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Abstract— We consider a general input queued M Xx N
switch operating in continuous time. Analysis of such
switches is important in the context of IP switches where
the packet arrival process and packet lengths are drawn from
continuous distributions. An approximate model to obtain
the delay throughput characteristics of this switch is de-
veloped. The model is general enough to allow non uni-
form arrival rates, routing probabilities and output evacua-
tion rates. After developing the general model, we consider
N x N switches with uniform arrivals, speedup in the switch
to allow multiple evacuations from input head-of-lines by an
output and also the effect of hotspots in the output. All our
analytical models are compared against simulation models.
We also comment on some of the unexplained results in [3]
where the first such system was considered.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper we consider space division packet switches
switching variable length packets. Packet lengths and in-
terarrival times are assumed to be random and drawn from
continuous distributions. Such switches occur in processor
memory interconnections in multiprocessor systems [1] and
with the emergence of IP switching [6], such a continuous
time analysis of space division packet switches becomes rel-
evant and important. In [3] Fuhrman presents an analysis
of such switches by considering a M x N crossbar switch
with variable length packets as inputs. Using a satura-
tion analysis with i.i.d. Poisson arrival processes at each
node and uniform routing assumptions it is shown that the
maximal throughput per port is M/(M + N + 1). A state
dependent server model to obtain the service rate when
there are i packets in the system and the use of this to
model the switch as an M/M/1 queue is also given in [3].
For fixed packet lengths and slotted operation of the switch
(with typically slot size equal to packet length), a discrete
time analysis is possible. In [8] Patel analyses switches
with no buffers under Bernoulli arrivals where output con-
tention is resolved by dropping all but one of the contend-
ing packets. The maximum throughput under this model is
1—-1/e =~ 0.63. In [5], Karol et al show that the saturation
throughput of an input queued switch is 2 — /2 &~ 0.586.
Output queued switches can provide a throughput of 1.0
but this requires that a M x N switch operate at M times
the line rate. To reduce this increased complexity and ob-
tain throughput close to that of an output queued switch,
two alternatives are available - in each slot switch pack-

Biplab Sikdar
Dept. of ECSE
Rensselaer Polytechnic Institute
Troy, NY 12180 USA
Ph: +1-518-276-8289
bsikdar@networks.ecse.rpi.edu

ets from head of lines of upto L inputs to an output [7],
or operate the switch fabric at L times the line rate [2].
For a given L, the latter performs better than the former
method.

In this paper, we consider an unslotted M x N input
queued packet switch operating in continuous time. Pack-
ets arrive at input port i according to a Poisson process of
rate \; and choose a destination j with probability p;;. The
rate at which a packet is evacuated from an input queue
by output port j is u;. p; is the line rate on output port
j and there is no queueing at the output. Our models can
be easily generalized to relax this assumption but we will
not pursue it in this paper. Service from the input queues
is FCFS. When a packet moves to the head of its queue,
if its destination is busy, the packet will wait at the head
of the input queue till the destination output port is free
and chooses to evacuate the packet. When an output port
finishes service, of the packets that are waiting at the head
of the queues of the inputs, the packet that was blocked
first is served first. Service in random order, round robin
or processor sharing disciplines are also possible but we do
not investigate them. Finally, the packet switch is assumed
to be internally non blocking. We will be drawing parallels
with the results from a discrete time analysis of an input
queued fast packet switch with Bernoulli arrivals of rate A;
at port ¢ and unit packet length.

The arrival rate to each output port, A; and the load on
output port j, p;, are given by

M A
Aj = Nipij pj==—* (1)

P K
In Section II the analytical model will be developed us-
ing results from the analysis techniques used in queueing
networks with finite buffer nodes. Section III extends this
analysis to the case where the output ports are capable of
simultaneous evacuation of multiple packets like the dis-
crete time switch of [7]. Section IV investigates the effects
of hotspots on the switch performance. In Section V we
conclude by commenting on the following two observations
made in [3]. Once a packet moves to the head of the input
queue, it enters into a virtual queue corresponding to that
of the destination output port. This queue could have a ser-
vice discipline other than FIFO. The analytical model of
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Fig. 1. Time diagram for the sojourn time in the switch. a, repre-

sents the nth arrival to the input queue and all times shown in
this figure correspond to this packet.

