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Abstract—A Markov based unified model for energy harvesting
nodes in wireless sensor networks is proposed. Using the pre-
sented model, the probability of event loss due to energy runout
as well as an analytical vulnerability metric, namely average time
to energy run-out, are derived. The results provide insightinto
the performance of energy harvesting nodes in wireless sensor
networks as well as design requirements for such nodes. The
proposed vulnerability metric can be used in the various energy
aware (harvesting aware) techniques at different protocollayers.

I. I NTRODUCTION

The energy supply for the sensor nodes is one of the
major issues in the development and widespread deployment
of WSN technology[1][2]. The current state-of-the-art battery
technology does not provide sufficient energy density to allow
the implementation of WSN nodes with long lifetime, low
cost, and small form factor.

The most promising approach to address the energy supply
problem for WSNs is energy harvesting (or energy scavenging)
[2]-[11]. In this approach the sensors are equipped with an
energy harvesting device that collects energy from ambient
sources such as motion, light, and heat. Energy harvesting ex-
pands the design space of communication systems into a new
dimension. Traditionally, either it is assumed that the energy
supply is unlimited, or that the energy supply is monotonically
decreasing with a fixed initial value. Since energy harvesting
sensors can replenish their supply of energy, they require a
much more sophisticated energy model. Thus, in addition to
the previously considered factors such as channel models and
traffic models,energy modelsmust also be considered as an
essential factor in the design of communication systems.

Many energy aware (harvesting aware) communication tech-
niques have been proposed in the literature. Such techniques
require a vulnerability metric or cost function for each node
to maximize network lifetime and utility. For battery powered
sensor nodes this vulnerability metric is directly relatedto
the remaining energy level in the node battery. When energy
harvesting is used, however, the vulnerability metric must
reflect not only the remaining energy level, but also the
harvesting state of the device. The existing literature often
use a heuristically defined vulnerability metric [12].

In this paper we first provide a unified model that combines
the energy model and the traffic model. Using this model
which describes the state of the system by including both

the harvesting state as well as the remaining energy supply
of the node, we provide an analysis of the Loss Probability
due to Energy Run-Out (LPERO). Furthermore, we provide
an analytical vulnerability metric, namely Average Time to
Energy Run-Out (ATERO).

II. SYSTEM MODEL

A. Energy and Traffic Models

We model the energy harvesting process with a two state
Markov chain. That is, we assume that the harvesting device
is in one of the two activity states, namelyactiveandinactive.
This model can be applied to many different forms of energy
harvesting, such as solar energy harvesting in an environmental
monitoring sensor network or motion energy harvesting in
a body sensor network. We assume that at the end of each
time slot the device will go fromactive to inactive with
probability r, and frominactive to activewith probability w.
Consequently, the probabilities that the device stays in the
active or inactive states are1 − r and 1 − w, respectively.
Furthermore, we assume that the energy harvesting device
will harvest energy with an average rate (power) ofρa in the
active state and does not harvest any energy in theinactive
state. Given this model, it can easily be shown that the
steady state probability that the device is in theactive and
inactive states areµw = w

r+w
and µr = r

r+w
, respectively.

Therefore, the average expected harvested power will be given
by ρ = w

r+w
ρa.

We consider a simple traffic model. That is, we assume
that in each time slot, an event occurs with probabilityp.
Furthermore, we assume that each event has a total energy
cost ofE0, which includes the energy consumed by the sensor,
the energy consumed for signal processing as well as the
transmission or reception of the related data.

B. Overall System Model

To combine the energy and traffic models described above,
we consider the time unit to be equal to the length of the time
required to harvest enough energy for one event, given that
the device is in theactive state. That is, we define the time
unit to be T = E0/ρa. Moreover, we assume that the total
battery capacity for the node is equal toB = (N − 1)E0.

With this definition of the time unit, we can consider four
different cases for each time slot: (i) If the device is in the
inactivestate and an event occurs, the energy level in the node
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Fig. 1. Markov chain model combining energy model and trafficmodels.

will decrease byE0, unless the node has already ran out of
energy. (ii) If the device is in theinactivestate and an event
does not occur, the energy level in the node will not change.
(iii) If the device is in theactive state and an event occurs,
the energy level in the node will not change. (iv) If the device
is in theactivestate and an event does not occur, the energy
level in the node will increase byE0, unless it has reached its
maximum,B (the battery is full).

We can then model the state of the node using a2N
state Markov chain. The state of the node will represent its
energy harvesting state (i.e. activeor inactive) as well as the
amount of energy stored in the battery. Such a Markov chain
is depicted in Figure 1. In this model, states0 throughN − 1
represent the case where the device is in theinactive state.
The device is in theactive state if the system is in statesN
through2N − 1. Furthermore, the amount of energy stored
in the battery is given byE = (n modN)E0, wheren is the
state number. In other words, the battery is empty in states0
andN , and is completely full in statesN − 1 and2N − 1.

The components of the transition matrixP for this Markov
chain are given by

Pi,j =























(1 − p)(1 − w) j = i
p(1 − w) j = i − 1
(1 − p)w j = i + N
pw j = i + N − 1
0 otherwise

(1)

and

Pi,j =























p(1 − r) j = i
(1 − p)(1 − r) j = i + 1
pr j = i − N
(1 − p)r j = i − N + 1
0 otherwise

(2)

for i = 1, ..., 2N − 2. Furthermore, we haveP0,0 = 1 −

w, P0,N = w, and P0,j = 0 when j 6= 0 or N . Similarly,
P2N−1,2N−1 = 1 − r, P2N−1,N−1 = r, andP0,j = 0 when
j 6= 2N − 1 or N − 1.

