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ABSTRACT
Many cyber-physical systems (CPS) use geographically dis-
tributed instrumentation to monitor and control the opera-
tion of the underlying system in real time. The availability
of real-time measurements from deployed instrumentation
is critical for the operation of CPS, which in turn makes
them vulnerable to attacks that limit access to this stream
of information. However, the impact of such attacks may
be mitigated by exploiting the spatio-temporal correlation
in the data streams that exist in many CPS, as shown in
this paper. In addition to establishing the extent of spatio-
temporal correlations in CPS data stream in the context of
natural gas distribution systems, we propose and validate a
methodology that exploits these correlations to accurately
recreate data that might be lost or unavailable due to cyber
attacks.

1. INTRODUCTION
Cyber-physical systems integrate computing technologies

with physical components in order to enhance their ability to
adapt, scale, and operate efficiently. CPS rely on network-
ing technologies to provide connectivity between the various
entities of the underlying physical system, and facilitating
the collection, processing, and storage of data that allows
computing algorithms to control and manage the CPS in
real-time. CPS have applications in a number of sectors
such as energy, transportation, healthcare, manufacturing,
and building automation, to name a few.
Due to their importance in the economic and social as-

pects of any country, CPS associated with the basic services
and infrastructure are an attractive target for adversaries
that include nation states, corporations, organized crime, as
well as independent actors. A broad class of attacks that
may be launched on these systems is “availability” attacks
that limits the real-time access to information generated in
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the system. Such attacks may be realized by a variety of
mechanisms including denial of service, data modification,
and hijacking of routers (and dropping packets). Under such
attacks, it is critical for the CPS to be able to reconstruct
any lost data stream with accuracy, in order to maintain its
normal operation. This paper addresses this problem and
develops a methodology for reconstructing lost CPS data by
exploiting spatio-temporal correlations in data streams.

Security for CPS has received considerable attention in
the recent past. Existing literature is primarily focused on
detection of attacks on such systems with a large empha-
sis on smart grids. The detection of data modification or
data injection attacks is one of the most commonly studied
problems, in particular due to the possibility of economic
or physical damage to the underlying cyber-physical system
using this data. In order to maintain normal operation dur-
ing such attacks, it is necessary to use data that reflects the
true state of the system. Thus, it is important to develop
data recovery algorithms that can be invoked during an at-
tack to synthetically generate data streams for use by the
system.

This work-in-progress paper addresses the problem of data
recovery and regeneration in cyber-physical systems. This
paper specifically considers the scenario of natural gas dis-
tribution systems where smart meters are installed at homes
to monitor the gas consumption at fine grained time scales
(compared to traditional manual meter readings at monthly
intervals). We consider the attack scenario where the me-
ters and/or network infrastructure have been compromised
by the adversary, leading to a“loss”of the smart meter data.
We use the term “loss” to include a wide range of scenario
such as those where the adversary causes routers in the net-
work to drop data packets, or modifies the data so that true
values are no longer available (in these scenarios we assume
that the attack can be detected). For scenarios where the
true data values from the smart meters are not available,
this paper develops a methodology that exploits the spatio-
temporal correlations in the smart meter data from different
users to recreate the lost data.

The rest of the paper is organized as follows. Section 2
presents the related work and Section 3 presents the sys-
tem model. Section 4 presents an analysis of the spatio-
temporal correlations in the meter data. Section 5 presents
the methodology for recovering lost data and its evaluation.
Finally, Section 6 presents the concluding remarks.

2. RELATED WORK
Existing work on security for CPS and industrial control



systems has primarily focused on detecting various types of
attacks. While a wide range of attacks has been considered,
each existing individual piece of literature tends to focus on
a specific attack in a given system. Existing literature on
security for CPS shows a particular emphasis on electricity
grids [1, 2] though other systems such as water networks
have also been considered [3, 4, 5, 6]. Security related liter-
ature specific to gas distribution systems is limited [7].
Attacks on CPS that have been considered in literature

