplab Sikdar and Kenneth S. Vastola
Department of ECSE
Rensselaer Polytechnic Institute
Troy, NY 12180 USA

email: {bsikdar,vastola}@networks.ecse.rpi.edu

Abstract — Research on the causes of self-similarity
in network traffic has till recently focused primarily
on the application level and human factors. However,
protocol specific causes, specially the fact that TCP
can lead to long-range dependence has become ap-
parent in the recent past. In this paper we show how
TCP’s retransmission and congestion control mecha-
nism, specifically its timeout and exponential back-
off mechanism, can lead to self-similarity in aggregate
TCP flows. We develop a mathematical formulation
which shows that TCP’s underlying algorithms result
in packet dynamics of a TCP flow being analogous to a
number of ON/OFF sources with OFF periods taken
from a heavy tailed distribution. Using well known
limit theorems, we then show that this leads to the
self-similar nature of TCP traffic. Our mathematical
model shows a direct correlation of the loss rates to
the degree of self-similarity. Measurements on traces
collected by us also exhibit this relationship predicted
by our model. Our results also show that the loss rate
can be used a representation of the effect of the net-
work and the superposition of multiple flows.

I. INTRODUCTION

Research on the causes of self-similarity in network traf-
fic have primarily focused on the application level dynamics
of high-speed networks and the human factors involved while
the effect of the protocol dynamics and the network have re-
ceived attention only in the recent past. In [17], the causes
of the self-similarity are investigated at the source level. In
[1] the authors cite the distribution of file sizes, the effects
of caching and human factors like response time and prefer-
ence as possible causes for the self-similarity in WWW traffic.
It was pointed out in [9] and [2] that closed loop protocols
like TCP lead to much richer scaling behavior than open loop
protocols like UDP.

In this paper, we investigate the effect of TCP on the self-
similarity of network traffic. We also account for the effects of
the network in terms of the losses it introduces and the mul-
tiplexing of flows in a path. In [15], the authors attribute the
self-similarity of TCP traffic to the chaotic nature of TCP’s
congestion control mechanism. The adaptive nature of TCP’s
congestion control is suggested as the cause for the propaga-
tion of self-similarity in the Internet in [16]. The main aim of
our paper is to understand the effects of TCP’s retransmis-
sion and congestion control mechanism on the observed self-
similarity of TCP traffic. We show that the traffic generated
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by a single TCP connection can exhibit self-similarity in con-
trast to all previous work (except for [15]) which concentrated
on the aggregate traffic. In addition, we show that the de-
gree of self-similarity has a direct relationship with the losses
experienced by a flow with the traffic no longer self-similar,
i.e. H = 0.5 for very low loss rates. While similar phenomena
have been reported recently (after this paper was completed),
their models to explain the self-similarity either require un-
realistic loss rates to induce self-similarity [5] or are able to
show long-range dependence over very small time scales [4].
In this paper, we present a model of TCP based on ON/OFF
processes which explains the self-similarity of TCP traffic and
validate it using TCP traces collected from the Internet. We
also give a mathematical formulation of how TCP’s conges-
tion control mechanism leads to self-similarity in the traffic it
generates and account for the effects of the network in terms
of the loss probabilities and the presence of other flows.

This paper reports the main results from a larger work
available as a technical report [12] which contains details on
the derivations and more results. The rest of the paper is
organized as follows. In Section II we first present results
of tests for the presence of self-similarity in individual TCP
transfers over the Internet. We then present and validate a
model which explains this self-similarity. Section III provides
a mathematical foundation for our model and investigates the
mechanisms of TCP which lead to the self-similarity. Finally,
Section IV presents the discussions and concluding remarks.

II. SELF-SIMILARITY OF TCP FLows

In this section we provide experimental evidence of the self-
similarity of individual TCP flows which motivates the inves-
tigation of TCP dynamics for causes of self-similarity. In [15]
ns simulations were used to show that the data sent by a sin-
gle TCP flow in the superposition of a number of TCP flows
shows evidence of self-similarity in contrast to all previous
studies which concentrated on the aggregated traffic. To ver-
ify the self-similar nature of single TCP microflows in actual
Internet transfers, we first present the results from tests for
long-range dependence on traces collected from real life TCP
connections over the Internet.

