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Abstract—The area of Generative Artificial Intelligence (GenAI) is rapidly expanding, as seen by the
regular release of new models and applications every few months. While these GenAI models have
impressive capabilities, their computational intensity has presented issues, especially in applications
demanding low latency. Hence, substantial research is being conducted to develop ways to scale
down these models so that they may be used for on-device computing on edge devices. Examining
successful examples of GenAI models implemented on mobile devices with minimum latency
becomes critical in understanding the practical consequences of these breakthroughs. Notable
instances, such as the deployment of Diffusion-based GenAI models on flagship smartphones like
Samsung S23 Ultra and iPhone 14, demonstrate the possibility and promise of bringing GenAI
applications to consumers’ fingertips. We further analyze and find out the approaches and strategies
that make these on-device deployments successful.

GENERATIVE AI (GENAI) describes a branch of 
artificial intelligence that is concerned with producing 
new material, including text, pictures, and other data. 
GenAI models, in contrast to typical AI systems, can 
generate original and creative outputs that were not 
explicitly built into them. Neural networks are widely 
used in such GenAI models to extract patterns and 
structures from massive datasets. Generative Adver-
sarial Networks (GANs) and Variational Autoencoders 
(VAEs) are two common categories of GenAI models. 
These models can provide fresh, realistic samples that 
closely match the training data after being trained on 
a variety of datasets. However, the majority of GenAI

models in the market are extremely computationally
intensive and have large model sizes, which require
strong centralized computing infrastructures (such as
cloud servers) to handle user requests. Moreover, the
architecture for centralized computing is unsustainable,
expensive, and not environmentally friendly. With the
growing demand for privacy, reduced latency, and
the ability to operate in environments with unreliable
connectivity, there has been a notable shift towards de-
ploying GenAI directly on edge devices, such as smart-
phones, IoT devices, and wearables. This paradigm is
often referred to as On-device Generative AI, which
provides various advantages over centralized cloud-
based infrastructures (Figure 1) and unlocks many
more potential for the deployment of GenAI. On-
device Generative AI is poised to bring many inno-
vative and interesting applications of GenAI through
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mobile consumer gadgets [1]. However, actual imple-
mentations of these technologies are fraught with many
challenges, mainly because of the limited processing
power, memory, and energy resources of edge devices,
which are generally unsuitable for computationally
intensive tasks like that required by the generative
models.

The major contributions of the paper can be high-
lighted as follows:

1) Our paper consolidates and systematically com-
pares the various trending on-device optimiza-
tion strategies, including quantization, model
pruning, and efficient architecture designs such
as Optimized Latent Diffusion (OLDN) and Ad-
vanced U-Net Optimizations (ANOT).

2) Our review offers a practical framework for un-
derstanding the trade-offs involved in deploying
GenAI models on edge devices by effectively
categorizing the on-device technologies based on
their core underlying principles, such as latency
reduction, memory efficiency, and energy con-
sumption.

3) Additionally, our review highlights critical chal-
lenges faced by the current implementations,
such as the balancing act between maintaining
model accuracy and minimizing resource con-
sumption while also drawing attention to gaps
in the current research

4) The paper also emphasizes the potential of
emerging techniques like neurosymbolic AI and
federated learning for future advancements in
the field of On-device GenAI technologies and
discusses innovative areas for future research in
the domain.

NEED FOR SCALING GENAI
MODELS

GenAI systems have evolved rapidly in recent
times by training larger and larger models with an
increasing number of parameters and computational
complexity, achieving superior performance across all
domains. However, this extension in model sizes fol-
lows an exponential trajectory, with the GenAI models
doubling in size every six months, and the computa-
tion capabilities of Central Processing Units (CPUs)
and Graphics Processing Units (GPUs) in the semi-
conductor manufacturing sector experiences a much
slower doubling rate, occurring approximately every
two years. This growing disparity between the rapid

Figure 1: Advantages of on-device generative models
over traditional cloud-based models

growth of GenAI model sizes and the comparatively
sluggish advancements in semiconductor capabilities
raises concerns about an imminent misalignment be-
tween computing demand and supply.

