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Abstract � Research on the causes of self�similarity

in network tra�c has till recently focused primarily

on the application level and human factors� However�

protocol speci�c causes� specially the fact that TCP

can lead to long�range dependence has become ap�

parent in the recent past� In this paper we show how

TCP�s retransmission and congestion control mecha�

nism� speci�cally its timeout and exponential back�

o� mechanism� can lead to self�similarity in aggregate

TCP 	ows� We develop a mathematical formulation

which shows that TCP�s underlying algorithms result

in packet dynamics of a TCP 	ow being analogous to a

number of ON
OFF sources with OFF periods taken

from a heavy tailed distribution� Using well known

limit theorems� we then show that this leads to the

self�similar nature of TCP tra�c� Our mathematical

model shows a direct correlation of the loss rates to

the degree of self�similarity� Measurements on traces

collected by us also exhibit this relationship predicted

by our model� Our results also show that the loss rate

can be used a representation of the e�ect of the net�

work and the superposition of multiple 	ows�

I� Introduction

Research on the causes of self�similarity in network traf�
	c have primarily focused on the application level dynamics
of high�speed networks and the human factors involved while
the e
ect of the protocol dynamics and the network have re�
ceived attention only in the recent past� In ��
�� the causes
of the self�similarity are investigated at the source level� In
��� the authors cite the distribution of 	le sizes� the e
ects
of caching and human factors like response time and prefer�
ence as possible causes for the self�similarity in WWW tra�c�
It was pointed out in ��� and ��� that closed loop protocols
like TCP lead to much richer scaling behavior than open loop
protocols like UDP�

In this paper� we investigate the e
ect of TCP on the self�
similarity of network tra�c� We also account for the e
ects of
the network in terms of the losses it introduces and the mul�
tiplexing of �ows in a path� In ����� the authors attribute the
self�similarity of TCP tra�c to the chaotic nature of TCP�s
congestion control mechanism� The adaptive nature of TCP�s
congestion control is suggested as the cause for the propaga�
tion of self�similarity in the Internet in ����� The main aim of
our paper is to understand the e
ects of TCP�s retransmis�
sion and congestion control mechanism on the observed self�
similarity of TCP tra�c� We show that the tra�c generated
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by a single TCP connection can exhibit self�similarity in con�
trast to all previous work �except for ����� which concentrated
on the aggregate tra�c� In addition� we show that the de�
gree of self�similarity has a direct relationship with the losses
experienced by a �ow with the tra�c no longer self�similar�
i�e� H � ��� for very low loss rates� While similar phenomena
have been reported recently �after this paper was completed��
their models to explain the self�similarity either require un�
realistic loss rates to induce self�similarity ��� or are able to
show long�range dependence over very small time scales ����
In this paper� we present a model of TCP based on ON�OFF
processes which explains the self�similarity of TCP tra�c and
validate it using TCP traces collected from the Internet� We
also give a mathematical formulation of how TCP�s conges�
tion control mechanism leads to self�similarity in the tra�c it
generates and account for the e
ects of the network in terms
of the loss probabilities and the presence of other �ows�

This paper reports the main results from a larger work
available as a technical report ���� which contains details on
the derivations and more results� The rest of the paper is
organized as follows� In Section II we 	rst present results
of tests for the presence of self�similarity in individual TCP
transfers over the Internet� We then present and validate a
model which explains this self�similarity� Section III provides
a mathematical foundation for our model and investigates the
mechanisms of TCP which lead to the self�similarity� Finally�
Section IV presents the discussions and concluding remarks�

II� Self�similarity of TCP Flows

In this section we provide experimental evidence of the self�
similarity of individual TCP �ows which motivates the inves�
tigation of TCP dynamics for causes of self�similarity� In ����
ns simulations were used to show that the data sent by a sin�
gle TCP �ow in the superposition of a number of TCP �ows
shows evidence of self�similarity in contrast to all previous
studies which concentrated on the aggregated tra�c� To ver�
ify the self�similar nature of single TCP micro�ows in actual
Internet transfers� we 	rst present the results from tests for
long�range dependence on traces collected from real life TCP
connections over the Internet�

The traces were collected for TCP transfers originating
from a machine running Solaris ��� at Troy� NY� The des�
tinations for the transfers were in Columbus� OH �HP�UX��
Los Angeles� CA �FreeBSD Cairn������ Boston� MA �Linux
������� and Pisa� Italy �FreeBSD ����� Due to space restric�
tions� we show results for only the transfers Italy� The results
for the others are similar and are presented in ����� Each trace
is ���� seconds or around �� minutes long and was collected
using tcpdump which did not lose any packets� The transfers
were done over periods in ���� and ���� at various times of
the day and week� Depending on the prevalent network con�
ditions� the loss rates experienced by each �ow is di
erent and
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Figure �
 Tests for self�similarity
 Absolute value method
�left� and the R�S statistics method �right��

we use this to classify transfers between a source�destination
pair�

Figure � shows the results of the tests for long�range de�
pendence on three traces to Pisa� Italy which had loss rates
of ������ ����� and ������ We tested for long�range depen�
dence using three of the widely used methods� the absolute
value method� R�S statistics method and the periodogram
method and show results for only the 	rst two methods� The
results clearly show the long�range dependence in the individ�
ual TCP �ows� Also� the degree of long�range dependence� as
indicated by the Hurst parameter� is clearly dependent on the
loss rate experienced by the �ow� with higher loss rates leading
to larger values of H� Also note that for extremely low prob�
abilities �less than ������ the tra�c is no longer self�similar
with H � ��� as shown in section �a� of Fig� ��

This poses the following questions� What are the underly�
ing mechanisms responsible for the direct in�uence of the loss
probabilities of the self�similarity of TCP tra�c� Can the
e
ects of the network and the in�uence of the superposition
with other �ows be abstracted using the single parameter of
the loss probability� And most importantly� what is TCP�s
role in all this� In this paper we address these issues and show
how TCP�s retransmission and congestion avoidance mecha�
nisms contribute to the self�similar nature of network tra�c�

A ON�OFF Model Based Explanation and its Validation

To give an explanation for TCP�s e
ect on the self�
similarity of network tra�c� we consider a TCP �ow to be
composed of the superposition of Wmax ON�OFF processes�
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Figure �
 Tests for heavy�tailed nature of the OFF times

ccdf plots �left� and Hill�s estimates �right� for various
values of w�

Each process corresponds to each of the possible values that
the cwnd of the �ow might have since Wmax is the receiver�s
advertised maximum bu
er size and is the upper limit on

cwnd� A cwnd of w� corresponding to the wth ON�OFF pro�
cess� � � w �Wmax� implies a deterministic ON time which is
equal to the time to transmit the w packets with the packets
generated at a constant rate during this period� We note that
though in practice there might be a small variation in the time
between two successive packets in a round� with high speed
networks and ACK compression these variations are negligible
when compared to the RTTs�

The OFF period for the wth process� � � w �Wmax� cor�
responds to the time interval between two successive instants
where cwnd has the value w� Now� if the distribution of these
times has a heavy tail� their complementary cumulative dis�
tribution function �ccdf� Fc�x� behaves like

Fc�x� � lx��L�x� with � � � � � ���

where l � � is a constant� L�x� is a slowly varying function at
in	nity� i�e�� limx�� L�tx��L�x� � �� � t � � and the relation
f�x� � g�x� implies limx�� f�x��g�x� � �� We can now
use Theorem � of ���� which says that the superposition of a
number of these processes converges in the limit to fractional
Brownian motion �fBm� and thus exhibit self�similarity�

In our case� the limiting conditions are reached when we
have a large number of �ows in the network each contribut�
ing its ON�OFF processes to the superposition� Now we just
need to show that the distribution of the OFF times indeed



corresponds to the form of Eqn� �� In Fig� � we plot the ccdf
of the OFF times for various window sizes for the traces for
Italy and the heavy tailed nature of each is clearly evident�
A statistically more rigorous method for estimating the slope
of the tails and thus � as compared to the eyeballing method
associated with plotting ccdfs is the Hill�s estimator ���� The
presence of heavy tails is indicated by a straight line behavior
of the Hill�s estimate ��n as the number of samples used in the
calculation of the estimate increases while a steadily decreas�
ing pattern is a strong indication of the data being not from a
heavy�tailed distribution� Fig� � also plots the Hill�s estimates
for the OFF time distribution for various window sizes for the
Italy traces and clearly they are consistent with the form of
Eqn� �� Thus we can conclude that the superposition of such
ON�OFF process from a number of TCP �ows will converge
in the limit to fBm and thus exhibit self�similarity�

It is interesting to note the ccdf and Hill estimate plots for
the Italy trace with p � ������ From Figure � H � ��� for this
trace� i�e� the trace does not exhibit self�similarity� We note
from Figure � that the Hill estimates for all the ON�OFF
process corresponding to this trace are decaying constantly
and thus do not have a heavy tailed nature thereby failing to
satisfy the conditions of Theorem � of ����� As a result the
trace is not self�similar� In Section C from our derivation of a
lower bound of the ccdf it will be clear why low loss rates fail
to give rise to heavy tails�

An important assumption here is the independence of the
window sizes of di
erent �ows� which need not be the case for
all the �ows in a link� Simulation studies have indicated that
the window sizes of TCP �ows sharing a common bottleneck
link may get synchronized though such synchronization is hard
to observe in the Internet �
�� Also� most of the simulation
studies focus on very heavily congested bottleneck links while
link loads in practice tend to be comparatively much lower�
Also� note that the independence requirements fail to be sat�
is	ed only when nearly all the �ows in a link are correlated�
To prove that the independence assumptions of Theorem � of
���� are satis	ed� we analyzed some of the traces reported in
����� The results of our statistical tests on these traces to see
if the individual TCP �ows are indeed independent indicate
that amongst the longer �ows in the traces� roughly ���
�
� of the �ows are mutually independent� providing enough
independent �ows in the superposition�

An important part in the calculation of the OFF times is
what criterion we use to de	ne a OFF period� We de	ne
an ON period to be over whenever the distance between two
successive packets in the trace exceeds a length � dependent
on the packet transmission time on the link� By keeping �
su�ciently small we can ensure that the spacing between the
packets in the ON period is almost constant thus satisfying the
requirement of Theorem � of ����� Also� as in ��
�� the exact
numerical choice of � does not a
ect the results and the heavy
tailed nature of the ccdf remains an invariant independent of
the choice of ��

III� Investigating the Role of TCP

We now pinpoint the sources in TCP�s retransmission and
congestion avoidance mechanism which are responsible for the
self�similarity of network tra�c� We then derive a lower bound
on the tail of the OFF time distribution and show that it de�
cays according to a power law providing a 	rm mathematical
foundation to our model� In this paper we concentrate on
TCP Reno as it the most widely deployed variant of TCP�

The e
ect of the other versions of TCP is discussed in Sec�
tion IV� We assume that the reader is familiar with the basic
concepts of TCP like the congestion window cwnd� slow start�
delayed acknowledgments etc and refer the reader to ���� for
details on TCP�s algorithms�

A The Impact of Timeouts

From the explanation for the observed self�similarity in
TCP tra�c given in Section II it is obvious that the central
aspect of the phenomenon lies in the in	nite variance or the
heavy tailed nature of the OFF time distributions� Let us now
consider the features of TCP which lead to such a behavior�

In the following we assume an in	nite or steady state �ow
currently in the congestion avoidance mode to make the vi�
sualization easier� The occurrence of heavy tails in the OFF
times is mainly due to the losses which lead to timeouts� This
is due to the following reasons� A timeout represents a signif�
icant duration when no packets are transmitted and acts as a
boundary between ON and OFF periods of the �ow as a whole
leading to a bursty nature of TCP tra�c� The durations of
timeouts are generally an order of magnitude greater than the
RTT ��� and with coarse TCP timer granularities and varia�
tions in the RTT measurements can be quite large� Again� if
the retransmitted packet following a timeout is also lost� the
silent period is doubled and from the traces reported in ��� the
occurrence of multiple consecutive timeouts is frequent� Also�
a majority of the losses experienced by TCP �ows lead to time�
outs which can be attributed to the fact loss that most routers
in the Internet deploy droptail queues� Correlated loss mod�
els� where all the packets following the 	rst dropped packet in
a round are also dropped are an appropriate models for the
losses arising from these queues ���� This coupled with the fact
that a single loss in a window less than �� two or more losses
in a window less than � and three or more losses for higher
windows in TCP Reno will lead to a timeout contributes to
the large proportion of timeouts in the observed loss indica�
tions� Before moving on to the derivation of the lower bound
on the tail of the ccdf� we 	rst derive the probability that a
loss in a window of size w leads to a timeout�

B Probability of Timeouts

Consider a round with window w and let the probability
that a loss of any packet in this round will lead to a timeout be
denoted by Q�w�� We assume that the receiver uses delayed
ACKs� We also assume droptail queues and the correlated loss
model of the previous subsection� Packet losses in a round are
assumed to be independent of losses in other rounds and the
packet loss probability is denoted by p�

For window sizes less than �� any packet loss leads to a
timeout and thus Q�w� � � for � � w � �� For windows with
� � w � � two or more packet losses in a round leads to a
timeout� If only one packet is lost in the current round� if we
lose any packet in the following round� the �ow will eventually
timeout� In addition the retransmitted packet must also be
transmitted successfully to avoid a timeout� Thus Q�w� for
this range of window values is given by

Q�w� � �� p��� p��w��

�� ��� p�w
for � � w � � ���

For window sizes greater than �� three or more losses in a
round will lead to a timeout� Also we have to ensure that
the retransmitted packet is received successfully along with



the fact that none of the packets in the succeeding round are
lost� Neglecting the extremely few possibilities in which it
is possible to recover a single loss in the succeeding round
without going into a timeout� we have

Q�w� � �� p��� p���� p��w��

� � ��� p�w
for � � w �Wmax

C A Lower Bound on the OFF Time Distribution

We now derive a lower bound on the ccdf by identifying
the possible ways in which the time between two successive
windows of the same size can exceed a given value� In this
derivation� we measure time in units of the round trip time�

Let us assume that the current window size is w and we
want to 	nd the probability that the time until the next in�
stant where cndw � w is greater than ���� The most obvious
possibility is that the �ow does not experience any loss for the
next ��� rounds so that after some round the cwnd stays at
Wmax� Another possibility could be that after i rounds �when
cwnd � �w� the �ow experiences a loss which results in a fast
retransmit� The �ow then transmits the next ��� � i rounds
without any loss� As a variation of this we could have a num�
ber of successive fast retransmits without reaching a window
of w� Yet another line of possibilities is timeouts� Let us de�
note the average duration of a timeout �in terms of RTTs� by
E�TO�� As the 	rst possibility we could have that there are
no losses in the 	rst ��� � E�TO� followed by a timeout� We
could also have i initial rounds without loss and then n time�
outs �with n su�ciently large� before the window gets a chance
to increase to w� Other possibilities include cases where we
have timeout periods of length �E�TO�� �E�TO� and so on�
Each of these cases represent independent possibilities whose
individual contribution to the tail of the OFF time distribu�
tion has an exponential decay� the rate of which depends on
the corresponding probability of the loss indications and their
e
ects�

The tail of the OFF time distribution for each window size
and the corresponding ON�OFF process can thus be seen as
the superposition of a large number independent exponential
tails each with its own rate of decay� The mix of these inde�
pendent exponentials leads to a composite distribution which
has a heavy tail over the region of our interest� The following
theorem by Bernstein ��� can be used to show that the su�
perposition of a number of properly chosen exponentials can
be used to model heavy tailed distributions like Pareto and
Weibull in the region of primary interest�

Theorem �� �Bernstein� Every completely monotone pdf f
is a mixture of exponential pdfs� i�e�� f�t� �

R
�

�
	e��tdG�	��

t � � for some proper cdf G�

We now obtain the probabilities corresponding to each of
the possible paths that we described�

Case �� The no loss case� Consider the wth ON�OFF
process which corresponds to a cwnd of w� � � w � Wmax�
Assume that the current round has a window of size w� The
probability that the next window of size w occurs after tRTTs�
assuming there are no losses in between� is given by

PfT � tg � ��� p�N�t� ���

where N�i� represents that number of packets that are trans�
mitted in the i rounds following the round with size w and is

given by

N�i� �

�
iw � d i

�
e
�
i� d i

�
e
�

if i � j

jw � d j
�
e
�
j � d j

�
e
�
� �i� j�Wmax else

���
where j � ��Wmax � w�� ��
Case 
� Fast retransmission losses� Consider again

the w th ON�OFF process� � � w � Wmax� We can have a
OFF time greater than t if we have loss indications at windows
greater than �w which result in fast retransmits� For simplic�
ity� we consider only those cases where the loss occurs in a
window of size Wmax� The �ow 	rst transmits packets with�
out loss for the 	rst i rounds during which its window reaches
Wmax� It then experiences a loss which is recovered by a fast
retransmit� Since w � dWmax��e the desired window size
is not achieved at the beginning of the congestion avoidance
mode� Also� following each loss there are ��Wmax �m� � �
rounds with Wmax�Wmax � �� �m�m � �� packets till cwnd
reaches Wmax again with m � dWmax��e� Thus there are
t�n�n���Wmax�m�������Wmax�w��� rounds with suc�
cessfully transmitted windows of Wmax� The total number of
correctly transmitted packets� after algebraic simpli	cations�
is thus

Nc�w� t� � Wmax�t� �n � ��Wmax � �w � �nm � �n�

�w�w � ��� nm�m� �� ���

Now� since there areM � t��nWmax��w���n���m��n��
rounds with a cwnd of Wmax with n of them having losses�
the probability that the OFF time is greater than t is given
by

PfT � tg �

�
M
n

�
��� ��� p�Wmax�n

���Q�Wmax��
n��� p�Nc�w�t� ���

Also� since each loss is associated with ��Wmax�m��� rounds
where the window is not Wmax� the maximum possible losses
in t rounds can be shown to be limited by

nmax �

�
t� ��Wmax � w� � �

�Wmax � �m� �

�
�
�

Case �� Loss indication resulting in a timeout� Con�
sider the case when the loss occurs after i rounds from the
round with a window of w� The number of packets transmit�
ted in these i rounds� N�i� is given in Eqn� � and the value

of the cwnd in the ith round wi is given by

wi � min fWmax� w � di��eg ���

The number of packets transmitted in the slow start phase
which follows a timeout� tss�wi� is obtained using the model of
���� which is more accurate than the commonly used approx�
imation where the window always increases ��� times every
RTT�

tss�wi� �
	
� log�

�
��m���� �

p
��
�

� � ���

where m � dwi
�
e and the number of packets transmitted in

the slow start phase can be expressed as

Nss�wi� �

�
�
tss�wi���

� � ���
�tss�wi���

� � �� �
p
�

�

�
����

If w � m we also have a linear phase where the window in�
creases linearly from m to w� The total time required by the



�ow to reach a window of w again following the timeout is
thus

Dnl�w�wi� �

�
tss�w� �E�TO� � � if w � m
tss�wi� �E�TO� � ��w �m� else

����
Now� the probability that we have a loss in a round of
size u following the timeout� before the window reaches w�
PTO�u� wi�� � � u � w� is given by