include deception (i.e. data modification and data injec-
tion attacks, including the possibility modifying data pack-
ets as well as sensors), denial of service attacks, replay at-
tacks, and packet drop attacks, to name a few. Detection of
data modification attacks on Supervisory Control and Data
Acquisition (SCADA) systems is considered in [8, 9, 10].
Methodologies for detecting replay attacks in control sys-
tems have been proposed in [11, 12]. The methodology is
based on injecting a signal unknown to the attacker into
the system. Denial of service attacks on networked control
systems is considered in [13] which also proposes a counter-
measure based on semi-definite programming. Finally, [14]
considers the detection of packet drop attacks on smart grid
data.
Resilience against attacks on CPS have been considered

in the context of control systems where the objective is to
ensure the stability of the system despite the attack [15]. In
the context of smart grids, defense mechanisms against data
modification attacks on smart grids have been proposed in
[16, 17, 19] and are based on making a subset of the measure-
ments safe against modification (which may be impractical
in real life). The problem of estimating the state of a linear
system in the presence of corrupted measurements has been
considered in [18].
Techniques for recovery of missing data have been consid-

ered in both statistics as well as applied topics such as sen-
sor networks. Statistical techniques for estimating missing
data include maximum likelihood, expectation maximiza-
tion, and multiple imputation [20]. These data imputation
techniques typically have high space and/or time complex-
ities. The most common data recovery technique that ex-
ploits spatial correlation between data sources is inverse-
distance weighted averaging (IDWA) [23, 24]. IDWA as-
sumes uniform correlation among adjacent sources of data,
and estimates the missing values as a linear combination of
the values at neighboring data sources, with weights based
on the physical distance. An algorithm that exploits spatio-
temporal correlations between sensor nodes for data imputa-
tion is proposed in [25]. The methodology is based on substi-
tuting the most common value from the neighboring sensors
as the missing value. A genetic algorithm based technique
for data recovery is proposed in [26]. Finally, compressive
sensing based techniques are capable of recovering datasets
based on a small number of data samples [21, 22]. However,
compressive sensing based methods require the underlying
data to have sparsity (i.e. low rank) and redundancy.

3. SYSTEM AND ATTACK MODEL
We consider the scenario of a natural gas distribution sys-

tem as shown in Figure 1. A pressurized piping infrastruc-
ture is normally used to deliver gas to domestic consumers.
The distribution network for natural gas begins at the na-
tional transmission system (NTS). The NTS usually also has
reception terminals where producers supply gas into the sys-

tem. Local transmission systems (LTS) connect to the NTS
take-off stations or high pressure (HP) storage tanks and
distribute the gas to consumers. Before reaching the end
consumer, the gas may be stored in low pressure (LP) stor-
age tanks and pass through a series of pipelines where the
pressure is reduced to a level suitable for distribution to con-
sumers. The pressure tiers are LTS (7-38 bar), intermediate
pressure system (IPS) (2-7 bar), medium pressure system
(MPS) (0.075-2 bar), and low pressure system (LPS) (below
0.075 bar). Finally, the gas is distributed to the consumers
through a district governor. The gas intake in at the con-
sumer premises passes through a meter (which for this paper
is a smart gas meter). The smart meters are connected to
the utility’s data collection and processing facility through
the Internet. The meters relay their readings to a gateway
inside the consumer’s home which forwards the messages to
the utility using the Internet.

3.1 Threat Model
The threat model assumed in this paper is that the adver-

sary is capable to hindering or disrupting the flow of smart
gas meter data to the utility’s data management and storage
system. This may be achieved by compromising the smart
meters, compromising routers or links connecting the meter
to the utility’s data collection facility, and denial-of-service
attacks. Once the adversary successfully launches an attack,
the real-time flow of measurement data from the meters is
interrupted.

We assume that the adversary may use any arbitrary strat-
egy for denying information availability. For example, in the
simplest case, the adversary may drop packets with meter
reading at random. In other variations, the adversary may
drop “blocks” of packets (i.e. a number of successive pack-
ets). The adversary may also choose any combination of
dropping strategies in order to make detection of an attack
more difficult. As an alternative to dropping data packets,
the adversary may modify the values reported in the data
packets. The objective of this paper is not the detection of
such attacks, but to reconstruct the lost data.

