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Abstract—A Markov based unified model for energy harvesting the harvesting state as well as the remaining energy supply
nodes in wireless sensor networks is proposed. Using the pre of the node, we provide an analysis of the Loss Probability
sented model, the probability of event loss due to energy ruout due to Energy Run-Out (LPERO). Furthermore, we provide

as well as an analytical vulnerability metric, namely averge time vtical vul bilit tri v A . ¢
to energy run-out, are derived. The results provide insightinto &N analytical vuinerability metric, namely Average lime 1o

the performance of energy harvesting nodes in wireless sems Energy Run-Out (ATERO).
networks as well as design requirements for such nodes. The
proposed vulnerability metric can be used in the various enejy Il. SYSTEM MODEL
aware (harvesting aware) techniques at different protocolayers. A, Energy and Traffic Models

We model the energy harvesting process with a two state
I. INTRODUCTION Markov chain. That is, we assume that the harvesting device
) is in one of the two activity states, namelgtiveandinactive

The energy supply for the sensor nodes is one of thgis model can be applied to many different forms of energy
major issues in the development and widespread deploymghtyesting, such as solar energy harvesting in an envirotahe
of WSN technology[1][2]. The current state-of-the-arttet monitoring sensor network or motion energy harvesting in
technology does not provide sufficient energy density tvall 5 pody sensor network. We assume that at the end of each
the implementation of WSN nodes with long lifetime, lowjme siot the device will go fromactive to inactive with
cost, and small form factor. probability , and frominactiveto activewith probability w.

The most promising approach to address the energy supgiynsequently, the probabilities that the device stays @& th
problem for WSNs is energy harvesting (or energy scavengingttive or inactive states arel — r and 1 — w, respectively.
[2]-[11]. In this approach the sensors are equipped with @fyrthermore, we assume that the energy harvesting device
energy harvesting device that collects energy from ambiggf| harvest energy with an average rate (power)pgfin the
sources such as motion, light, and heat. Energy harvesting gctive state and does not harvest any energy in itietive
pands the design space of communication systems into a n@4te. Given this model, it can easily be shown that the
dimension. Traditionally, either it is assumed that thergye steady state probability that the device is in thetive and
supply is unlimited, or that the energy supply is monotolyca jnactive states arqu, = 72 and u, = I, respectively.
decreasing with a fixed initial value. Since energy harvesti Therefore, the average expected harvested power will lEngiv
sensors can replenish their supply of energy, they requirq)}’;lp =2 4.
much more sophisticated energy model. Thus, in addition toe an“gider a simple traffic model. That is, we assume
the previously considered factors such as channel models @t in each time slot, an event occurs with probabifity
traffic models,energy modelsnust also be considered as afryrthermore, we assume that each event has a total energy
essential factor in the design of communication systems. ¢qst of £, which includes the energy consumed by the sensor,

Many energy aware (harvesting aware) communication teqie energy consumed for signal processing as well as the

niques have been proposed in the literature. Such techsigg@nsmission or reception of the related data.
require a vulnerability metric or cost function for each aod

to maximize network lifetime and utility. For battery power B. Overall System Model
sensor nodes this vulnerability metric is directly related  To combine the energy and traffic models described above,
the remaining energy level in the node battery. When energy consider the time unit to be equal to the length of the time
harvesting is used, however, the vulnerability metric mustquired to harvest enough energy for one event, given that
reflect not only the remaining energy level, but also thihe device is in theactive state. That is, we define the time
harvesting state of the device. The existing literatureroft unit to be T = Ey/p,. Moreover, we assume that the total
use a heuristically defined vulnerability metric [12]. battery capacity for the node is equal Bo= (N — 1) Ej.

In this paper we first provide a unified model that combines With this definition of the time unit, we can consider four
the energy model and the traffic model. Using this modédifferent cases for each time slot: (i) If the device is in the
which describes the state of the system by including baitactivestate and an event occurs, the energy level in the node
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Fig. 1. Markov chain model combining energy model and trafficdels.

will decrease byEj, unless the node has already ran out dhat an event is lost if and only if the event occurs when the
energy. (ii) If the device is in thénactive state and an eventnode is in staté. Note that when the node is in staé it
does not occur, the energy level in the node will not changsill collect sufficient energy during one time slot for theeet.