Data Privacy
Addressing the broader landscape of AI, the ques-

tion of data ownership emerges as a crucial consid-
eration. Storing user data locally, rather than relying
solely on centralized databases, emerges as a potential
solution to allay concerns from governing bodies and
consumers regarding the misuse and theft of sensitive
information. Localized storage of user data not only
enhances privacy and security but also aligns with
evolving ethical AI frameworks, which prioritize user
autonomy and consent in data handling. Federated
learning has approached as a complementary approach
to this process [2], which allows for decentralized
training across edge devices and ensures that individual
data never leaves the user’s device. This decentralized
model improves privacy and maintains the benefit
of training models with aggregated insights across
multiple users.

Easy Access
Despite the remarkable advancements in GenAI, a

significant bottleneck hindering mass adoption is the
restrictive data transfer limits on local networks and the
strain on centralized AI systems to handle all incoming
requests. An innovative remedy to this challenge lies
in the deployment of localized AI models directly on
devices, such as mobile phones. This decentralized ap-



effective. Recent studies [4] have demonstrated that
efficient deployment of GenAI models on edge can
reduce energy consumption by up to 90% compared
to cloud-based systems, highlighting the importance
of this trend.

ARCHITECTURE AND
FOUNDATIONS

Currently, many popular GenAI models have been
successful in being scaled to perform with minimal
latency on mobile devices or high-powered GPU de-
vices. Each model requires its own optimizations to run
on a smaller scale. Going further, we will explore the
underlying foundational principles and architectures
for optimizing GenAI models for edge devices with a
critical focus on the Stable Diffusion models, which
were recently successful in being scaled to run on
GPU-powered devices, and the SnapFusion model [5]
(recently announced, last revision Oct 16, 2023) which
achieved latency of only 2 sec on mobile devices
(Figure 3), and few more. An overview of the literature
review we have performed is illustrated in Table 1.

Optimized Latent Diffusion and U-Net
Architecture (OLDN)

Many recent studies in this area have conducted
experiments on Stable diffusion v1.4 (or higher) mod-
els since they are open source and many other GenAI
models work on similar principles. Core ways to scale
such models lie in efficient network architecture design
and improving upon the step distillation process. One
way to execute this is to design an efficient U-Net
identifying redundancies in the original model and
reducing the image decoder’s computation via data dis-
tillation. Applying Group Normalization across the U-
Net of the SD v1.4 model along with Winograd Convo-
lution and improving attention module efficiency, the
model was able to generate images on iPhone 14 in
under 15s [6].

Group Normalization By utilizing group normal-
ization technique, in which we apply individual nor-
malizations on separate groups formed by breaking up
the channels of the feature map, we can make the
approach less dependent on the batch-size and thus
generalize it across multiple different network designs
and varied batch sizes. In this process, we standardize
every feature value xi using the group mean and
variance of the corresponding group that it belongs
to using Equation 1.

proach not only alleviates data transfer limitations but 
also enhances real-time processing capabilities. This 
approach is especially beneficial f or mission-critical 
applications, such as autonomous driving, augmented 
reality (AR), and healthcare diagnostics, where delays 
in processing can have severe consequences. Recent 
developments in model quantization like being able 
to use reduced model precisions from 32-bit floating 
points (FP32) to 8-bit integers (INT8), prove to be 
crucial in the deployment of complex deep learning 
networks on resource-constrained edge devices by 
ensuring that models remain computationally efficient 
without making any compromises on their accuracy.

Personalization
The crux of GenAI’s prowess lies in its immense 

potential for personalization through its access to vast 
amounts of consumer data, which is instrumental in 
fine-tuning models for improved inferences. By lever-
aging a local database, GenAI models can adapt and 
personalize their outputs based on individual user pref-
erences. The shift towards On-device GenAI empowers 
users by enabling their personal data to be directly 
fed into generative models securely and privately. 
It opens many avenues for user-specific inferences, 
from personalized cooking guides that tailor recipes to 
individual tastes to virtual therapists providing tailored 
mental health support. The ability to fine-tune models 
also opens up new avenues for continuous learning 
[3]. Users benefit f rom A I m odels t hat e volve in 
response to their changing needs, preferences, and 
environments. In scenarios like fitness t racking or 
personalized healthcare, where privacy is paramount, 
having a model that remains entirely on-device while 
adapting to individual behavior ensures both accuracy 
and security.