3.2 Meter Data
The smart gas meter data used for this paper was obtained

from the Pecan Street project [28]. The source of the data
are homes in the Mueller neighborhood of Austin, Texas,
USA. The homes in this neighborhood are primarily newly
constructed, and include single-family homes, apartments,
and town homes. Itron Centron SR smart gas meters are
deployed in these homes and these meters send their infor-
mation to a gateway inside the home. The gateway uses the
home’s Internet connection to send the data to the meter
data management system (MDMS) or the processing cen-
ter. The gas meters have a reading frequency of 15 seconds,
and measure the cumulative gas consumption. The meters
register a reading (in terms of the cumulative consumption)
when the last marginal 2 cubic foot (or higher) of natural
gas passes through the meter.

The data used in this paper consists of smart gas me-
ter data from 131 homes in Austin, Texas’s Mueller neigh-
borhood. A six month interval (October 1, 2015 to March
31, 2016) of data is considered. The data from each me-
ter for this 183 day period was considered at intervals of
one hour, leading to 4392 meter readings for each user. We
use the marginal consumption in each hour as our data (ex-
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Figure 1: Natural gas transmission and distribution system network [27].

tracted from the cumulative consumption reported by the
meters). We assume that the data obtained from the Pecan
street project corresponds to scenarios where there is no at-
tack, i.e., the data has not been modified by an adversary.
We synthetically generate traces corresponding to attacks
by deleting values from these traces, using the procedure
outlined in Section 5.

4. SPATIO-TEMPORAL CORRELATION IN
METER DATA

In this section we analyze the gas meter data to evaluate
the spatial and temporal correlations in the data.

4.1 Spatial Correlations
The evaluation of spatial correlation seeks to identify the

existence of similar behavior in the gas consumption pat-
terns of different homes in the same geographical neighbor-
hood. Let the data stream corresponding to the i-th user (we
use the term home and user interchangeably in the rest of
this paper) be denoted by Xi = {xi,1, xi,2, · · · , xi,n}, where
xi,k is the meter reading at the k-th time interval. The
metric for evaluating the correlation between users i and j
is

ρij =

∑n
k=1(xi,k − x̄i)(xj,k − x̄j)√∑n

k=1(xi,k − x̄i)2
√∑n

k=1(xj,k − x̄j)2
(1)

where

x̄i =
1

n

n∑
k=1

xi,k. (2)

We have −1 ≤ ρij ≤ 1, and the pair-wise correlation co-
efficients for all users in the data set form the correlation
matrix R. Figure 2 shows the correlation coefficient (as a
heat map) for all pairs of users in the data set. Figure 3
shows the correlation values for each user (each line is one
row of the correlation matrix). As can be seen, there exist
high levels of correlation between many users. Around 11%
of the homes show a correlation value of greater than 0.5,

while about 60% of the homes show a correlation value of
greater than 0.25. Also, most users (> 92%) show positive
correlation values. A correlation coefficient of more than
0.15 is obtained in 70% of the user pairs in our dataset, and
these correlation values have confidence levels of 99.9%.

This behavior in the pairwise correlation coefficients is in-
tuitive. The primary use of gas in homes is for cooking and
heating. Thus it is expected that a majority of the homes
will demonstrate increased gas consumption during evening
hours, and at night during winter. The spatial correlation is
also affected by the fact the users that are in geographically
close to each other are subjected to the same weather condi-
tions and thus will react similarly to environmental factors.

4.2 Temporal Correlations
Next, we consider the temporal patterns and periodicity

in each user’s behavior. To evaluate the temporal behavior
in the gas usage patterns of each user, we consider the auto-
correlation function for each user at different lags. The auto-
correlation function for user i at lag k is defined as

ri(k) =

∑n
j=1(xi,j − x̄i)(xi,j+k − x̄i)∑n

j=1(xi,j − x̄i)2
. (3)

While the auto-correlation function may be used to ascer-
tain the presence of randomness in data, it may also show
evidence of periodicity in the data. Periodicity in the data
is shown by peaks in the auto-correlation function at regular
intervals in the lag.

