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Abstract—A Markov based unified model for an energy har-
vesting node in a body sensor network is presented. Using the
presented model, the probability of event loss due to energy run
out is calculated. The results provide insight into the performance
of energy harvesting nodes in a body sensor network as well as
design requirements for such devices.

I. INTRODUCTION

Body Sensor Networks (BSNs) [1] are envisioned to revo-
lutionize many fields such as health monitoring and personal
health care. By connecting multiple real time sensors and actu-
ators to each other and to off-body communication networks,
these systems enable constant monitoring and data collection
as well as interaction with the human body. This capability
significantly advances many medical as well as non medical
applications and services [2]-[9].

The energy supply for the sensor nodes is one of the
major hurdles in the development and widespread deployment
of BSN technology [10]. The current state-of-the-art battery
technology does not provide sufficient energy density to allow
the implementation of body sensor nodes with acceptable
lifetime, cost, and form factor. The short lifetime of batteries
with reasonable cost and form factor means that they must be
replaced frequently. This is not only an inconvenience for the
user, but also, it reduces the reliability of the BSNs. Moreover,
for many applications where an in vivo (implanted) BSN node
is used, replacing the batteries is not an option.

The most promising approach to address the energy supply
problem for BSNs is energy harvesting (or energy scavenging)
[1][11]-[13]. In this approach the sensors are equipped with
an energy harvesting device that collects energy from ambient
sources such as motion, light, and heat. Energy harvesting
expands the design space of communication systems into a
new dimension. In presence of energy harvesting, the en-
ergy supply of a sensor node can no longer be described
with simple, deterministic models. Traditionally, either it is
assumed that the energy supply is unlimited, or that the energy
supply is monotonically decreasing with a fixed initial value.
Since energy harvesting sensors can replenish their supply of
energy, they require a much more sophisticated energy model.
Thus, in addition to the previously considered factors such
as channel models and traffic models, energy models must
also be considered as an essential factor in the design of
communication systems.

In this paper we will provide a unified model that combines
the energy model and the traffic model. Using this model
which describes the state of the system by including both the
harvesting state as well as the remaining energy supply of the
device, we provide an analysis of the probability of event loss
due to energy run out.

II. SYSTEM MODEL

In this section we will provide a discrete time model that
integrates the energy model and the traffic model. This model
allows us to analyze the overall system and obtain performance
metrics. These performance metrics will in turn tell us about
the reliability of the system and give us guidance regarding
the design requirements.

A. Energy Model

We assume that motion based energy harvesting is used, and
model the energy harvesting process with a two state Markov
chain. That is, we assume that the subject is in one of the
two activity states, namely walk and rest. We assume that at
the end of each time slot the subject will go from walk to
rest with probability r, and from rest to walk with probability
w. Consequently, the probabilities that the subject stays in
the walk or rest states are 1 − r and 1 − w, respectively.
Furthermore, we assume that the energy harvesting device will
harvest energy with an average rate (power) of ρw when in
the walk state and does not harvest any energy when in the
rest state.

Given this model, the average number of time slots that the
subject stays in the walk state is given by

∞∑
k=1

k(1 − r)k−1r =
1
r
. (1)

Similarly, the average number of time slots that the subject
stays in the rest state is given by 1

w . Moreover, it can easily
be shown that the steady state probability that the subject is
in the walk and rest states are μw = w

r+w and μr = r
r+w ,

respectively. Therefore, the average expected harvested power
will be given by ρ = w

r+wρw.

B. Traffic Model

We consider a simple traffic model. That is, we assume
that in each time slot, an event occurs with probability p.
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Fig. 1. Markov chain model combining energy model and traffic models.

Furthermore, we assume that each event has a total energy
cost of E0, which includes the energy consumed by the sensor
or actuator, the energy consumed for signal processing and
the energy consumed for the transmission or reception of the
related data.

C. Overall System Model

To combine the energy and traffic models described above,
we consider the time unit to be equal to the length of the time
required to harvest enough energy for one event, given that
the subject is in the walk state. That is, we define the time
unit to be T = E0/ρw. Moreover, we assume that the total
battery capacity for the device is equal to B = NE0.