PTO�u� wi� �

��


��� p�Nss��u���� ��� p�u�Q�u� if u � m

��� p�Nss�wi���� ��� p��u�Q�u� else

��� p�u�u����m�m���

����
Then� the probability that there is another timeout before the
window reaches a window of w is given by

Ps�w�wi� �

w��X
u��

PTO�u� wi� ����

After the ith round� on an average � more rounds of packets
are sent �where two losses are recovered� before the timeout
period begins� Thus if i � t � Dnl�w�wi� � E�TO� � �� the
probability that the OFF time is greater than t is given by

PfT � tg �

��



��� p�N�i���� �p�wi�Q�wi� if i � Il
��� p�N�i���� �p�wi� else
Q�wi���� Ps�Il � i��

where Il � t�E�TO�� ��
Case �� Loss of the retransmitted packet� When

the retransmitted packet following a timeout is also lost� the
retransmission timer backs o
 exponentially with a factor of �
leading to very large silent periods� The duration of a sequence
of n consecutive losses in lengths of E�TO� is given by

Ln �

�
�n � � for n � �
�� � ���n� �� else

����

Each of the losses following the initial loss indication occur
with probability p� Also� the linear phase of the cwnd fol�
lowing the second loss begins after cwnd reaches �� Then� if
i � t � LnE�TO� � ��w � �� � � the probability that the o

time for window w is greater than t is given by

PfT � tg �

��


�� � p�N�i���� ��� p�wi�Q�wi�p

n�� if i � Il
�� � p�N�i���� ��� p�wi�Q�wi�p

n�� else
�� � Ps�Il � i��

where Il � t� LnE�TO�� ��
Case �� n isolated timeouts� Let us now consider the

case where there are n isolated timeouts each of length E�TO��
After the 	rst loss after i rounds� the slow start phase lasts till
cwnd reaches m � dwi

�
e� All subsequent losses occur before

cwnd reaches a values of w� The expected duration between
the 	rst and the second loss indications is given by

Dl�wi� �

������
����


E�TO� � � � �
��Ps�w���

if w � m�Pw��

u��
uPTO�u�

�
E�TO� � � � �

��Ps�w���
else�Pm��

u��
uPTO�u� �

Pw��

u�m��

�u� ��u�m�� ����PTO�u��

Similarly� we model the average duration between two succes�
sive losses by Dl�w�� After the last loss� it takes tss�w� �� �
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Figure �
 Lower bound on the ccdf for the Italy traces for
various values of w� The time t is in seconds�

��w � dw��
�
e� � � rounds for the window to reach a size of

w� Since t�Dl�wi�� i rounds comprise the duration for the
rest of the losses following the 	rst loss indication� we need
at least n � d�t�Dl�wi�� i���Dl�w��e � � losses for the o

time to exceed t� Then if n � � �the case n � � had already
been considered� the probability that the o
 time is greater
than t is given by

PfT � tg �

�����
���


��� p�N�i���� ��� p�wi� if i � Il
Q�wi�Ps�w�wi��Ps�w� w��

n��

��� p�N�i���� ��� p�wi� else
Q�wi�Ps�w�wi��Ps�w� w��

n��

��� Ps�Il � i��

where Il � t�Dl�wi�� �n� ��Dl�w��E�TO�� ��
Case �� Multiple consecutive losses� We now con�

sider the cases where there are n losses which are successfully
recovered using a single timeout and l losses which lead to ex�
ponential backo
s� Let the l periods of consecutive timeouts
be all due to j consecutive losses� The probability of each of
these l periods is Ps�w�w�p

j�� and the probability of the sin�
gle loss indications is Ps�w�wi� and Ps�w�w� for the 	rst and
the rest of the n�� losses respectively� For a given n and l we
can have a sequence corresponding of n� l losses in t rounds
only if t�Dl�wi�� �n� l� ��Dl�w�� l��j � ��E�TO� � i �
t�Dl�wi�� �n� l� ��Dl�w�� �l� ����j � ��E�TO�� For the
values of i falling in this range� the probability that the o

