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Abstract
As Information Technology (IT) infrastructures have become in-
creasingly complex to secure against accelerating cyber threats,
current threat detection approaches have been largely silos in na-
ture; security analysts in the environment are typically bombarded
with large volume of security alerts that often cause severe fatigues
and the possibility of judgement errors. This problem is further ex-
acerbated by the number of false-positives that analysts may waste
valuable time and resources pursuing. In this paper, we present
how intuitive graph-based machine learning can be used to address
the problem of alert fatigue and prioritize risky alerts to assist se-
curity analysts. The rationale and workflow of the proposed Graph
Analysis (GA) algorithm is discussed in detail, with its effectiveness
demonstrated by simulated experiments.

CCS Concepts
•Computingmethodologies→Machine learning; •Networks
→ Network algorithms; • Security and privacy→ Intrusion
detection systems.
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1 INTRODUCTION
With the size of IT infrastructures rapidly growing and more digital
assets inter-connecting in industry network, the impact of cyber-
crimes has also increased, with a rising expected damage cost of
$8 trillion globally in 2023 [1]. Advanced Persistent Threats (APT)
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are constantly evolving in sophistication, and large enterprises are
often targeted by cyber attackers. To combat these threats, threat
detection softwares such as Intrusion Detection System (IDS), are
widely deployed by enterprises to timely detect cyberattacks against
network systems. However, the IDSs generate a large number of
alerts that require further manual analysis by security analysts.
The redundancy and false positives in numerous security alerts
frequently results in severe lagging and weariness in daily opera-
tions of Security Operation Centers (SOCs). Hence, approaches to
partially automate security alert processing are strongly needed
for SOCs to resolve the alert fatigue problem and improve working
efficiency. In this paper, we propose a graph-based alert prioritizing
method, which is able to handle large amount of alert data, perform
effective correlation, and prioritize most severe alert groups for
security analysts.

This poster is structured as follows. The relevant existing graphi-
cal methods used in cyber defense research are described in Section
2. The proposed GA method for analysing network security logs to
tackle the alert fatigue problem is described in Section 3. Section 4
presents our experiments with simulated alert data and Section 5
concludes the poster.

2 RELATEDWORK
The use of graphical methods for analyzing security data has been
extensively researched [3]. The visualized relationship between
network events revealed by attack graphs provide insights into vul-
nerabilities, increasing the operational decision making efficiency.

CyGraph, a tool that constructs attack graphs to outline attack
paths, was introduced by the MITRE corporation. It is intended to
alleviate the burden on SOC analysts who must rely on multiple
tools and platforms for analysis. CyGraph works by combining and
correlating data from various sources to create a unified model.
The model is then transformed to a graph which highlights the
relationships between network attacks [4]. However, the discovery
of network asset clusters related to high-risk activities is not fully
automated, user defined query is required for various analysis tasks.

Similarly, researchers have also proposed a model that builds
attack graphs to highlight rare severe alerts and the alert paths [2].
The model is capable of condensing hundred-thousands of alerts
into less than hundred attack graphs that effectively illustrate how
the attacks happened. SOC analysts and red teams are potential
users for this tool to primarily obtain insights on attacker’s plan
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and monitor during training, respectively. However, the metrics for
attack graph interpretability are not applied and the threat level of
generated attack graphs from the model is not quantified.

While previousworks havemade valuable contributions to graph-
based security data analysis, limitations still exist. Our approach
builds upon their strengths and addresses these limitations by in-
corporating automatic graph analysis using machine learning and
security risk computation to derive more comprehensive results.

3 GRAPH-BASED ALERT PRIORITIZATION
The proposed GA algorithm is useful in prioritizing alerts in enter-
prise network systems. Based on the nature of network data, the
input network alerts are transformed into a network communica-
tion graph for preliminary analysis and visualization. Considering
the high volume and false positive rate of network alerts being pro-
cessed in SOCs, the algorithm collates network alerts with high sim-
ilarity to reduce the noise of alert data. Clustering is then performed
to group and prioritize alerts according to their threat level and
related cyberattack categories. The algorithm outputs subgraphs
containing network alerts of similar types, each with a severity
score attached. In the following sections, basic concepts and defi-
nitions used in the algorithm are discussed, followed by detailed
explanation of the algorithm.