Energy-efficiency and Sustainability
It is a well-known fact that GenAI models, es-

pecially large diffusion models and LLMs, are com-
putationally very intensive, and training and running 
them requires a substantial amount of energy sources. 
The environmental impact of energy-hungry AI sys-
tems has drawn considerable attention. Therefore, by 
moving towards more efficient o n-device processing, 
reliance on large, energy-intensive data centers can 
be reduced, and the carbon footprint associated with 
AI computations can be decreased. This pursuit aligns 
with growing industry efforts to build green AI, which 
prioritizes models that are both energy-efficient and

 



x̂i =
1

σg
· (xi − µg) (1)

Thus, instead of sequentially carrying out the pre-
viously specified operations — “mean,” “variance,”
“normalize,” and “reshape”, a special GPU-shader ker-
nel is created that can carry out each of aforementioned
operations in a single GPU command without any
intermediary tensors.

Partially Fused Softmax Attention Module effi-
ciency was dealt with by reducing softmax operations
[7] or by flash attention technique. Reducing the
number of elemental softmax operations: Two steps
may be distinguished in the softmax operation on the
matrix A = QKT

√
d

∈ RN×M where A is attention,
reducing processes and operations on elements. The
computation of most significant value of each row
in A and its adjusted exponential sum S, as shown
in the equation below, is referred to as the reduction
operations. Next, we normalize the values in A using
the vectors L and S per element (Equation 2).

L = maxj [aij ], S = [Xj exp(aij−maxk[aik)]] ∈ RN

(2)
Chen et al. [6] created a GPU shader to circumvent

running the entire softmax computation on the big
matrix A, allowing the L and S vectors to be computed
throughout the reduction processes, yielding a tensor
of size N × 2. The following matrix multiplication
using matrix V is then combined with the element-
wise softmax algorithm. This process is visualized in
Figure 2.

It is important to emphasize that the computation
mapping from A to L, S has restricted parallelism
since the resultant tensors have fewer components
than the input tensor A. We divide the pieces in A
into blocks to further boost parallelism and reduce
latency by dividing the reduction operations into many
phases. Every block undergoes computations, which
are then reduced to the outcome. Through careful
memory cache management and threading, this method
across multiple stages may be completed using a
single instruction to the GPU, resulting in even further
latency reduction.

Flash Attention It is an IO-aware, accurate attention
technique that uses tiling to reduce memory reads
and writes between on-chip SRAM and GPU high
bandwidth memory (HBM). Because this method re-

quires fewer HBM accesses than normal attention, it
is more efficient overall and works well with a variety
of SRAM sizes. Despite aiming to improve latency
and decrease read/write global memory, FlashAtten-
tion’s kernel requires a lot of registers. Due to this
major drawback, this method is only viable on high-
functioning GPUs like Adreno and Apple GPUs with
smaller attention matrices of dimensions around d =

40. In other situations, the previously discussed partly
fused softmax technique might perform better.

Winograd Convolution The convolution process is
converted into a sequence of matrix multiplications
using Winograd convolution. The central realization
is that many of the necessary multiplications may be
eliminated by carefully selecting the transformation
matrices, which results in a more efficient computa-
tion. However, it also results in more memory use
and numerical inaccuracies, especially when utilizing
bigger tile sizes. The 3×3 convolution layers are the
mainstay of Stable Diffusion; they make up more than
90 percent of the layers in the image decoder, for
example. According to the findings of the authors
[6], a 4 × 4 tile size is ideal for this convolution,
as it perfectly balances the memory utilization and
computational efficiency.

Advanced U-Net Optimization Techniques for
Mobile GPUs (ANOT)

The SnapFusion model [5] employs further ad-
vanced optimization techniques for the U-Net dis-
cussed in the previous section, particularly targeting
on improving the speed of inference and reducing
the number of denoising steps via step distillation.
The starting point for the model optimization was the
Stable Diffusion v1.5 (SD-v1.5) model. The authors
performed tests on the MS-COCO dataset on iPhone
14 pro and compared the performances of SnapFusion
and SD-v1.5.