time is greater than t is given by

PfT � tg �

�����
���


��� p�N�i���� ��� p�wi�Q�wi� if i � Il
Ps�w�wi��Ps�w�w��

n�l��pl�j���

��� p�N�i���� ��� p�wi�Q�wi� else

Ps�w�wi��Ps�w�w��
n�l��pl�j���

��� Ps�Il � i��

where Il � t�Dl�wi�� �n� l� ��Dl�w�� l��j � ��E�TO��
E�TO�� ��

D Numerical Results

In Fig� � we show the numerical evaluation for the lower
bounds on the ccdf for the parameters from all the Italy traces



Type of p � ����� p � �����
Loss prob ccdf prob ccdf
Case � ������ ������ ������ ������
Case � ������ ������ ������ ������
Case � ������ ������ ������ ������
Case � ����E�� ����E�� ����E�	 ������
Case � �����	 ������ �����	 ������
Case 	 �����	 �����	 ���
E�� ������

Table �
 The contribution of various losses to the ccdf� t
is ��� RTTs� w � �� and Wmax � ���

considered in Section II� The heavy tailed nature of the tails
is evident and as expected� the rate of decay reduces with in�
creasing loss probabilities� Also� to see the impact of timeouts
on the tails of the ccdf� in Table � we show the contribu�
tion to the tails by the various cases involving timeouts that
we considered in the previous subsection� As expected� the
contribution from the timeouts have a large contribution to
the tails� specially higher loss probabilities� For very low loss
rates� the contribution due to multiple losses is negligible and
the tail is made of just ��� exponentials� For higher losses� the
probability of multiple timeouts increases and we have a large
number of exponentials with di
erent rates the superposition
of which leads to a heavy tailed distribution�

IV� Conclusions and Discussions

In this paper we provided an explanation of how TCP can
cause self�similarity in network tra�c� Using traces of actual
TCP transfers over the Internet� we showed that individual
TCP �ows� isolated from the aggregate �ow on the link also
have a self�similar nature� Our results also showed that the de�
gree of self�similarity is directly proportional to the loss rates
experienced by the �ow� We then proposed a model explaining
this self�similarity and presented empirical evidence support�
ing it showing that each TCP �ow can be considered as the
superposition of a number of ON�OFF processes� We also pro�
vided a 	rm mathematical basis to the empirical observations
of heavy�tailed distributions in the OFF times by deriving a
lower bound on the ccdf�

A natural construction of the extremely bursty nature of
TCP tra�c comes from timeouts which represent �silent pe�
riods and separate periods of activity� Since a majority of loss
indications under current Internet scenarios lead to timeouts�
losses increase the burstiness and the heavy tails in the OFF
times� The degree of self�similarity or H being dominated by
the heaviest tail in the superposition� higher loss rates thus
lead to higher values of H� In contrast� when the loss rate is
extremely low TCP transmits Wmax packets in every round
and behaves like a CBR source and the tra�c is longer self�
similar� This explains the observations in Section II where
�ows with loss rates less than ����� had a Hurst parameter of
approximately ���� Our 	ndings and the calculations for the
lower bound on the OFF time distribution show that the loss
probability is a faithful indicator of the �network�s e
ect on
TCP tra�c in terms of both the e
ects of superposition with
other �ows and the degree of self�similarity of the tra�c�

While TCP Reno is the most widely implemented version of
TCP� other versions are currently under research� the most no�
table amongst them being TCP SACK� TCP SACK provides
robustness against multiple packet losses in a single window

and recovers them without resorting to timeouts� However� it
does not completely eliminate timeouts since it requires the
receipt of K �usually �� duplicate ACKs before the retrans�
mission mechanism kicks in� Thus timeouts are inevitable for
small windows and will be present even for larger windows for
correlated losses� Consequently we expect self�similarity to be
present in TCP SACK traces also� though the loss rates at
which H � ��� will be greater than those for TCP Reno�
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