(iii) If the device is in theactive state and an event occursWhen the node is in all other states, it has sufficient energy
the energy level in the node will not change. (iv) If the devicstored in its battery. Therefore, we can write the probghili

is in theactive state and an event does not occur, the energy event loss by

level in the node will increase bk, unless it has reached its PL = o 3)
maximum, B (the battery is full).

We can then model the state of the node usingM wherer,, denotes the steady state probability that the Markov

%\ain is in stater. Note that since this Markov chain is of finite

state Markov chain. The state of the node will represent XS ath. ireducibl q odic. it h teady stat
energy harvesting statéd. activeor inactive as well as the ength, irreducible and non periodic, 1t has a steady state.
The steady state probabilities for all states can be oldaine

amount of energy stored in the battery. Such a Markov chain. _ . . .
is depicted in Figure 1. In this model, stateshrough N — 1 using the eigen analysis of the transition matix, That is, if

represent the case where the device is in itietive state. the eigen decomposition of the transition matrix is given by

The device is in theactive state if the system is in state$ P=U'AU (4)
through2N — 1. Furthermore, the amount of energy stored )

in the battery is given byz = (nmodN)E,, wheren is the then the columns olJ, w,k = 0,...,2N — 1, are the eigen
state number. In other words, the battery is empty in stateyectors of P and the components of the diagonal matiix
and N, and is completely full in statey’ — 1 and2N —1. Ak = 0,..,2N — 1, are its eigen values. Then the steady

The components of the transition matiixfor this Markoy State probabilitiesr = [, ..., man—1]" will be given by the
chain are given by eigen vector corresponding to an eigen value of unity. That

is,m = ug,, where);, = 1.

(1-p)(1—-w) J = 2 While this method provides a general solution for the steady
p(1—w) J=1= 1 state probabilities, the computation of eigen analysishef t
Pj=4q 1-puw j=i+N (1)  matrix P quickly grows with N. The particular structure of
pw j=i+N-1 this Markov chain, however, allows us to derive a closed form
0 otherwise solution for the steady state probability. To solve forr,
and we write the equilibrium equations for different combiroeati
p(l—r7) j=1 of states.
1-p(Q-r) j=i+1 Considering a boundary containing the statesand N
P ;=4 pr j=i—N (2) (Figure 1, Boundary A), the equilibrium equation is
1—p)r j=1—N+1
é ) otherwise pwm+p(l—w)m —(1—p)(1—r)any — (1 —p)ray =0 (5)
for i = 1,..,2N — 2. Furthermore, we havé, = 1 — ©OF
w, Py v = w, and Py ; = 0 whenj # 0 or N. Similarly, pm = (1 =p)my. (6)
Pan-ran-1=1-7 Pon-1N-1 =T, and Py; = 0 when  aiso, the equilibrium equation for a boundary around states
j#2N—-1orN -1 and N + 1 (Figure 1, Boundary B) results in
[1l. L OSSPROBABILITY DUE TO ENERGY RUN-OUT pra+ (1 —p)ry —pm — (1 —p)any1 = 0. @)

We are interested in finding the average probability that
event is lost i(e. is not sensed and reported), due to lack o
sufficient energy in the node. To find this probability, weenot pre = (1 —p)ang1. (8)

bstituting (6) in (7) gives



By continuing this procedure for statesand N + n for n =

1,...,N — 1, we can conclude that

Tp = QNN 4n—1

IV. AVERAGE TIME TO RUN-OUT

We propose the use of the Average Time to Run-Out
©) (ATERO) as a vulnerability metric for each node. We define

wherea = 1=2. The equilibrium equation for a boundaryl»—« as the average number of steps that is required to visit
around statezz,o wherel < n < N — 2 (Figure 1, Boundary statek for the first time, if we start at state. With this