U-Net Architecture Optimizations The authors
built an efficient U-Net by applying a self-designed
algorithm. The algorithm assesses every model block
and carries out robust training. It evaluates the change
in CLIP score for each block to direct the architectural
development process, should it become necessary at
some time. To strengthen the network’s resistance to
variations in design, they also incorporate a training
augmentation. This process allows for a steady archi-
tectural evolution and an accurate evaluation of every



Figure 2: Optimized softmax implementation proposed for OLDN architecture

the two techniques of Vanilla step distillation and
CFG-Aware Step distillation. They adjusted two hyper-
parameters, CFG range and CFG probability, to gain
an effective balance of FID and CLIP scores. They
also tested their proposed CFG-aware distillation on
SD-v2, which obtained similar promising results when
running with the same parameters used for SD-v1.5.
Further tuning of the parameters may lead to better
results.

Refined Cascaded Diffusion Architecture with
Qualcomm AI Stack (RSCA)

For this architecture various optimizations were
done utilizing the techniques of hardware acceleration
and quantization on the FP32 open-source model of
SD v1.5. This model was then successfully deployed
on a Snapdragon 8 Gen 2 Mobile Platform processor.
Qualcomm AI Research also developed post-training
quantization techniques for the AI Model Efficiency
Toolkit (AIMET) to shrink the model from FP32
to INT8. AIMET includes techniques like Adaptive
Rounding (AdaRound), which helped to preserve the
accuracy of the model [9].

AdaRound is an improved weight-rounding tech-
nique for post-training quantization. In this, the round-
ing job is given as a unconstrained quadratic binary
optimization problem which is used to approximate the
task loss using a Taylor series expansion. This can be
then optimized using soft-relaxation by reducing the
obtained task loss to layer-wise local loss. These tech-
niques were applied to all the components of the Stable
diffusion model. To run the model on Snapdragon 8
chip efficiently, it is compiled as a program using the
Qualcomm AI Engine direct framework. Based on the
Qualcomm Hexagon Processor’s hardware architecture
and memory hierarchy, the Qualcomm AI Engine se-
quences the framework activities to optimize speed and
minimize memory leakage. The newest Snapdragon 8
Gen 2 aids in the effective operation of big models
such as Stable Diffusion using micro-tile inferencing.

block. A validation set, a table for lookup latency 
with Cross-Attention and ResNet timings, and U-Net 
architecture are needed for the algorithm. The aim is 
to reach convergence of the U-Net while satisfying the 
latency objective.

Efficient I mage D ecoder T he a uthors w ere suc-
cessful in reducing the size of the original decoder 
by applying 50% uniform channel pruning, resulting 
in a decoder that was 1/4th the size of the original. 
Further optimizations were carried out by utilizing a 
distillation pipeline in which they used synthetic data 
to train the decoder in a more efficient way. Using text 
prompts the latent representation from the U-Net of 
SD-v1.5 was extracted and forwarded to the efficient 
image decoder, and along with SD-v1.5 was used to 
obtain two images. The mean squared error of the two 
images was minimized to further optimize the decoder. 
The significant a dvantage o f u sing t his t echnique is 
that we can enhance the dataset during the training 
procedure itself by sampling different noises and thus 
synthesizing large number of image sets from each 
prompt.

Step Distillation Step distillation is a technique that 
has become popular in the last few years. It mimics 
a teacher-student dynamic where we reduce the infer-
ence steps by distillation of the the teacher model to a 
student model that runs on fewer steps [8]. The creators 
of the SnapFusion model made a distillation pipeline 
consisting of 3 steps. They employed a step distillation 
approach on SD-v1.5, obtaining a U-Net with 16 steps 
that achieved performance comparable to a 50-step 
model. The direct distillation method from a 32-step 
SD-v1.5 was chosen over a progressive approach, as 
empirical observations indicated superior results. Ad-
ditionally, the same distillation strategy was applied to 
derive a 16-step efficient U-Net, and ultimately, a final 
8-step efficient U-Net was obtained by distilling from 
the 16-step SD-v1.5. They achieved this by mixing

 



Figure 3: Some example 512x512 images [5] generated by the SnapFusion model by mobile devices in under
2 seconds

Furthermore, multi-head attention is employed across
the component models in Stable Diffusion to speed up
the inference process. After all these optimizations, the
model was successful in generating a 512x512 image
in 15 seconds after 20 inference steps of the model.
With the new release of Snapdragon 8 Gen 3 and using
knowledge distillation teacher-student techniques. This
creates a smaller student model which does not need
the same training pipeline as the teacher.