The traces were collected for TCP transfers originating
from a machine running Solaris 2.6 at Troy, NY. The des-
tinations for the transfers were in Columbus, OH (HP-UX),
Los Angeles, CA (FreeBSD Cairn-2.5), Boston, MA (Linux
2.0.36) and Pisa, Italy (FreeBSD 3.3). Due to space restric-
tions, we show results for only the transfers Italy. The results
for the others are similar and are presented in [12]. Each trace
is 2000 seconds or around 33 minutes long and was collected
using tcpdump which did not lose any packets. The transfers
were done over periods in 1999 and 2000 at various times of
the day and week. Depending on the prevalent network con-
ditions, the loss rates experienced by each flow is different and
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Figure 1: Tests for self-similarity: Absolute value method
(left) and the R/S statistics method (right).

we use this to classify transfers between a source-destination
pair.

Figure 1 shows the results of the tests for long-range de-
pendence on three traces to Pisa, Italy which had loss rates
of 0.001, 0.006 and 0.099. We tested for long-range depen-
dence using three of the widely used methods: the absolute
value method, R/S statistics method and the periodogram
method and show results for only the first two methods. The
results clearly show the long-range dependence in the individ-
ual TCP flows. Also, the degree of long-range dependence, as
indicated by the Hurst parameter, is clearly dependent on the
loss rate experienced by the flow, with higher loss rates leading
to larger values of H. Also note that for extremely low prob-
abilities (less than 0.001) the traffic is no longer self-similar
with H =~ 0.5 as shown in section (a) of Fig. 1.

This poses the following questions. What are the underly-
ing mechanisms responsible for the direct influence of the loss
probabilities of the self-similarity of TCP traffic? Can the
effects of the network and the influence of the superposition
with other flows be abstracted using the single parameter of
the loss probability? And most importantly, what is TCP’s
role in all this? In this paper we address these issues and show
how TCP’s retransmission and congestion avoidance mecha-
nisms contribute to the self-similar nature of network traffic.

A ON/OFF Model Based Ezplanation and its Validation

To give an explanation for TCP’s effect on the self-
similarity of network traffic, we consider a TCP flow to be
composed of the superposition of Wiae ON/OFF processes.
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Figure 2: Tests for heavy-tailed nature of the OFF times:
ccdf plots (left) and Hill’s estimates (right) for various
values of w.

Each process corresponds to each of the possible values that
the cwnd of the flow might have since Wy,4z is the receiver’s
advertised maximum buffer size and is the upper limit on
cwnd. A cwnd of w, corresponding to the wth ON/OFF pro-
cess, 1 <w < Winaz, implies a deterministic ON time which is
equal to the time to transmit the w packets with the packets
generated at a constant rate during this period. We note that
though in practice there might be a small variation in the time
between two successive packets in a round, with high speed
networks and ACK compression these variations are negligible
when compared to the RTTs.

The OFF period for the w® process, 1 < w < Wygz, cor-
responds to the time interval between two successive instants
where cwnd has the value w. Now, if the distribution of these
times has a heavy tail, their complementary cumulative dis-
tribution function (ccdf) F.(z) behaves like

F.(z) ~ 1z “L(z)

h

with 1 < a <2

(1)

where [ > 0 is a constant, L(z) is a slowly varying function at
infinity, i.e., limy o0 L(tx)/L(z) = 1,V ¢ > 0 and the relation
f(z) ~ g(z) implies lim,— o f(z)/g(z) = 1. We can now
use Theorem 2 of [14] which says that the superposition of a
number of these processes converges in the limit to fractional
Brownian motion (fBm) and thus exhibit self-similarity.