[3] shows them to be equivalent but the simulation results
clearly show that FIFO has a better delay performance. We
explain this observation with our analytical model. Also,
in [3] it is conjectured that the switch performance is sym-
metric in M and N. We comment on this conjecture too.

II. ANALYTICAL MODEL

The approximate analytical model that we develop here
is based on the analysis techniques of feedforward open
queueing networks with blocking [9]. Assume that the
M input nodes have infinite buffer capacity. An arriving
packet has to wait in two queues. First it has to wait in the
input queue till it moves to the head of the line. Second, at
the head of line (HOL), it has to wait in a virtual queue of
the output port till its evacuation by the destination out-
put port begins. It is easy to see that the total delay at
the HOL is the service time of the input queue. Therefore
we first model this waiting time.

Consider output port j. It has room for only the packet
that is being evacuated. However, the HOL positions at the
M input queues can contain a packet meant for output j
which are waiting for the port to become free. These pack-
ets are served in FCFS manner. Since, at any given time,
at most M — 1 such packets may be waiting for a service
completion at output port j, we can model the output port
as a M/M/1/M queue. The approximation here is that the
arrival process to the virtual queue is assumed to be Pois-
son which is not true when M is finite. The throughput of
output port j is A;. But the queue has finite buffers and
the “arrival rate” corresponding to this throughput, let us
call this the effective arrival rate A;, is obtained by solving
for A} in the equation
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where p;- = 2—; The term in the square brackets in the first
equality corresponds to the probability that an arriving
packet into an M/M/1/M queue is not blocked.

Once a packet moves to the head of the input queue,
the time it spends there has two components; the blocking
delay, i.e., the time until the output starts evacuating it
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Fig. 2. Phase-type distribution for blocking delay of a packet at head-
of-line of input port ¢ and destined for output port j. A k-stage
Erlangian is encountered with probability m;;(k), the probability
that there are k packets in the “queue” of output port j.

and the time taken for evacuation. The service time at the
output is considered as part of the time spent at the head
of the input queue because until the packet is evacuated by
the output, subsequent packets do not move to the head
of the queue. Thus the sum of the blocking delay and the
evacuation time at the head of the input queue corresponds
to the service time in that queue. (See Figure 1.) Thus the
input queue is seen to be a M/G/1 queue with service time
distribution given by the distribution of the sum of the
blocking delay and the evacuation time. The waiting time
for a packet in the input queue depends on this service
distribution. If we obtain the first and second moments of
this service distribution, we can use the Pollaczek-Khinchin
formula to obtain the delay in the input queue. The total
delay for a packet will be the sum of this delay, the blocking
delay and the transmission delay.

Let us now obtain the blocking delay experienced by a
packet whose destination is j and is at the head of input
queue i. Let 0;(k) be the probability that there are k pack-
ets that are either in service at output port j or waiting
at the HOL of the input queues. Since the “queue” corre-
sponding to the output port j has been approximated by
a M/M/1/M queue,

(1 - pj)(p))"
0.(k) = —_Pi)\Pj) fork=0---M
(k) 1—(p;.)M+1 or 0 (3)
mj(k), the probability that a packet moving to the head
of an input queue and wanting to go to output j sees k
packets ahead of it is
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for 0 < k< M—1
(4)

m;;(k), the probability that a packet moving to the head of
input queue 7, and wanting to go to output j sees k packets
ahead of it, is given by

mij (k) = pijm; (k)

When a packet enters the “queue” at output port j and
sees k packets ahead of it, it has to wait for the evacuation
of these packets before it can begin its service and its wait-
ing time is a k stage Erlangian distribution (sum of the &

fork=0---M—-1 (5



independent, exponentially distributed evacuation times).
Thus the blocking delay has a phase type distribution like
that shown in Figure 2. The first and second moments of
the blocking delay at input queue ¢ of the packets meant
for output port j, B;; and B?j respectively, are

M1 M1
k — k(k+1
B = Z i (k) — B} = Z Tij(k)i( 3 ) (6)
k=1 Hi k=1 Hj

The first and second moments of the blocking delay at input

i are
N . N o
Bi=) B B} =) By (7)
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The time spent at the head of the input queue is the sum of
two independent random variables - the blocking delay with
a phase distribution described earlier and the evacuation
time with an exponential distribution. Thus the first and
second moments of the service time for a packet at the head
of input queue i, X; and X 2 respectively, are

N
X = Bi+Y X
Pl
X? = B?+2B D (8)

The sojourn time in the switch for an input packet at
port i, D;, is (from the Pollaczek-Khinchin formula)

X X? &
i = +B;i+ )Y 2 9
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The maximum arrival rate that input port ¢ can support is
obtained by solving for \; in \; X; = 1.0.