Advanced Quantized Diffusion System with
TensorFlow Lite (AQDS)

This research was focused on deploying SD v-
2.1 using TensorFlow Lite framework [10], which is
compatible with both iOS and Android. They were
successfully able to generate 512x512 images on Sam-
sung Galaxy S23 in around 7 seconds. While the
TFLite GPU delegate accelerates the majority of Stable
Diffusion operators, it fails to delegate even officially
supported operators when the input activation size is
big. To solve the incomplete GPU delegation, they
offer three techniques that include changes to the
model’s computation network.

Converting Fully Connected Layers of the U-
Net into Equivalent Convolution Layers There
are multiple fully connected layers with large inputs
in the spatial transformer blocks of the denoising U-
Net network. These layers often fail to be delegated, so
we can convert them into equivalent convolution layers
by changing FullyConnected operators into Conv2D
operators everywhere.

Serialization of Conv2D Layers It was observed
that due to its enormous input and output, the 3x3

convolution layer in the denoising network was unable
to be delegated using the OpenCL backend. Serializing
the Conv2D operator can fix this problem by lower-
ing activation sizes, but it comes at the expense of
many kernel calls. The smallest serialization factor is
selected to prevent unnecessary overhead.

Broadcast Free Group Normalization In the
TFLite, group normalization is represented as a com-
putation graph composed of fundamental operators
such as “Mean,” “Square,” “Rsqrt,” and “BroadcastTo”
rather than as a single operator. However, because the
TFLite GPU delegate does not enable BroadcastTo, the
implementation of the group normalization layer must
be modified. When the activations are 4-dimensional or
lower tensors, the TFLite converter does not generate
an explicit BroadcastTo operator. As a result, they
restructured the group normalization layer so that the
dimensions of the activation tensors are no more than
four.

Other methods included GELU (Gaussian Error
Linear Unit) approximation to make it more numer-
ically stable, a pipelined execution technique where
the denoising network is kept in memory during the
execution for the entire duration, the text encoder
and picture decoder are loaded alternatively via a
child thread that runs concurrently with the main
thread. Additionally, to minimize total memory usage,
quantization and pruning techniques were applied to
the pre-trained model. The resultant memory usage of
each component in the proposed pipeline is shown in
Figure 4. Since mobile GPUs do not support integer
matrix multiplications, the activations are performed
using float16. However, to minimize model size, the
authors quantized the weights into 8-bit precision;



tional demands of existing models for text-to-image
generation often limit their practicality for many real-
world problems.

BK-SDMs can be used for personalized generation
with DreamBooth fine-tuning. Comparing the results
of DreamBooth fine-tuning across various pre-trained
models illustrate that BK-SDMs can preserve upto
95% to 99% performance compared to regular SDMs
with the added advantages of reduced fine-tuning cost
and number of parameters. Recent research on efficient
text-to-image generation has primarily focused on re-
ducing the number of sampling steps and carrying out
network quantization. However, this model proposes
a different approach that uses classical architectural
compression to reduce the computational demands of
SDMs.

In conclusion, this model presents a new approach
to efficient text-to-image generation that uses classical
architectural compression to reduce the computational
demands of SDMs. The authors demonstrate that
BK-SDMs achieve competitive results against larger
models and can be used for personalized generation
with DreamBooth fine-tuning. They also highlight the
importance of distillation-based pre-training for the
performance of their method. The authors aspire for
their work to encourage further research on the topic
of structural compression in large diffusion models.

LLMCad Inference Architecture
A significant obstacle to LLM (Large Language

Models) scalability on mobile devices is the mem-
ory wall, which causes prolonged inference delay
by repeatedly releasing and loading model weights.
Users are forced to pick between emergent ability and
real-time generation due to this memory wall, which
impedes the scaling law. For on-device generative NLP
tasks, LLMCad is the first efficient inference engine
that tackles this issue by delegating majority portion
of the tokens to smaller real-time LLM that can be
fit entirely within the device’s memory [12]. LLMCad
uses a special kind of model cooperation known as
“generate-then-verify,” which guarantees quick veri-
fication without sacrificing correctness. Compared to
sequential token generation, this method offers two
crucial advantages: quicker verification and no com-
promise in accuracy. This was achieved by three tech-
niques:

Modifying Token Tree Generation and Verifica-
tion Instead of doing verification linearly, it takes a

Figure 4: Memory usage of various components in 
the proposed AQDS pipeline

consequently, the weights were converted from 8-bit 
integers to 16-bit floating p oints b efore b eing used 
in the algorithm. Structured pruning was also used to 
reduce memory needs on large convolution layers.