In our case, the limiting conditions are reached when we
have a large number of flows in the network each contribut-
ing its ON/OFF processes to the superposition. Now we just
need to show that the distribution of the OFF times indeed



corresponds to the form of Eqn. 1. In Fig. 2 we plot the ccdf
of the OFF times for various window sizes for the traces for
Italy and the heavy tailed nature of each is clearly evident.
A statistically more rigorous method for estimating the slope
of the tails and thus « as compared to the eyeballing method
associated with plotting ccdfs is the Hill’s estimator [6]. The
presence of heavy tails is indicated by a straight line behavior
of the Hill’s estimate &, as the number of samples used in the
calculation of the estimate increases while a steadily decreas-
ing pattern is a strong indication of the data being not from a
heavy-tailed distribution. Fig. 2 also plots the Hill’s estimates
for the OFF time distribution for various window sizes for the
Italy traces and clearly they are consistent with the form of
Eqn. 1. Thus we can conclude that the superposition of such
ON/OFF process from a number of TCP flows will converge
in the limit to fBm and thus exhibit self-similarity.

It is interesting to note the ccdf and Hill estimate plots for
the Italy trace with p = 0.001. From Figure 1 H = 0.5 for this
trace, i.e. the trace does not exhibit self-similarity. We note
from Figure 2 that the Hill estimates for all the ON/OFF
process corresponding to this trace are decaying constantly
and thus do not have a heavy tailed nature thereby failing to
satisfy the conditions of Theorem 2 of [14]. As a result the
trace is not self-similar. In Section C from our derivation of a
lower bound of the ccdf it will be clear why low loss rates fail
to give rise to heavy tails.

An important assumption here is the independence of the
window sizes of different flows, which need not be the case for
all the flows in a link. Simulation studies have indicated that
the window sizes of TCP flows sharing a common bottleneck
link may get synchronized though such synchronization is hard
to observe in the Internet [7]. Also, most of the simulation
studies focus on very heavily congested bottleneck links while
link loads in practice tend to be comparatively much lower.
Also, note that the independence requirements fail to be sat-
isfied only when nearly all the flows in a link are correlated.
To prove that the independence assumptions of Theorem 2 of
[14] are satisfied, we analyzed some of the traces reported in
[10]. The results of our statistical tests on these traces to see
if the individual TCP flows are indeed independent indicate
that amongst the longer flows in the traces, roughly 35-70
% of the flows are mutually independent, providing enough
independent flows in the superposition.

An important part in the calculation of the OFF times is
what criterion we use to define a OFF period. We define
an ON period to be over whenever the distance between two
successive packets in the trace exceeds a length ¢ dependent
on the packet transmission time on the link. By keeping §
sufficiently small we can ensure that the spacing between the
packets in the ON period is almost constant thus satisfying the
requirement of Theorem 2 of [14]. Also, as in [17], the exact
numerical choice of § does not affect the results and the heavy
tailed nature of the ccdf remains an invariant independent of
the choice of 4.

III. INVESTIGATING THE ROLE oF TCP

We now pinpoint the sources in TCP’s retransmission and
congestion avoidance mechanism which are responsible for the
self-similarity of network traffic. We then derive a lower bound
on the tail of the OFF time distribution and show that it de-
cays according to a power law providing a firm mathematical
foundation to our model. In this paper we concentrate on
TCP Reno as it the most widely deployed variant of TCP.

The effect of the other versions of TCP is discussed in Sec-
tion IV. We assume that the reader is familiar with the basic
concepts of TCP like the congestion window cwnd, slow start,
delayed acknowledgments etc and refer the reader to [13] for
details on TCP’s algorithms.

A The Impact of Timeouts

From the explanation for the observed self-similarity in
TCP traffic given in Section II it is obvious that the central
aspect of the phenomenon lies in the infinite variance or the
heavy tailed nature of the OFF time distributions. Let us now
consider the features of TCP which lead to such a behavior.