C) results in

[p(1 —w) +pw + (1 = p)w]m, — p(1 — w)Tni1
—prinsn — (1 = p)raNsn—1 =0

By substituting (9) in (10) we get
[p+ (1 —p)w—pr]m
[ =p)A —w) +prlryin =0
or
TN+4+n — ﬁTrn

where = PEU—Pw—pr Aj5q the equilibrium equation for

1-p)(1—w)+pr

a boundary around stafB(Flgure 1, Boundary D) results in (I

wmg — pray +p(l —w)m =0
which using (6) becomes
wrg — [pr+ (1 —p)(1 —w)]7y =0
or
TN = 7T0

wherey = sy

notation, the ATERO for state is represented by, .q.
One method to calculate the ATERO is to modify the

Markov chain by making state 0 an absorbing state. That is
(10)  the modified Markov chain will have a transition matriR!,

where Py, = 1, Py = 0, andP’ = P, ; for all otheri,j

pairs. Therl, .o in the original Markov chain is equal to the

average time to absorbtion in the modified chain. In general,
(11) if the transition matrix is of the form

, [I o
(12) P= [ T S } (24)

thefundamental matrixof the Markov chain is defined 8 =

S)~!. Given this form, the number of times, starting in

(13) states, we expect to visit statg before absorption is th&jth
entry of Q. Hence, the total number of steps expected before
absorption equals the total number of visits we expect toamak

(14) to all the non-absorbing states. This is the sum of all theesnt

in the ith row of Q.

Although this provides a general solution, the calculatén

(15) Q for a large Markov chain is very difficult. However, for the

. Finally, the equilibrium equations particular Markov chain at hand, we can exploit the strustur

for a boundary around stateV — 1 (Figure 1, Boundary E) of the chain to recursively calculatE, .¢. This is done by

result in

rmon—1 — (1 —p)(1 — r)man—_2 — (1 — p)wry—_1 =0 (16)

which using (6) becomes

rron—1 = [p(L=7)+ (1= plw| Ty

or
ToN—1 = 0T N—1

whered = 2U=nH1=p)w By combining (9), (12), (15), and

(18), we can have

non—1
TTp = Q 6 Y7o

and
TN4n_1 = Oénilﬁnil’}/ﬂ'o
forl<n<N -1, and
N—1,N-2
ToN—-1 = & B ~dm.
2N -1

Now we apply the constrainzn o T =1,0r

N-1 -
o + Z a3 ymy + Z a" 1B tymg

n=1 n=1

+6aN 1N 2y = 1
yields

o = oN-1gN—1

+ JaN-13N-2~"

noting that given a start state+ 1, where0 <n < N — 2,
we must visit statex before absorption. Hence, we have

Tn+1~>0 = Tn+1~>n + Tn~>0 (25)
a7 . .
Along the same line, given a start stat&+ n, wherel <
n < N — 1, before absorption, we must visit state Hence
(18)

TN+n—0 = TIN+n—n + Th—o- (26)

Thus, if we calculatél’, 1., and Ty 1,—, We have

(19) .
Tho= Z Th—k—1 (27)
(20) k=1
and
(21) TN+n—>0 = TN+n—>n + Z Tk—»k—l (28)
k=1
for0<n <N.
The value oflyny_1— x—1 can be calculated without recur-
sion. That is, we have
(22)
= 1
ToN-1-N-1= Z(k +1)(1—r)fr= - (29)
(23) h=0

Now consider states, n+1, N +n and N +n -+ 1, where



0<n<N-2 ForTnin_n, We can write

o0

> G+ D —r)pr
=0

+ Z(Z + 14 Thg1—p)[p(L = 7)) (1 = p)r
i=0

+ Z(Z +14+TNjnti—n)
i=0
x[p(1=r)]"(1—p)(1—r)

pr (1-p)r
(I—p+pr)2  (1—p+pr)?
1— 1-p)(1 -

B o ) LS € o ) [
1—p+pr (1—p+pr)
(1-p@a-r1)

+ 71_' n —n

[— N+n+1
1 1—

+ ( p)r Tn+1—>n
1—p+pr 1—p+pr
A-pQ-r)

1—p+pr
= a+ an+1—>nCTN+n+1—>n’

TN+n~>n -

TN+n+1—>n
(30)
Ly (-pr ande— 0=p(-1)

wherea = — o, b= 7 T—ptpr -
Along the same lines, fof;,+1_.,, we have

oo

D i+ D1 =p)(1 —w)p(l - w)
=0

+ D i+ 14 Tvpnn)(1 = p)(1 = w)]'pw
1=0

+ D (414 Tnnt1on)
1=0
x[(1 =p)(1 = w)]"(1 - p)w
p(1 —w)
(p+w —pw)?
pw
(p+w —pw)?