BK-SDM: Architecturally Compressed Stable 
Diffusion

This presents a new approach to efficient text-to-
image generation called Block-removed Knowledge-
distilled Stable Diffusion Models (BK-SDMs). It pro-
poses that classical architectural compression can be 
used to reduce the computational demands of Stable 
Diffusion models (SDMs) for general-purpose T2I 
synthesis [11].

This architecture showcases the effectiveness of 
classical architectural compression in general-purpose 
text-to-image synthesis by introduction of BK-SDMs 
which removes several of the attention and residual 
blocks from the U-Net of SDMs for the favor of 30 
percent reduction in parameters. The results showcase 
the compact models to be still competitive with the 
larger multi-billion parameter models on the zero-shot 
MS-COCO benchmark. Distillation-based pre-training 
for the performance of BK-SDM is essential. Without 
the knowledge-distillation block, the models either 
fail in generating the subject of the prompt entirely 
or cannot consistently preserve the identity features. 
Distillation proves to be a crucial component for this 
technique, which enables robust pre-training even un-
der highly constrained environments. This framework 
presents an innovative method for efficient text-to-
image generation that complements the previous works 
in diffusion models. Text-to-image generation remains 
a challenging task that involves generating realistic 
images from textual descriptions. Its capabilities hold 
significant p otentials i n t he a reas o f n atural language, 
computer vision and robotics. However, the computa-

 



Architecture Authors Base Model Quantization Techniques Deployed Platform Inference Speed

OLDN Chen et al. [6]
Stable
Diffusion
(v1.4)

• Group normalization
• Partially fused softmax
• Flash attention
• Winograd convolution

• Samsung S23 Ultra
• iPhone 14 ∼ 15 sec

ANOT Li et al. [5]
Stable
Diffusion
(v1.5)

• U-Net optimization
• Efficient image decoder
• Step distillation enhancements

• iPhone 14 Pro ∼ 2 sec

RSCA Hou et al. [9]
Stable
Diffusion
(v1.5)

• FP32 to INT8 quantization
• AIMET post-training quantization
• Adaptive rounding (AdaRound)

• Snapdragon 8 Gen 2
Mobile Platform ∼ 7 sec

AQDS Choi et al. [10]
Stable
Diffusion
(v2.1)

• Serialization of Conv2D layers,
• Broadcast-free group normalization
• Fully connected to Conv2D conversion

• Samsung Galaxy S23 ∼ 7 sec

BK-SDM Kim et al. [11]
Stable
Diffusion
(v1.5)

• Residual and attention block removal
• Distillation-based pre-training
• Network quantization

• General Purpose
Improved
over
baseline

LLMCad Xu et al. [12]

Various
GPT-
based
models

• Token tree generation
• Self-adaptive fallback
• Fine-tuning generative pipeline

• Jetson TX2
• Xiaomi 10/11

9.3x
faster
than
baseline

Table 1: Comparative overview of model architectures and optimization strategies

different approach. Due to the token tree it employs,
any token can have several possible successor tokens.
The system makes use of modules such as a non-
autoregressive token tree verifier, a tree decoder, and
a confidence-based branch pacer.

Self Adaptive Fallback If a memory-resident LLM
issues an erroneous token, this strategy will be im-
mediately implemented. The approach evaluates the
generating capabilities using past data and uses a more
precise indicator known as cumulative uncertainty.

Fine-tuning Speculative Generation Pipeline To
prevent the disruption of the regular verification pro-
cess, LLMCad incorporates a fine-tuned pipeline that
limits speculative generation only to instances where
loading target LLM parameters remain below the
memory upper bound. This approach stems from the
insight that the verification process may not always
consistently detect the errors and thus allow the spec-
ulatively generated tokens to be utilized effectively.