In the following we assume an infinite or steady state flow
currently in the congestion avoidance mode to make the vi-
sualization easier. The occurrence of heavy tails in the OFF
times is mainly due to the losses which lead to timeouts. This
is due to the following reasons. A timeout represents a signif-
icant duration when no packets are transmitted and acts as a
boundary between ON and OFF periods of the flow as a whole
leading to a bursty nature of TCP traffic. The durations of
timeouts are generally an order of magnitude greater than the
RTT [8] and with coarse TCP timer granularities and varia-
tions in the RTT measurements can be quite large. Again, if
the retransmitted packet following a timeout is also lost, the
silent period is doubled and from the traces reported in [8] the
occurrence of multiple consecutive timeouts is frequent. Also,
a majority of the losses experienced by TCP flows lead to time-
outs which can be attributed to the fact loss that most routers
in the Internet deploy droptail queues. Correlated loss mod-
els, where all the packets following the first dropped packet in
a round are also dropped are an appropriate models for the
losses arising from these queues [8]. This coupled with the fact
that a single loss in a window less than 4, two or more losses
in a window less than 8 and three or more losses for higher
windows in TCP Reno will lead to a timeout contributes to
the large proportion of timeouts in the observed loss indica-
tions. Before moving on to the derivation of the lower bound
on the tail of the ccdf, we first derive the probability that a
loss in a window of size w leads to a timeout.

B Probability of Timeouts

Consider a round with window w and let the probability
that a loss of any packet in this round will lead to a timeout be
denoted by Q(w). We assume that the receiver uses delayed
ACKs. We also assume droptail queues and the correlated loss
model of the previous subsection. Packet losses in a round are
assumed to be independent of losses in other rounds and the
packet loss probability is denoted by p.

For window sizes less than 4, any packet loss leads to a
timeout and thus Q(w) =1 for 1 < w < 3. For windows with
4 < w < 8 two or more packet losses in a round leads to a
timeout. If only one packet is lost in the current round, if we
lose any packet in the following round, the flow will eventually
timeout. In addition the retransmitted packet must also be
transmitted successfully to avoid a timeout. Thus Q(w) for
this range of window values is given by
_p(l-p !

1—(1—=p)
For window sizes greater than 8, three or more losses in a

round will lead to a timeout. Also we have to ensure that
the retransmitted packet is received successfully along with

Qw)=1 fora <w<8 (2)



the fact that none of the packets in the succeeding round are
lost. Neglecting the extremely few possibilities in which it
is possible to recover a single loss in the succeeding round
without going into a timeout, we have

L _p2-p)(1—p°

Q) =1 =" e

for 9 <w < Whae

C A Lower Bound on the OFF Time Distribution

We now derive a lower bound on the ccdf by identifying
the possible ways in which the time between two successive
windows of the same size can exceed a given value. In this
derivation, we measure time in units of the round trip time.

Let us assume that the current window size is w and we
want to find the probability that the time until the next in-
stant where cndw = w is greater than 100. The most obvious
possibility is that the flow does not experience any loss for the
next 100 rounds so that after some round the cwnd stays at
Winaz. Another possibility could be that after i rounds (when
cwnd > 2w) the flow experiences a loss which results in a fast
retransmit. The flow then transmits the next 100 — ¢ rounds
without any loss. As a variation of this we could have a num-
ber of successive fast retransmits without reaching a window
of w. Yet another line of possibilities is timeouts. Let us de-
note the average duration of a timeout (in terms of RTTs) by
E[TO]. As the first possibility we could have that there are
no losses in the first 100 — E[T'O] followed by a timeout. We
could also have ¢ initial rounds without loss and then n time-
outs (with n sufficiently large) before the window gets a chance
to increase to w. Other possibilities include cases where we
have timeout periods of length 2E[T'O], 4E[TO] and so on.
Each of these cases represent independent possibilities whose
individual contribution to the tail of the OFF time distribu-
tion has an exponential decay, the rate of which depends on
the corresponding probability of the loss indications and their
effects.

The tail of the OFF time distribution for each window size
and the corresponding ON/OFF process can thus be seen as
the superposition of a large number independent exponential
tails each with its own rate of decay. The mix of these inde-
pendent exponentials leads to a composite distribution which
has a heavy tail over the region of our interest. The following
theorem by Bernstein [3] can be used to show that the su-
perposition of a number of properly chosen exponentials can
be used to model heavy tailed distributions like Pareto and
Weibull in the region of primary interest.