3.1 Definitions and Concepts
Network alerts. Network alerts are security alerts triggered by
suspicious network communication from a source network host to
a destination network host. It is typically raised by Network Traffic
Analysis (NTA) softwares or Network-based IDS (NIDS). The NIDSs
extract information from network traffic packets and compare them
with the attack signature database to flag suspicious network activ-
ities as alerts. Network alert monitoring and analysis gives security
analysts better visibility of network traffic and effective detection of
potential network attacks. The GA algorithm allows alerts from dif-
ferent signature-based NIDS sources as input. The input alert data is
denoted as 𝐷 and each alert is denoted as 𝑑 ∈ 𝐷 . The common prop-
erties of the IDS alerts are source and destination network hosts,
timestamp, and alert-related metrics, including alert messages that
describe the detected suspicious network activity, signature id that
uniquely identifies a signature, and severity, quantifying the risk
level of alert, denoted by 𝑑.𝑠𝑟𝑐 , 𝑑.𝑑𝑒𝑠𝑡 , 𝑑.𝑡𝑖𝑚𝑒 , 𝑑.𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , 𝑑.𝑠𝑖𝑔_𝑖𝑑 ,
𝑑.𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, respectively in the algorithm.

Network communication graph. Since network alerts are di-
rectional network communications between two network hosts,
graphs are considered a suitable structure for visualizing and clas-
sifying alerts. We model a network communication graph as a
directional graph with parallel edges𝐺 = (𝑉 , 𝐸), in which𝑉 = {𝑣 ∈
𝑉 |𝑣 = 𝑑.𝑠𝑟𝑐 ∨ 𝑣 = 𝑑.𝑑𝑒𝑠𝑡, 𝑑 ∈ 𝐷} and 𝐸 = {𝑒 ∈ 𝐸 |𝑒.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 =

𝑑.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑑 ∈ 𝐷} (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 can be replaced by the properties
mentioned in network alert section). Hence, input alert data is
transformed to a graph such that each node represents a network
host and each edge represents a network alert between two hosts.

3.2 Graph Analytics Algorithm
Here, we present the GA algorithm with each algorithm component
explained in detail. The pseudo code of the algorithm is shown in
Algorithm 1.

Graph Construction. At the beginning of the algorithm, net-
work alerts from various NIDS sources are fused together and pro-
cessed by a normalization function to remove redundant or invalid
information, and converted into the desired alert format with above
mentioned properties. Next, the normalized alerts are transformed
into a network communication graph, as described in Section 3.1.

Alert Collation. It’s commonly observed in SOCs that security
alerts are overloaded with large incoming volume and frequency.
There exist a high false positive level and high information overlap
among multiple alerts of same source and destination. These irrele-
vant or repeated alerts can distract SOC operators and lower their ef-
ficiency in alert analysis. Our algorithm takes this into consideration
and develops the signature-based pairwise alert collation (line 5 to
line 15) to reduce alert data size and noises. For each (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘)
node pair, the messages, 𝑒.𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , of all alerts between them are
first extracted from the graph. These messages are then processed
into n-dimensional numerical vectors by cybersecurity-specific Nat-
ural Language Processing model𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 developed by [5]. These
vectors are clustered by the Density-based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm, which is robust to
outliers and useful for clustering spatial dataset. The 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, which
is the cluster radius, is set to 0.1 to ensure only alerts with high
signature similarity are grouped together. Next, each alert group
is collated into 1 collated alert, with updated time metrics captur-
ing the intensity and consistency of similar alerts, and updated
signature related metrics (line 12 to line 14). Subsequently, the
network communication graph 𝐺 ′ is reconstructed, with the same
network hosts as nodes, but fewer alerts with updated properties
between each pair of nodes due to collation.