Figure 4 shows the auto-correlation function for three
users for 0 ≤ k ≤ 120 (i.e. for lags of 0 to five days). As
can be seen, users exhibit periodicity in their behavior, some
more strongly than others. Also, while some users have a
single dominant period, many others have multiple periods.
As with the spatial correlation, the temporal correlation in
an user’s gas usage is not unexpected. Activities related to
gas consumption such as cooking are usually done at specific
times of the day and thus correlations are expected in the
temporal patterns of gas consumption.
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Figure 2: Heatmap of the correlation matrix.
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Figure 3: Pairwise correlation values for each user.
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Figure 4: Auto-correlation values for three users for lags of 0 to 120 hours (0 to 5 days).

5. CORRELATION BASED DATA RECOV-
ERY MECHANISM

As demonstrated in the previous section, the data from
smart gas meters in individual homes show correlations across
users as well as periodicity in its auto-correlation function.
In this section we use these observations to develop simple
but effective mechanisms for recovering missing data.

5.1 Spatial Correlation Based Data Recovery
Given the evidence in Figures 2 and 3 supporting the ex-

istence of significant correlations in the gas consumption of
homes in the same geographical area, an intuitive approach
to recovering lost data at a user is to use data from other
users with which it shows high levels of correlation. The
proposed data recovery algorithm is as follows. For each
user, the algorithm maintains a window of the past w values
and the window slides on the arrival of a new meter reading.
If the data at any user (say user i) is found to be missing
(either due to loss or the detection of data modification at-
tack), the loss recovery mechanism is triggered. The past w
data values from all users are used to compute the pairwise
correlation coefficients (as defined in (1) with user i. The
value of the missing data is then computed as a weighted av-
erage of the values of the other users, with weights decided
based on the correlation coefficients. The missing data at

user i at hour n is then calculated as

x̂i,n =
1∑

k∈M ρi,k

∑
j∈M

ρi,jxj,n (4)

where M is the set of other users whose data is used for the
data recovery. The users in M may be chosen, for example,
by including only those users whose correlation coefficients
is greater than some threshold value (say 0.5). Alternatively,
M may consist of the k (e.g. k = 5) users with the highest
correlation coefficient with user i. Our test results show
that the threshold based selection of users in the set M
performs better in our scenario. However, such a process
for constructing M fails for users who do not exhibit large
enough correlation levels with other users.

5.2 Temporal Correlation Based Data Recov-
ery

The temporal correlations in a user’s data, as shown in
Figure 4, show that there is periodicity in the data, and the
there is significant correlation at short time lags. Based on
this observation, intuitive data recovery mechanisms may be
developed that use a meter’s historical data to recover any
lost data. In our temporal correlation based data recovery
algorithm, a window of past w measurements is maintained
for each user. On the arrival of each new data sample, the
window slides and the auto-correlation values of the user



Algorithm 1 Data Replacement Using Spatio-Temporal
Correlations
1: parameters: w, η, θ;
2: loop
3: for at each time instant (hour) n do
4: slide window for each user;
5: update ri(k), 0 ≤ k ≤ 168, ∀i;
6: if data missing at user i then
7: M = φ, N = φ;
8: evaluate ρi,j , ∀j, j �= i;
9: if (xj,n ∼missing) ∧ (ρi,j ≥ η) then
10: M = {j} ∪M;
11: end if
12: if ri(x) is among θ largest values of ri(k),

0 ≤ k ≤ 168 then
13: N = {x} ∪ N ;
14: end if
15: x̂i,n = 1∑

j∈M ρi,j+
∑

k∈N ri(k)
×

[ ∑
j∈M

ρi,jxj,n +
∑

k∈N
ri(k)xi,n−k

]
;

16: end if
17: end for
18: end loop when session is terminated

(as given in 3) is updated. We evaluate the auto-correlation
values for lags of 0 to 168 (i.e. a maximum lag of seven days)
to capture any weekly patterns in the gas consumption data,
such as different consumer behavior patterns in weekdays
and weekends. The missing data is then computed as

x̂i,n =
1∑

k∈M ri(k)

∑
j∈M

ri(j)xn−j (5)

where M is the set of lags for which previous data samples
of user i are used for data recovery. The set of lags in M is
chosen based on the value of the auto-correlation function.
Similar to the spatial correlation case, a lag value may be
included in M if the auto-correlation value at that lag ex-
ceeds a threshold value, or if the auto-correlation at that lag
is one of the largest k values of the auto-correlation func-
tion for user i. Note that the formulation above requires
w ≥ 168. Also, for users whose auto-correlation function
decays quickly with lag, constructing M with the lags that
have the largest values ensures that a imputed value for the
lost data is generated, albeit with some error.