Theorem 1. (Bernstein) Every completely monotone pdf f
is a mizture of exponential pdfs, i.e., f(t) = fooo Ae ™ MAG(N),
t > 0 for some proper cdf G.

We now obtain the probabilities corresponding to each of
the possible paths that we described.

Case 1: The no loss case. Consider the wth ON/OFF
process which corresponds to a cwnd of w, 1 < w < Wiz
Assume that the current round has a window of size w. The
probability that the next window of size w occurs after ¢ RT'Ts,
assuming there are no losses in between, is given by

P{T >t} = (1-p)"" (3)

where N(i) represents that number of packets that are trans-
mitted in the ¢ rounds following the round with size w and is

given by

N(i) = {

where j = 2(Wpae — w) — 1.

Case 2: Fast retransmission losses. Consider again
the w th ON/OFF process, 1 < w < Wyae. We can have a
OFF time greater than t if we have loss indications at windows
greater than 2w which result in fast retransmits. For simplic-
ity, we consider only those cases where the loss occurs in a
window of size Wi,ez. The flow first transmits packets with-
out loss for the first ¢ rounds during which its window reaches
Wimaz. It then experiences a loss which is recovered by a fast
retransmit. Since w < [Wiaes/2] the desired window size
is not achieved at the beginning of the congestion avoidance
mode. Also, following each loss there are 2(Wpee —m) — 1
rounds with Winaz(Wimaez — 1) — m(m + 1) packets till cwnd
reaches Winae again with m = [Wpa2/2]. Thus there are
t—n—n2(Wmnaez —m) —1) —2(Wpnas —w)+1 rounds with suc-
cessfully transmitted windows of Wi,q.. The total number of
correctly transmitted packets, after algebraic simplifications,
is thus

1(i-131) ifi <
1

w+ [ .
(27 (5 = T21) + (i — ) Wonas  else

Jw+

i
2.
L
2

(4)

Ne(w, t) = Winaz(t — (n + 1)Winae + 2w + 2nm — 4n)
—w(w+ 1) — nm(m — 1) (5)
Now, since there are M = t—2nWpee +2w+2(n—1)m—2n+3
rounds with a cwnd of Wy, with n of them having losses,

the probability that the OFF time is greater than ¢ is given
by

HT»}=<f)u—wwWWw

(1= Q(Wiao)" (1 =p)™" (6)

Also, since each loss is associated with 2(Wee —m)—1 rounds
where the window is not W4z, the maximum possible losses
in ¢t rounds can be shown to be limited by

|t =2(Wnae —w) +1
fimaz = { 2Wnaw — 2m — 1 J @

Case 3: Loss indication resulting in a timeout. Con-
sider the case when the loss occurs after ¢ rounds from the
round with a window of w. The number of packets transmit-
ted in these ¢ rounds, N(i) is given in Eqn. 4 and the value

of the cwnd in the it! round w; is given by

w; = min {Wiaa,w + [i/2]} (8)

The number of packets transmitted in the slow start phase
which follows a timeout, s (w;) is obtained using the model of
[11] which is more accurate than the commonly used approx-
imation where the window always increases 1.5 times every
RTT.

tos(wi) = |2log, ((2m)/(1+V2))| -1 9)

where m = [5:] and the number of packets transmitted in

the slow start phase can be expressed as

tss(wi)+1 4tss(wi)—38
Nes(w;))= |27 2 432 5

—2- —J (10)

If w > m we also have a linear phase where the window in-
creases linearly from m to w. The total time required by the



flow to reach a window of w again following the timeout is
thus

Dot(uw w.):{tss(w)ﬁ-E[TO]—i—l if w<m
neAT T tss(wi) + E[TO] + 2(w —m) else
(1)
Now, the probability that we have a loss in a round of
size u following the timeout, before the window reaches w,
Pro(u,w;), 1 <u < w, is given by