The performance of LLMCad was evaluated on
two IoT devices (Jetson TX2 and Jetson Orin NX) as
well on smartphones such as Xiaomi 10 and Xiaomi
11. LLMCad demonstrated speeds which were up to
9.3 times faster than the existing inference engines.
Additionally, it could reduce the average per-token
generation time by factors ranging from 2.9 to 9.3
seconds on IoT devices and 3.5 to 4.7 seconds on
smartphones, all while maintaining the performance
accuracy [12].

CHALLENGES IN SCALING OF
GENAI MODELS

Scaling down large generative models poses a
significant challenge primarily rooted in the scarcity
of computational resources necessary for effective
model execution. The intricacies of extensive gen-
erative models, particularly exemplified by architec-
tures like Generative Adversarial Networks (GANs),
demand substantial computational power. Deployment
of these models on resource-constrained devices, such
as smartphones and Internet of Things (IoT) devices,
becomes a formidable task due to processing power,
memory, and energy efficiency constraints.

Computational Bottlenecks
GenAI models are known for their complexity,

requiring substantial processing capabilities. This com-
plexity becomes especially apparent when attempt-
ing to run these models on devices characterized by
inherent limitations in processing power. Resource-
constrained devices, like smartphones and IoT devices,
possess finite memory capacities, and executing large
generative models can quickly exhaust these limits.
Additionally, the energy efficiency of these devices is a
critical concern, as continuous model computation for
real-time generative activities can lead to substantial
energy consumption, adversely affecting the device’s
battery life. Traditional approaches to mitigating these
challenges involve size reduction through techniques
such as pruning and quantization. However, simply
reducing the size of a generative model through prun-



Flow Lite-based models may experience incomplete
GPU delegation, limiting their effectiveness on specific
platforms. Consequently, the optimizations done for
scaling GenAI models must be done in a way that
ensures maximum compatibility and hardware inde-
pendence, which can be challenging due to the need
to fine-tune implementations for different hardware
specifications.

Table 2 presents a comprehensive overview of the
present challenges in the deployment of On-device
GenAI, what is the extent of their impact in the field,
and potential solutions to address them.

FUTURE RESEARCH AND
DIRECTIONS

In the context of On-device GenAI, several promis-
ing techniques relevant to the topic have emerged in
recent years. This section provides a detailed explo-
ration of some of the prominent of these topics.

1) Using adaptive model compression techniques
to dynamically adjust the model size and com-
plexity based on the device’s current compu-
tational resources and user needs. This can be
implemented by real-time monitoring of device
performance and user interactions to optimize
the model’s architecture on the fly using model
pruning, quantization, and weight sharing. This
could also solve the problem of cross-hardware
incompatibility for model optimizations.

2) Integration of neurosymbolic AI [13] with On-
device GenAI modules to provide a robust
framework for reducing reliance on large-scale
neural networks. The hybrid approach of using
deep learning with neural networks and symbolic
reasoning for reasoning tasks could help signifi-
cantly by improving instructability, optimizing
resource usage, and increasing interpretability.
This provides an effective means to reduce the
model size without sacrificing accuracy, making
it ideal for resource-constrained devices.

3) Federated learning 2.0 which combines privacy-
preserving techniques such as differential pri-
vacy and homomorphic encryption [14], opens
up new opportunities for on-device training, al-
lowing AI models to evolve locally while keep-
ing user data secure. Using differential privacy,
we can introduce noise into datasets during train-
ing, ensuring that individual data points cannot
be reverse-engineered or identified. At the same

ing and quantization often results in a trade-off with 
accuracy. The loss of data or insufficient representation 
due to these size reduction techniques can compromise 
the model’s capability to synthesize high-definition 
images, undermining the very purpose of deploying 
such models.

Achieving Low-Latency Inference Times
Real-time applications require constant model 

computations. However, the associated energy con-
sumption can be detrimental to the device’s battery 
life, especially in the case of edge devices. Exploring 
hardware acceleration solutions enables us to strike a 
balance between computational demands and energy 
conservation. In the context of on-device deployment, 
this challenge extends to model updates and adaptabil-
ity, which must be judiciously balanced against the 
constraints of limited bandwidth and storage capaci-
ties inherent to these devices. Recent studies on the 
implementation of scaled-down GenAI models have 
been focused on the Stable Diffusion model, which 
is a Denoising Diffusion Probabilistic Model (DDPM) 
based model [6]. The main challenge faced in scaling 
down was reducing the number of iterative denoising 
steps.