5.3 Data Recovery using Spatio-Temporal Cor-
relation

While the two data recovery methodologies described above
work reasonably well, an approach that exploits both the
spatial and temporal correlations may provide better results.
This is particularly true for users that exhibit either lower
values of spatial correlation with other users or an auto-
correlation function than decays sharply. Thus, our final
approach for data replacement uses both spatial and tem-
poral correlations and the proposed methodology is given in
Algorithm 1.
The proposed approach is based on keeping a window of

past w meter readings for each user. At each instant of me-
ter readings, the auto-correlation function for each user is
updated, for a range of lags from 0 to 168. If the latest

reading is missing at any user (say user i), we first evaluate
this user’s correlation coefficient with all other users. Then,
we create the set M of users whose correlation coefficient
exceeds a threshold η and whose latest meter reading is not
missing. Similarly, we create a setN of lag values that corre-
spond to the largest θ (θ ∈ N

+) values of the auto-correlation
function ri(k), 0 ≤ k ≤ 168. The imputed data value is then
computed using a weighted average of the previous values of
user i as well as the change in the values of the other users
with whom user i exhibits high levels of correlated behavior.

Note that the purely spatial and purely temporal correla-
tion based data recovery mechanisms proposed in Sections
5.1 and 5.2 respectively, are special cases of the methodology
shown in Algorithm 1. The purely spatial correlation based
data recovery mechanism is obtained by setting θ = 0 in the
algorithm, while the purely temporal correlation based data
recovery mechanism is obtained by setting η > 1.

5.4 Performance Analysis
This section evaluates the accuracy of the proposed data

imputation techniques. In addition to the spatial (SC),
temporal (TC), and joint spatio-temporal (STC) correlation
based techniques proposed in this paper, we consider two
other data imputation methodologies from existing litera-
ture. The first benchmark is mean imputation (MI) where
a missing value is replaced by the mean value of that meter
from the recent past (a 24 hour period in our case). The
second benchmark is k-nearest neighbor based data impu-
tation (kNNI) [30, 31]. With kNNI, the k nearest neighbors
of a meter with missing data are first selected (in terms of
the Euclidean distance of their measurement vectors). The
missing value is then estimated by taking the weighted (in-
versely proportional to the distance) average of the readings
of these k neighbors. We use k = 10 in this paper based on
empirical observations on our data. For the data imputa-
tion methodologies proposed in this paper, we use w = 168,
η = 0.9 and θ = 1 for our results. The values of η and θ
were chosen empirically. For the SC method, the set M was
constructed by using the threshold method (using η = 0.9).
If a user did not have a correlation coefficient greater than
η with any other user, its missing values were replaced with
0. For the TC method, the set M was constructed by con-
sidering the lags corresponding to the θ largest values of the
auto-correlation function. We use θ = 1 as it was empirically
observed to give the best results.

We use the smart gas meter data from the Pecan street
project as the input to the data imputation techniques. To
simulate the impact of attack scenarios that result in the loss
of data availability, we delete some of the data. We assume
that the attacker randomly and independently drops data
from each user as per a two-state Markov model. In the
good state, no data is dropped and all data is dropped in
the bad state. The average time spent in the bad state is 24
hours, and the state transition probabilities are calculated
based on the fraction of the overall data that is dropped
(we consider three cases: 10and 30% of the total data is
dropped).