(1=p)V= (1~ (1-p)")Qu) fu<m
Pro(u,w;) = § (1 _p)N”(wi)(l —(1-p)*)Q(u) else
(1 _p)u(u—l)—m(m—l)
(12)

Then, the probability that there is another timeout before the
window reaches a window of w is given by

Z Pro(u, w;)

After the iR round, on an average 2 more rounds of packets
are sent (where two losses are recovered) before the timeout
period begins. Thus if ¢ > t — Dy(w,w;) — E[TO] — 2, the
probability that the OFF time is greater than ¢ is given by

(13)

s (w, w;)

1 =pVI(1 = (p)")Q(wi) ifi>1I
PT>t}=¢ (1-p"(1- (") else
Qwi)(1 = Ps(Ii — 1))
where I; =t — E[TO] — 2.

Case 4: Loss of the retransmitted packet. When
the retransmitted packet following a timeout is also lost, the
retransmission timer backs off exponentially with a factor of 2
leading to very large silent periods. The duration of a sequence
of n consecutive losses in lengths of E[T'O] is given by

|

Each of the losses following the initial loss indication occur
with probability p. Also, the linear phase of the cwnd fol-
lowing the second loss begins after cwnd reaches 2. Then, if
i >t— Ly,E[TO] — 2(w — 2) — 1 the probability that the off
time for window w is greater than ¢ is given by

(1-p)")Qwi)p" "
(1-p)")Qwi)p" ™"

o — 1
63 + 64(n — 6)

forn <6

else (14)

(1= (1=
(1= (1 -
(1= Ps(I; —4))

where I; =t — L, E[TO] — 2.

Case 5: n isolated timeouts. Let us now consider the
case where there are n isolated timeouts each of length E[TO].
After the first loss after i rounds, the slow start phase lasts till
cwnd reaches m = [5]. All subsequent losses occur before
cwnd reaches a values of w. The expected duration between
the first and the second loss indications is given by

ifi> 1,

P{T >t} = else

E[T0]+2+ﬁ if w<m
(Eu 2 uPTO( ))

Di(w;) =< E[TO] + 2+ m else
(Erun 2 uPro(u) + Zu m+1
(u+ 2(u— m) — 0.5) Pro(u))

Similarly, we model the average duration between two succes-
sive losses by D;(w). After the last loss, it takes tss(w —1) +
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Figure 3: Lower bound on the ccdf for the Italy traces for
various values of w. The time ¢ is in seconds.

2(w — [%527) — 1 rounds for the window to reach a size of
w. Since t — D;(w;) — ¢ rounds comprise the duration for the
rest of the losses following the first loss indication, we need
at least n = [(t — Dy(w;) —i)/(D;(w))] + 1 losses for the off
time to exceed t. Then if n > 1 (the case n = 1 had already
been considered) the probability that the off time is greater
than ¢ is given by

(1 =p)¥D(1— (1 —p)*) if i > I
Qwi) Py (w, wi)(Py (1w, w))" >
PIT>t={ (1-p¥D(1-(1-p)¥)  ese
Q(wi) Py (w, w;) (Ps (w, w))"
(1 — Ps(I; — 7))
where I =t — Dy(w;) — (n — 2)Dy(w) — E[TO] — 2.

Case 6: Multiple consecutive losses. We now con-
sider the cases where there are n losses which are successfully
recovered using a single timeout and [ losses which lead to ex-
ponential backoffs. Let the [ periods of consecutive timeouts
be all due to j consecutive losses. The probability of each of
these I periods is Ps(w,w)p’ ! and the probability of the sin-
gle loss indications is Ps(w, w;) and Ps(w, w) for the first and
the rest of the n —1 losses respectively. For a given n and [ we
can have a sequence corresponding of n + [ losses in ¢ rounds
only if t — D;(wi) — (n 41— 1)Dy(w) — (2 —2)E[TO] <i <
t — Dy(wi) — (n+1—2)D;(w) — (I — 1)(2/ — 2)E[TO]. For the
values of ¢ falling in this range, the probability that the off
time is greater than ¢ is given by

1=p)"O1— (1= p)“)Q(wi) ifi > 1
Py (w, w;) (Ps(w, w))" ' =2p'0 =Y
P{T >t} =<1 -p)" D (1~ (1-p))Q(wi) else

P (w, w;) (Pa(w, w))" = 2p!0
(1= Ps(L; — 1))

where I; =t — Dy (wl) —
E[TO] - 2.