Subgraph Generation. From the reconstructed network com-
munication graph, we aim to extract subgraphs that contain net-
work alerts related to similar network activities. By this approach,
the analysis of a certain suspicious network activity category can be
carried out on a small batch of network subgraphs instead of large-
volume uncategorized alert data, which improves alert analysis
efficiency. To extract subgraphs, DBSCAN algorithm is performed
again, but on all collated alerts (edges 𝐸′ in reconstructed network
graph) using alert properties listed on line 17. The clustering
output are collated alert groups with similar signature metrics, time
metrics and severity, which implies alerts related to similar network
activities. Finally, each subgraph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) is constructed from
a cluster of collated alerts (as edges 𝐸𝑖 ) with the alert endpoints
as nodes. To prioritize different types of network activity, each
subgraph is assigned a severity score, quantifying the overall threat
level of all alerts contained in the subgraph.

4 PRELIMINARY RESULTS
For preliminary experiment and analysis, trial runs using mock net-
work alert data were conducted and the efficiency of the proposed
GA algorithm was successfully verified. To simulate the network
alert volume, approximately 120,000 IT network alerts were gen-
erated by the website logs.io containing DDoS attack, VPN attack
and other suspicious network activities. It is observed that the alert
dataset has a relatively high false positive rate and repetitions simi-
lar to the alerts processed by SOCs. After the alert collation step,
the 120,000 input alerts were condensed into 56,982 collated alerts
with a reduction rate of 51.7%. The final output of the algorithm
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Algorithm 1: Graph Analysis
Input: Alert Dataset 𝐷

1 Initialize Graph 𝐺 = (𝑉 , 𝐸), 𝑉 ← ∅, 𝐸 ← ∅, define 𝑃 ← (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡, 𝑡𝑖𝑚𝑒,𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑠𝑖𝑔_𝑖𝑑, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) ; // Graph Construction

2 for 𝑑 ∈ 𝐷 do
3 normalize 𝑑 , 𝑑 ← (𝑑.𝑝 |𝑝 ∈ 𝑃);
4 𝑉 ← 𝑉 ∪ {𝑑.𝑠𝑟𝑐, 𝑑.𝑑𝑒𝑠𝑡}, 𝐸 ← 𝐸 ∪ {𝑒}, where 𝑒 ← (𝑒.𝑝 |𝑒.𝑝 ← 𝑑.𝑝, 𝑝 ∈ 𝑃);
5 Initialize source nodes 𝑋 ← {𝑥 |𝑥 ∈ 𝑉 ∧ 𝑑𝑒𝑔+ (𝑥) > 0}, Sink nodes 𝑌 ← {𝑦 |𝑦 ∈ 𝑉 ∧ 𝑑𝑒𝑔− (𝑦) > 0} ; // Alert Collation

6 Initialize graph 𝐺 ′ = (𝑉 ′, 𝐸′), 𝑉 ′ ← ∅, 𝐸′ ← ∅;
7 for (𝑥,𝑦) ∈ {(𝑥,𝑦) |𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 } do
8 Edges between (𝑥,𝑦): 𝑃𝐸 ← {𝑒 |𝑒 ∈ 𝐸 ∧ 𝑒.𝑠𝑟𝑐 = 𝑥 ∧ 𝑒.𝑑𝑒𝑠𝑡 = 𝑦};
9 Signature message list𝑀 ← [𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 (𝑒.𝑚𝑒𝑠𝑠𝑎𝑔𝑒) |𝑒 ∈ 𝑃𝐸], Perform DBSCAN Algorithm on𝑀 ;

10 for cluster 𝑖 , messages in cluster𝑀𝑖 in DBSCAN clusters do
11 𝑃𝐸𝑖 ← edges in cluster 𝑖 , 𝑇𝑖 ← [𝑒.𝑡𝑖𝑚𝑒 |𝑒 ∈ 𝑃𝐸𝑖 ] (sorted in ascending order), 𝑛𝑢𝑚_𝑎𝑙𝑒𝑟𝑡𝑠 ← |𝑇𝑖 |;

12 𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 ←𝑚𝑖𝑛(𝑇𝑖 ), 𝑞1← 𝑇𝑖 [
|𝑇𝑖 | + 1

4
], 𝑞3← 𝑇𝑖 [

3( |𝑇𝑖 | + 1)
4

], 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑞3 − 𝑞1
𝑞1 + 𝑞3 , 𝑠𝑝𝑎𝑛 ← 𝑞3 −𝑚𝑖𝑛_𝑡𝑖𝑚𝑒;