5.4.1 Performance Metrics
The performance of the proposed data imputation method-

ologies and the benchmark schemes is evaluated using three
metrics. Let Xi = {xi,1, xi,2, · · · , xi,n} denote the original

set of meter readings for user i, and let X̂i = {x̂i,1, x̂i,2, · · · , x̂i,n}
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Figure 5: Comparison of the RMSE for the data
recovery algorithms.

be the corresponding data set where missing values have
been replaced. The first metric is root mean square error
(RMSE) which is a commonly used measure of the differ-
ence between estimated and real values. The RMSE of a
data imputation algorithm (for user i) is defined as

RMSE =

√∑n
k=1(xi,k − x̂i,k)2

n
. (6)

The second metric is mean absolute error (MAE) that mea-
sures the closeness of the estimated values to the real values.
The MAE is given by

MAE =
1

n

n∑
k=1

|xi,k − x̂i,k|. (7)

The variation in the estimation error can be analyzed by
jointly considering the MAE and the RMSE.While the RMSE
is always greater than or equal to the MAE, the magnitude
of their difference is directly proportional to the variance in
the errors.
The third metric is the integral of absolute error (IAE),

which is defined as

IAE =

∫ t

0

|xi(t
′)− x̂i(t

′)|dt′ (8)

where xi(t
′) and x̂i(t

′) denote the measured and estimated
values for user i at time t′, and t is the total time for which
the data has been collected. The IAE metric is commonly
used in control systems and in general, a larger IAE value
indicated a poorer performance of the control algorithm.

5.4.2 Results
The metrics defined above are evaluated for each of the

131 users in the database. The results reported in this sec-
tion are the averaged values for all users. Figures 5, 6 and 7
show the RMSE, MAE and IAE for the five data imputation
techniques under consideration, for the three cases of data
loss rates.
As can be seen, in general, the methodology based on

purely spatial correlations gives the best results. Also, the
methodologies based on the use of both the spatial and tem-
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Figure 6: Comparison of the MAE for the data re-
covery algorithms.

poral correlations, as well as the one based on using the
mean values tend to perform the worst. The mean value
based methodology does not perform well since the mean
value does not track the short term variations in the gas
consumption of a user with sufficiently fine granularity. The
poor performance of the joint use of temporal and spatial
correlation based methodology is counter-intuitive. How-
ever, this can be explained by noting that the spatial cor-
relation part of methodology (as well as the purely spatial
correlation based methodology) uses a high threshold value
(η = 0.9). Our experimental results show that only about
25% of the users have at least one neighbor with such a high
correlation value and the accuracy in these cases is quite
high. For the rest, the missing value is replaced with 0, and
given that gas consumption is 0 in households for most hours
of the day, the imputed data values with the purely spatial
correlation based methodology have the highest accuracy.
However, when this approach is combined with the tempo-
ral correlations, for the cases where none of the neighbors
has a correlation that exceeds the threshold, the user’s past
data is used as a replacement. In many cases, this leads to
a non-zero value for the imputed data, thereby contribut-
ing to errors. Among the benchmarks, kNNI performs well
compared to the other methodologies, although it has higher
computational complexity.

It is worth noting that the lag with the highest value of
auto-correlation in our experiments is usually a lag of 1 (i.e.
the last known value). Thus the TC method can be simpli-
fied to an algorithm that simply replaces any lost data for a
user with its last known meter reading. Such a method has
the advantage of simplicity over the other algorithms and
works well for cases where the loss durations are short (and
also due to the fact that gas consumption values are zero for
frequent periods of time).

Finally, we note that the proposed methodologies in this
paper use a linear function of the cross and auto correlation
values when assigning the weights during data imputation.
On the other hand, the kNNI based algorithm uses a non-
linear function. Using a non-linear weight in the proposed
methodologies may improve their accuracy and we leave this
as future work.
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6. CONCLUSIONS
The availability of real-time data from sensors, meters and

other devices is critical to the operation of cyber-physical
systems. Consequently, attacks that hamper the flow of
these streams of information are an attractive strategy for
malicious adversaries. To ensure the continued operation
of the underlying CPS under such attacks, this paper pro-
posed a methodology for the reconstruction of lost or mod-
ified data. Considering the specific case of smart gas me-
ters, the paper first demonstrated the existence of significant
spatio-temporal correlations in the meter readings. Then,
we proposed methodologies that exploit these correlations
to reconstruct any missing data. Our results indicate that
the use of temporal correlations can provide good accuracy
in the reconstructed values at low computational cost. This
is a work-in-progress paper and we envision that it possible
to further reduce the errors associated with our algorithms.
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