(n+1—-2)D(w) —1(2 —2)E[TO] —
D Numerical Results

In Fig. 3 we show the numerical evaluation for the lower
bounds on the ccdf for the parameters from all the Italy traces



Type of p=0.100 p=0.001
Loss prob cedf prob cedf
Case 1 | 0.0000 | 0.0000 | 0.0304 | 0.0304
Case 2 | 0.0000 | 0.0000 | 0.0000 | 0.0304
Case 3 | 0.0000 | 0.0000 | 0.0123 | 0.0428
Case 4 | 3.99E-4 | 3.99E-4 | 3.18E-6 | 0.0428
Case 5 | 0.0116 | 0.0120 | 0.0156 | 0.0584
Case 6 | 0.1306 | 0.1426 | 3.57E-5 | 0.0584

Table 1: The contribution of various losses to the ccdf. ¢
is 200 RTTs, w = 10 and W,e. = 18.

considered in Section II. The heavy tailed nature of the tails
is evident and as expected, the rate of decay reduces with in-
creasing loss probabilities. Also, to see the impact of timeouts
on the tails of the ccdf, in Table 1 we show the contribu-
tion to the tails by the various cases involving timeouts that
we considered in the previous subsection. As expected, the
contribution from the timeouts have a large contribution to
the tails, specially higher loss probabilities. For very low loss
rates, the contribution due to multiple losses is negligible and
the tail is made of just 3-4 exponentials. For higher losses, the
probability of multiple timeouts increases and we have a large
number of exponentials with different rates the superposition
of which leads to a heavy tailed distribution.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper we provided an explanation of how TCP can
cause self-similarity in network traffic. Using traces of actual
TCP transfers over the Internet, we showed that individual
TCP flows, isolated from the aggregate flow on the link also
have a self-similar nature. Our results also showed that the de-
gree of self-similarity is directly proportional to the loss rates
experienced by the flow. We then proposed a model explaining
this self-similarity and presented empirical evidence support-
ing it showing that each TCP flow can be considered as the
superposition of a number of ON/OFF processes. We also pro-
vided a firm mathematical basis to the empirical observations
of heavy-tailed distributions in the OFF times by deriving a
lower bound on the ccdf.

A natural construction of the extremely bursty nature of
TCP traffic comes from timeouts which represent “silent” pe-
riods and separate periods of activity. Since a majority of loss
indications under current Internet scenarios lead to timeouts,
losses increase the burstiness and the heavy tails in the OFF
times. The degree of self-similarity or H being dominated by
the heaviest tail in the superposition, higher loss rates thus
lead to higher values of H. In contrast, when the loss rate is
extremely low TCP transmits Wy, packets in every round
and behaves like a CBR source and the traffic is longer self-
similar. This explains the observations in Section II where
flows with loss rates less than 0.001 had a Hurst parameter of
approximately 0.5. Our findings and the calculations for the
lower bound on the OFF time distribution show that the loss
probability is a faithful indicator of the “network’s effect” on
TCP traffic in terms of both the effects of superposition with
other flows and the degree of self-similarity of the traffic.

While TCP Reno is the most widely implemented version of
TCP, other versions are currently under research, the most no-
table amongst them being TCP SACK. TCP SACK provides
robustness against multiple packet losses in a single window

and recovers them without resorting to timeouts. However, it
does not completely eliminate timeouts since it requires the
receipt of K (usually 3) duplicate ACKs before the retrans-
mission mechanism kicks in. Thus timeouts are inevitable for
small windows and will be present even for larger windows for
correlated losses. Consequently we expect self-similarity to be
present in TCP SACK traces also, though the loss rates at
which H > 0.5 will be greater than those for TCP Reno.
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