Let us now consider the special case of an N x N switch
with p;; = % for all 4,4; A; = A for all ¢ and p; = 1.0 for
all 7. The throughput from each output port is A. The
effective arrival rate corresponding to this throughput, A’,
is obtained by solving
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After simplification, the following will be the expressions
for Wij(k‘), Bi, B?, Xi, Xlz and Dl
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N Continuous Continuous | Discrete
Time (Approx) | Time (Exact) | Time
1 1.000000 1.00 1.0000
2 0.666667 0.667 0.7500
3 0.576849 0.600 0.6825
4 0.540642 0.571 0.6553
5 0.521880 0.556 0.6399
6 0.512015 0.545 0.6309
7 0.506655 0.538 0.6234
8 0.503694 0.533 0.6184
00 0.500000 0.500 0.5858
TABLE I

MAXIMUM ACHIEVABLE THROUGHPUT FOR VARIOUS VALUES OF V.
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Fig. 3. Delay-throughput and blocking delay characteristics from
analytical and simulation models for different values of N.
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Maximum throughput is obtained by solving for A in
AX = 1.0. Table I, shows the maximum throughput of the
continuous time input queued switch as obtained from our
analytical model and the formula of Fuhrman [3], M /(2M —
1). Throughput of the discrete time switch [5] is also shown
. The maximum error between ours and Fuhrman’s model
is about 6%.

Figure 3 shows the total delay and the blocking delay for
various values of IV from analytical and simulation models
as a function of A. Note that the difference between the an-
alytical and simulation models improves for both the total
and the blocking delay as the switch size increases.

As N — o0, the M/M/1/N queue corresponding to each



output port becomes an M/M/1 queue with arrival rate A
and service rate 1.0. We now show that our delay model is
exact for N — oo. The arrival process to the input queue is
Poisson. Since each packet chooses a destination indepen-
dent of the packets before it, its blocking delay at the head
of the input queue is independent of the blocking delay of
the others before it. Thus the “service times” are indepen-
dent and the input queue is an M/G/1 queue. The arrival
process at the server of this queue of packets destined for
a tagged output port corresponds to one stream of arrivals
into the tagged port. It is easy to see that the interarrival
times are i.i.d. with a general distribution with arrival rate
A/N. The total arrival process into the tagged port is a
the superposition of N such streams. As N — oo, this is
Poisson with rate A [4]. Thus, as N — oo the blocking
delay distribution is equal to the distribution of the total
delay in an M/M/1 queue and hence this is the service time
distribution for the input M/G/1 queue. Thus the input
queue can be characterized exactly as an M/G/1 queue in
which the service time depends on the arrival rate and its
first and second moments are given by the first and second
moments of the average time spent in an M/M/1 queue.
Thus for the input queue to be stable, A should be less
than the reciprocal of the average time spent in an M/M/1
queue with arrival rate A and service rate 1.0. This yields
the condition, A < 1 — X or A < 0.5 for stable queues at
the input.

III. EVACUATING MULTIPLE PACKETS TO AN OUTPUT

Throughput can be increased by simultaneously evacu-
ating multiple packets by the output ports. Thus, for a
speedup factor of m, each output port may be treated as
an m server system. If there are more than m HOL packets
at the inputs destined for the same output, m of them are
served on a FCFS basis and others are blocked. Note that
this speedup is similar to that of [7] rather than that of [2]
in that multiple input queue HOLs are served simultane-
ously rather than the outputs evacuating faster.

Consider output port j of an M x N input queued switch
with a speedup factor of m. It has room for m packets
corresponding to the m servers. It easily seen that output
port j can be modelled as a M/M/m/M queue. As in
Section II, the approximation involved is that the arrival
process is assumed to be Poisson, which is not true when
M is finite. The effective arrival rate to this finite buffer
queue, A}, is obtained by solving for A} in the equation

[(p’j)Mmm}
m!