Maintaining Accuracy and Performance During 
Model Compression

The techniques of knowledge distillation, quanti-
zation and pruning play a crucial role in minimizing 
the size and complexity of generative models to make 
them more viable for on-device applications. However, 
these techniques can lead to a reduction in model 
accuracy or the output quality. For instance, when 
applying post-training quantization (e.g., AdaRound), 
maintaining accuracy while significantly r educing the 
model’s size remained a key technical challenge. Mod-
els like BK-SDM (Architecturally Compressed Stable 
Diffusion) reduce the number of attention and residual 
blocks, resulting in reduced latency, but there is always 
the risk of compromising image quality.

Handling Diverse Hardware Architectures
The heterogeneity of edge devices, ranging from 

smartphones to IoT devices to specialized accelerators 
like TPUs and Neural Engines, introduces yet another 
challenge. The model optimizations done specific to 
one hardware platform may not carry over well on 
another due to differences in architecture, processing 
power, and available memory. For instance, 
Tensor- 



Challenge Impact Potential Solution

Computational bottlenecks in
resource-limited environments

Limits the ability to run
complex AI models efficiently
on edge devices

Hybrid AI architectures that offload
heavy computations to the cloud when
needed

Achieving low-latency
inference for real-time
applications

High latency degrades user
experience in AR/VR, gaming,
and live applications

Adaptive AI systems that dynamically
adjust model complexity based on real-
time conditions

Memory optimization for
large models on edge devices

Large models quickly exhaust
limited device memory and storage

Neurosymbolic AI to reduce reliance on
large-scale neural networks

Energy efficiency and battery
constraints in On-Device AI

AI models drain battery life,
reducing device longevity

Dynamic Voltage and Frequency Scaling
(DVFS) and energy-aware scheduling
algorithms

Preserving model accuracy
during compression and
pruning

Compression techniques often lead
to reduced model accuracy and quality

Federated learning 2.0 with techniques
like differential privacy and distillation

Hardware compatibility
and platform-specific
optimization

Models optimized for one hardware
platform may not work efficiently on
others

Hardware-software co-optimization with
custom AI-specific accelerators for edge
devices

Maintaining real-time
responsiveness across
complex workloads

Delays in inference affect performance
in applications requiring continuous
processing

Speculative execution pipelines and multi-
core processing optimizations

Scaling Large Language
Models (LLMs) on mobile
and edge devices

LLMs have a large memory footprint,
creating performance delays

Better token pruning and model quantization
to reduce memory usage without sacrificing
performance

Securing data privacy
without compromising
performance

User data privacy is a concern when
AI is processed locally

Privacy-preserving techniques like homomorphic
encryption and differential privacy

Table 2: Comprehensive overview of related challenges, their impact on advancement of on-device GenAI, and
potential solutions

time, homomorphic encryption techniques allow
computations to be performed on encrypted data
without needing to decrypt it first. This en-
sures that sensitive information remains secure
throughout the training process.

4) Optimization Algorithms for Enhanced Mo-
bile Performance Advancements in hardware-
software co-optimization, such as the design of
next-generation AI-specific hardware accelera-
tors tailored to generative models, could help in
further enhancing computational efficiency and
open up possibilities for deploying even more
sophisticated AI models on edge devices.

CONCLUSION
In the process of scaling down models, a dis-

cernible pattern emerges, characterized by a set of
common steps applicable across various models. No-
table techniques include employing the GELU activa-
tion function, implementing Group Normalization, in-
corporating Winograd convolutions, undertaking chan-

nel pruning, and leveraging Step Distillation meth-
ods. Particularly in models structured akin to U-Net,
the optimization algorithm utilized in the SnapFusion
model during U-Net training proves to be an effective
starting point. Furthermore, crafting compatible mod-
els involves implementing optimizations akin to those
discussed in SD-v2.1, especially when utilizing the
TensorFlow framework, presenting a promising avenue
for exploration. Despite these advancements, a signif-
icant limitation surfaces — the optimal performance
of these techniques is often contingent on devices
equipped with robust GPUs. With the release of the
new Snapdragon 8 Gen 2 and 3 by Qualcomm, we
can expect more powerful edge devices in the future,
which will raise this challenge.
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