With this definition of the time unit, we can consider four
different cases for each time slot:

• The subject is in the rest state and an event occurs. In
this case, the energy level in the device will decrease by
E0, unless the device has already ran out of energy.

• The subject is in the rest state and an event does not
occur. In this case, the energy level in the device will not
change.

• The subject is in the walk state and an event occurs. In
this case, the energy level in the device will not change.

• The subject is in the walk state and an event does not
occur. In this case, the energy level in the device will
increase by E0, unless it has reached its maximum, B
(i.e. the battery is full).

We can then model the state of the device using a 2N state
Markov chain. The state of the device will represent its energy
harvesting state (i.e. walk or rest) as well as the amount of
energy stored in the battery. Such a Markov chain is depicted
in Figure 1. In this model, states 0 through N − 1 represent
the case where the subject is in the rest state. The subject is
in the walk state if the system is in states N through 2N − 1.
Furthermore, the amount of energy stored in the battery is
given by E = (n modN)E0, where n is the state number. In
other words, the battery is empty in states 0 and N , and is
completely full in states N − 1 and 2N − 1.

The components of the transition matrix P for this Markov
chain are given by

P0,j =

⎧⎨
⎩

1 − w j = 0
w j = N
0 otherwise

(2)

and

P2N−1,j =

⎧⎨
⎩

1 − r j = 2N − 1
r j = N − 1
0 otherwise

(3)

for states 0 and 2N − 1, and

Pi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − p)(1 − w) j = i
p(1 − w) j = i − 1
(1 − p)w j = i + N
pw j = i + N − 1
0 otherwise

(4)

and

Pi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(1 − r) j = i
(1 − p)(1 − r) j = i + 1
pr j = i − N
(1 − p)r j = i − N + 1
0 otherwise

(5)

for other states.

III. SYSTEM ANALYSIS

We are interested in finding the average probability that an
event is lost (i.e. is not sensed and reported), due to lack of
sufficient energy in the device. To find this probability, we note
that an event is lost if and only if the event occurs when the
device is in state 0. Note that when the device is in state N it
will collect sufficient energy during one time slot for the event.
When the device is in all other states, it has sufficient energy
stored in its battery. Therefore, we can write the probability
of event loss by

pL = π0 (6)

where πn denotes the steady state probability that the Markov
chain is in state n. Note that since this Markov chain is of finite
length, irreducible and non periodic, it has a steady state.

The steady state probabilities for all states can be obtained
using the eigen analysis of the transition matrix, P. That is, if
the eigen decomposition of the transition matrix is given by

P = V†ΛV (7)

then the columns of V, vk, k = 0, ..., 2N − 1, are the eigen
vectors of P and the components of the diagonal matrix Λ,
λk, k = 0, ..., 2N − 1, are its eigen values. Then the steady
state probabilities π = [π0, ..., π2N−1]T will be given by the



eigen vector corresponding to an eigen value of unity. That
is,π = vk0 , where λk0 = 1.

While this method provides a general solution for the steady
state probabilities, the computation of eigen analysis of the
matrix P quickly grows with N . The particular structure of
this Markov chain, however, allows us to derive a closed form
solution for the steady state probability π0. To solve for π,
we write the equilibrium equations for different combination
of states.

Considering a boundary containing the states 0 and N
(Figure 1, Boundary A), the equilibrium equation is

pwπ1 +p(1−w)π1−(1−p)(1−r)πN −(1−p)rπN = 0 (8)

or
pπ1 = (1 − p)πN . (9)

Also, the equilibrium equation for a boundary around states 1
and N + 1 (Figure 1, Boundary B) results in

pπ2 + (1 − p)πN − pπ1 − (1 − p)πN+1 = 0. (10)

Substituting (9) in (10) gives

pπ2 = (1 − p)πN+1. (11)

By continuing this procedure for states n and N + n for n =
1, ..., N − 1, we can conclude that

πn = aπN+n−1 (12)

where

a =
1 − p

p
. (13)

The equilibrium equation for a boundary around state n, where
1 ≤ n ≤ N − 2 (Figure 1, Boundary C) results in