Aj=Aj[1- (10)
—1 (mp))F M (p))kmm™
[ ;cn:o k! +Ek:m m! ]

where p/; = n?;] Proceeding as in Section II, 6;(k) and

mj(k) are now given by

Speedup Factor

N 2 3 4

Contin | Discr | Contin | Disc Contin | Disc

4 | 0.8670 - 0.9795 - 1.0000 -

8 | 0.8304 - 0.9616 - 0.9934 -

16 | 0.8284 - 0.9611 - 0.9934 -

32 | 0.8284 - 0.9611 - 0.9934 -

oo | 0.8284 | 0.8845 | 0.9611 | 0.9755 | 0.9934 | 0.9956
TABLE 1I

MAXIMUM THROUGHPUT FOR VARIOUS SPEEDUP FACTORS. RESULTS
FOR THE DISCRETE TIME SWITCH ARE FROM [9]

P, (mpy)*
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k<m-1
mi(k) =

m—-1<k<M-1

where Py, the probability that the M/M/m/M queue is
empty, is given by

-1

m—1 k M 1 \k ooy
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Proceeding along the lines of the analysis in Section II,
m;;(k) is obtained using the expression in Eqn 5, B;; and

M—1 M-1

mij(k)—  BE =Y mj(k)

ML
Hi k=m

k(k+1)
k=m (muj)Q
and B; and B? are obtained from Eqn 7. As before, each
input queue can be modeled as a M/G/1 queue whose ser-
vice time is given by the sum of the blocking delay and the
evacuation time by the output port. The first and second
moments of the service time for a packet at the head of
input port 4, X; and X? are obtained using Eqn 8 and the
average delay for an input packet is obtained using Eqn 9
and the maximum arrival rate that input port ¢ can support
is obtained by solving for \; in \;X; = 1.0.

In Table IT we show the maximum throughput with var-
ious speedup factors for different switch sizes. For compar-
ison, we have also shown the maximum throughput for a
discrete time switch with NV = oo as obtained in [7]. Just
as in the case of the discrete time switch, a speedup of
4 is needed to achieve 99% throughput. It may be men-
tioned here that doubling the evacuation rate can double
the throughput. In Figure 4 we plot the throughput delay
characteristics for various values of IV from analytical and
simulation models for speedup factors of 2 and 4. It may be
observed that for a speedup of 4, the delay curve resembles
that of the M/M/1.

IV. HoTsPOoT ANALYSIS

For this analysis we consider the case where the incom-
ing packets select a particular output with higher proba-
bility than the others. Let packet arrivals at input i form a
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Fig. 4. Delay-throughput characteristics of input queued switches in
continuous time with speedup. Results from analytical and sim-
ulation models are shown for different values of N with speedup
factors of 2 and 4.

Poisson process with rate A\; and choose destination j with
probability p;;. A hotspot at h is defined as follows

for j #h

N
B o ;
Dij —{ vB forj=h,y>1 and Zp” =1 for all i

j=1

As v increases, contention for the hotspot output port h
increases and hence the blocking delay for the HOL packets
in the inputs increases. The increased blocking delay in-
creases the “input service time” and hence the total delay
of all the packets. The delay and the maximum through-
put for this case can be obtained using the methods used
in Sections II and will not be described here. In Figure 5
we show the total delay and the blocking delay for vari-
ous values of N from analytical and simulation models for
v = 2 as a function of A. Maximum throughput saturates
at about 0.4 as compared to 0.5 without hotspots.

V. CONCLUSION

In this paper, we have presented a generalized analytical
model for an input queued switch operating in continuous
time. Although we have presented the analysis for switches
with infinite input buffers our model can be easily extended
to analyse finite buffer switches.

From our analysis we can explain why the FCFS service
of the virtual queue of the output gives the least average
total delay for an input packet. The total delay in the vir-
tual queue is the service time of the input queue and FCFS
has the minimum variance among all the service disciplines.
Thus the variance of the “service time” of the input queue,
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Fig. 5. Delay-throughput characteristics and the blocking delay of
input queued switches in continuous time with hotspots. Results
from analytical and simulation models are shown for v = 2 for
different values of N.

which is an M/G/1 queue, is minimum for FCFS service
of the virtual output queue. Since the mean delay in an
M/G/1 queue depends on the mean and varaince of the ser-
vice time, this gives the minimum mean total delay. Also,
from our models it is clear that the conjecture that the
performance of an M x N switch is symmetric in M and N
is obviously true for the maximum achievable throughput
but not for the delay analysis.
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