Tn+1—>n -

+ PY
P+ w—pw
(1-pw (1-pw

(p+tw—pw)? p+w-—pw

1 pw

= T N
p+w—pw+p+w—l)w A

1—pw

+ 7( ) TNint1—n
p+w—pw

= d —+ GTNJFan + fTN+n+1~>na

TN+n~>n

TN+n+1—>n

(31)

_ 1 _ _pw
whered = To e €= pTe—pu’

Also, for Tn1pnt1—n We have

and f = lpw

T ptw—pw"®

TNint1—n = TNint1—nt1 +Tnp1-n.  (32)

By employing (32) in (30) and (31) we can solve fBf; 1.,
andTn.,—n, as a linear function of 'y, +1_,41. Thatis

Tn+1—>n = ATN+n+1—>n+1 +B (33)

and
TN+n~>n = CTN+n+1~>n+1 +D (34)

— f+ — d =
where A = Teebcfec’ B = ﬁ! O-A(b—i-C)—FC,

andD = B(b+¢) + a.
Now, by recursively applying (34) we get

1— CNflfn
T n—nm = NﬁlinT —1—N— Di
N+ C ON-1-N-1 1 T-C
1 1—-CN-1-n
N—-1-n —
C " +D —C (35)
And by applying (33) we get
_ (' N—-1—n
Tpon_1 = AcN-1-nl + apt=¢ " +B. (36)
r 1-C

Therefore, using (27) we have

n

_ AN—-1—k
Z AcN-1-k1 + ADL +B
= r 1-C

_ ANt (% B %) ;C—k
+n <1A_—DC + B>
= ACT (% 1 ijC)
+n (1A_—DC + B) .
Also, TN 1n—0 IS given by (26), (35) and (37).

Tn—»O =

37)

V. RESULTS

Figure 2 compares the LPERO obtained from theory (Eg.
(3) and (23)) with those obtained from simulations. We have
assumed that = 0.005 andr = 0.045, which means that the
device is in theactive state 10% of the time. Moreover, we
have assumed that = 20. We observe that the simulation
results and the theoretical results match perfectly.

Figure 3 presents the LPERO versi¥s Once again, we
have assumed that = 0.005 and r = 0.045. We can see
that as expected larger battery capacities lead to significa
drop in the event loss probability. We observe that to aghiev
event loss probability ofl0=> or better, we would require
a battery size ofB > 32F, and B > 99F, for p = 0.01
and p = 0.03, respectively. Even battery sizes as large as
B > 1000E,, however, will not be sufficient to reduce the
event loss probability neal0—5.

Figure 4 compares the ATERO obtained from theory (Eq.
(37) and (26)) with those obtained from simulations. Again,
we have assumed that= 0.005 andr = 0.045. Furthermore,
we assume that = 0.09 which is 10% lower than the average
harvesting rate. Moreover, we have assumed Mat 20. We
see that the simulation results and the theoretical resdtsh
very closely.

Figures 5 depicts the ATERO for the three cases where
w = 0.05 andr = 0.45, w = 0.005 andr = 0.045, and
w = 0.0005 andr = 0.0045, respectively. In all three cases,
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Fig. 5. ATERO forN = 20, p = 0.09, w = 0.05 andr = 0.45.

the average harvested power is equapte % pa = 0.1p,. be used in various harvesting aware techniques at different
However, these three cases represent different averagthgenprotocol layers.
of active and inactive periods. We observe that for large

andr, the states: and N + n have similar ATERO values.
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