13 initialize collated edge 𝑒𝑖 , 𝑒𝑖 .𝑠𝑟𝑐 ← 𝑥 , 𝑒𝑖 .𝑑𝑒𝑠𝑡 ← 𝑦, 𝑒𝑖 .𝑡𝑖𝑚𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ← (𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛, 𝑠𝑝𝑎𝑛,𝑚𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑛𝑢𝑚_𝑎𝑙𝑒𝑟𝑡𝑠);
14 𝑒𝑖 .𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑠𝑒𝑡 (𝑀𝑖 ), 𝑒𝑖 .𝑠𝑖𝑔_𝑖𝑑 ← {𝑒.𝑠𝑖𝑔_𝑖𝑑 |𝑒 ∈ 𝑃𝐸𝑖 }, 𝑒𝑖 .𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ←𝑚𝑒𝑎𝑛( [𝑒.𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 |𝑒 ∈ 𝑃𝐸𝑖 ]);
15 𝑉 ′ ← 𝑉 ′ ∪ {𝑒𝑖 .𝑠𝑟𝑐, 𝑒𝑖 .𝑑𝑒𝑠𝑡}, 𝐸′ ← 𝐸′ ∪ {𝑒𝑖 };
16 Initialize Subgraph list 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ← [] ; // Subgraph Generation

17 Perform DBSCAN Algorithm on Collated Edge Data 𝐸𝐷 ← [(𝑒.𝑡𝑖𝑚𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠, 𝑒 .𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑒.𝑠𝑖𝑔_𝑖𝑑, 𝑒 .𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦) |𝑒 ∈ 𝐸′];
18 for cluster 𝑖 , data in cluster 𝐸𝐷𝑖 in DBSCAN clusters do
19 𝐸′

𝑖
← alerts/edges in cluster 𝑖 , initialize 𝑖𝑡ℎ subgraph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), 𝑉𝑖 ← ∅, 𝐸𝑖 ← ∅, 𝐺𝑖 .𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =𝑚𝑒𝑎𝑛( [𝑒.𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 |𝑒 ∈ 𝐸′

𝑖
]);

20 for 𝑒 ∈ 𝐸′
𝑖
do

21 𝑉𝑖 ← 𝑉𝑖 ∪ {𝑒.𝑠𝑟𝑐, 𝑒 .𝑑𝑒𝑠𝑡}, 𝐸𝑖 ← 𝐸𝑖 ∪ {𝑒};
22 Add 𝐺𝑖 to 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

Output: 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

Table 1: Top 3 risky subgraphs generated by GA algorithm

subgraph
index

summarized alert
message severity related attack number of

alerts

5 Weird inbound traffic,
large DNS connection 7.5 DNS flood,

DDoS attack 6

9 A real IP packets is
rejected by ACL 5.2

excessive firewall denies
(potential credential
access attempt)

15

2 VPN-related session
is started/ completed 5 VPN attack 2

were 175 subgraphs containing network alerts of comparable types,
which simplifies the operations of security analysts since the scale
of alert analysis can be reduced to a hundred alert batches.

For a closer look, a demo trail run of 100 network alerts randomly
sampled from the above alert dataset was conducted. 12 subgraphs
were generated by the GA algorithm, and the subgraphs with high-
est severity score are shown in Table 1. The summarized alert
messages are the most frequent alert messages in alerts of each
subgraph. These messages successfully identified various kinds of
potential network attacks including DDoS and VPN attack, which
aligned with the attack scenarios of our data.

5 CONCLUSION
With evolving digital world and growing IT systems, the network
alert fatigue problem has become more severe for SOC analysts,
resulting in potential risks of ignored cyberattacks. To reduce alert
fatigue and automate alert prioritization, a GA algorithm is pro-
posed in this poster, with the ability to analyse network alerts from

different NIDS sources. The alerts are transformed to a network
communication graph which depicts the nature of network commu-
nication and allows easy visualization. The algorithm reduces the
noise of alerts by collation technique and prioritizes alert groups via
a clustering algorithm. The output of the GA algorithm is subgraphs
containing alerts related to similar network activities and corre-
sponding graph severity scores. These subgraphs can effectively
assist security analyst to identify high-risk network activities and
their related alert groups. The simulated experiments conducted
have shown high alert noise reduction and effective alert cluster
prioritization of the proposed GA algorithm.
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