[p(1 − w) + pw + (1 − p)w]πn − p(1 − w)πn+1

−prπN+n − (1 − p)rπN+n−1 = 0 (14)

By substituting (12) in (14) we get

[p + (1 − p)w − pr] πn

−[(1 − p)(1 − w) + pr]πN+n = 0 (15)

or
πN+n = bπn (16)

where

b =
p + (1 − p)w − pr

(1 − p)(1 − w) + pr
. (17)

Also, the equilibrium equation for a boundary around state
0 (Figure 1, Boundary D) results in

wπ0 − prπN + p(1 − w)π1 = 0 (18)

which using (9) becomes

wπ0 − [pr + (1 − p)(1 − w)] πN = 0 (19)

or
πN = cπ0 (20)

where
c =

w

pr + (1 − p)(1 − w)
. (21)

Finally, the equilibrium equations for a boundary around state
2N − 1 (Figure 1, Boundary E) result in

rπ2N−1 − (1 − p)(1 − r)π2N−2 − (1 − p)wπN−1 = 0 (22)

which using (9) becomes

rπ2N−1 = [p(1 − r) + (1 − p)w] πN−1 (23)

or
π2N−1 = dπN−1 (24)

where

d =
p(1 − r) + (1 − p)w

r
. (25)

By combining (12), (16), (20), and (24), we can have

πn = anbn−1cπ0 (26)

and
πN+n−1 = an−1bn−1cπ0 (27)

for 1 ≤ n ≤ N − 1, and

π2N−1 = aN−1bN−2cdπ0. (28)

Now we apply the constraint

2N−1∑
n=0

πn = 1, (29)

or

π0 +
N−1∑
n=1

anbn−1cπ0 +
N−1∑
n=1

an−1bn−1cπ0

+daN−1bN−2cπ0 = 1 (30)

which yields

π0 =
1

1 + c(a + 1)1−aN−1bN−1

1−ab + daN−1bN−2c
. (31)

IV. RESULTS

Figure 2 compares the probability of event loss obtained
from theory (Equations (6) and (31)) and those obtained from
Monte Carlo simulations. We have assumed that w = 0.005
and r = 0.045, which means that the subject is in the walk
state 10% of the time and in the rest state for 90% of the
time. Moreover, we have assumed that N = 20. We observe
that the simulation results and the theoretical results match
very closely.

Figure 3 presents the event loss probability versus nor-
malized battery capacity, N = B/E0. Once again we have
assumed that w = 0.005 and r = 0.045. We can see that
as expected larger battery capacities lead to significant drop
in the event loss probability. We observe that to achieve
event loss probability of 10−5 or better, we would require
a battery size of B ≥ 32E0 and B ≥ 99E0 for p = 0.01
and p = 0.03, respectively. Even battery sizes as large as
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Fig. 2. Comparison between theoretical and simulated probability of event
loss.

B ≥ 1000E0, however, will not be sufficient to reduce the
event loss probability near 10−5.

Figure 4 depicts the probability of event loss as a function
of w and w/(r + w). Here we have assumed that p = 0.01
and N = 20. Note that w/(r + w) represents the average
portion of the time the subject is in the walk state. Also, for
a given w/(r + w), the value of w will determine the average
frequency that the subject moves between rest and walk states.
We observe that spending a large percentage of the time in
the walk state alone is not sufficient to achieve low event loss
probability, if the rest/walk cycles are long. This is because a
long rest period will eventually consume the energy stored in
the battery and result in many event losses. Hence, we can see
that that to achieve low event loss probability, large values of
both w and w/(r + w) are needed.

V. CONCLUSIONS

In this paper we have presented a Markov based model for
energy harvesting nodes in body sensor networks. The pre-
sented model considers both the state of the energy harvesting
process as well as the remaining energy supply of the node
to determine the state of the node. A closed form solution for
the event loss probability is then derived from the presented
models. The results provide insight into the relationship be-
tween system parameters such as average harvested power and
average traffic rate and maximum battery capacity and give us
guidance to set the requirements for energy harvesting nodes
in a body sensor network.
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