III. L OSSPROBABILITY DUE TO ENERGY RUN-OUT

We are interested in finding the average probability that an
event is lost (i.e. is not sensed and reported), due to lack of
sufficient energy in the node. To find this probability, we note

that an event is lost if and only if the event occurs when the
node is in state0. Note that when the node is in stateN it
will collect sufficient energy during one time slot for the event.
When the node is in all other states, it has sufficient energy
stored in its battery. Therefore, we can write the probability
of event loss by

pL = π0 (3)

whereπn denotes the steady state probability that the Markov
chain is in staten. Note that since this Markov chain is of finite
length, irreducible and non periodic, it has a steady state.

The steady state probabilities for all states can be obtained
using the eigen analysis of the transition matrix,P. That is, if
the eigen decomposition of the transition matrix is given by

P = U†ΛU (4)

then the columns ofU, uk, k = 0, ..., 2N − 1, are the eigen
vectors ofP and the components of the diagonal matrixΛ,
λk, k = 0, ..., 2N − 1, are its eigen values. Then the steady
state probabilitiesπ = [π0, ..., π2N−1]

T will be given by the
eigen vector corresponding to an eigen value of unity. That
is,π = uk0

, whereλk0
= 1.

While this method provides a general solution for the steady
state probabilities, the computation of eigen analysis of the
matrix P quickly grows withN . The particular structure of
this Markov chain, however, allows us to derive a closed form
solution for the steady state probabilityπ0. To solve forπ,
we write the equilibrium equations for different combination
of states.

Considering a boundary containing the states0 and N
(Figure 1, Boundary A), the equilibrium equation is

pwπ1 +p(1−w)π1−(1−p)(1−r)πN −(1−p)rπN = 0 (5)

or
pπ1 = (1 − p)πN . (6)

Also, the equilibrium equation for a boundary around states1
andN + 1 (Figure 1, Boundary B) results in

pπ2 + (1 − p)πN − pπ1 − (1 − p)πN+1 = 0. (7)

Substituting (6) in (7) gives

pπ2 = (1 − p)πN+1. (8)



By continuing this procedure for statesn andN + n for n =
1, ..., N − 1, we can conclude that

πn = απN+n−1 (9)

where α = 1−p
p

. The equilibrium equation for a boundary
around staten, where1 ≤ n ≤ N − 2 (Figure 1, Boundary
C) results in

[p(1 − w) + pw + (1 − p)w]πn − p(1 − w)πn+1

−prπN+n − (1 − p)rπN+n−1 = 0 (10)

By substituting (9) in (10) we get

[p + (1 − p)w − pr] πn

−[(1 − p)(1 − w) + pr]πN+n = 0 (11)

or
πN+n = βπn (12)

whereβ = p+(1−p)w−pr

(1−p)(1−w)+pr
. Also, the equilibrium equation for

a boundary around state0 (Figure 1, Boundary D) results in

wπ0 − prπN + p(1 − w)π1 = 0 (13)

which using (6) becomes

wπ0 − [pr + (1 − p)(1 − w)] πN = 0 (14)

or
πN = γπ0 (15)

whereγ = w
pr+(1−p)(1−w) . Finally, the equilibrium equations

for a boundary around state2N − 1 (Figure 1, Boundary E)
result in

rπ2N−1 − (1 − p)(1 − r)π2N−2 − (1 − p)wπN−1 = 0 (16)

which using (6) becomes

rπ2N−1 = [p(1 − r) + (1 − p)w] πN−1 (17)

or
π2N−1 = δπN−1 (18)

whereδ = p(1−r)+(1−p)w
r

. By combining (9), (12), (15), and
(18), we can have

πn = αnβn−1γπ0 (19)

and
πN+n−1 = αn−1βn−1γπ0 (20)

for 1 ≤ n ≤ N − 1, and

π2N−1 = αN−1βN−2γδπ0. (21)

Now we apply the constraint
∑2N−1

n=0 πn = 1, or

π0 +

N−1
∑

n=1

αnβn−1γπ0 +

N−1
∑

n=1

αn−1βn−1γπ0

+δαN−1βN−2γπ0 = 1 (22)

yields

π0 =
1

1 + γ(α + 1)1−αN−1βN−1

1−αβ
+ δαN−1βN−2γ

. (23)

IV. AVERAGE TIME TO RUN-OUT

We propose the use of the Average Time to Run-Out
(ATERO) as a vulnerability metric for each node. We define
Tn→k as the average number of steps that is required to visit
state k for the first time, if we start at staten. With this
notation, the ATERO for staten is represented byTn→0.

One method to calculate the ATERO is to modify the
Markov chain by making state 0 an absorbing state. That is
the modified Markov chain will have a transition matrix,P′,
whereP ′

0,0 = 1, P0,N = 0, andP ′
i,j = Pi,j for all other i, j

pairs. ThenTn→0 in the original Markov chain is equal to the
average time to absorbtion in the modified chain. In general,
if the transition matrix is of the form

P′ =

[

I 0

T S

]

(24)

the fundamental matrixof the Markov chain is defined asQ =
(I − S)−1. Given this form, the number of times, starting in
statei, we expect to visit statej before absorption is theijth
entry ofQ. Hence, the total number of steps expected before
absorption equals the total number of visits we expect to make
to all the non-absorbing states. This is the sum of all the entries
in the ith row of Q.

Although this provides a general solution, the calculationof
Q for a large Markov chain is very difficult. However, for the
particular Markov chain at hand, we can exploit the structure
of the chain to recursively calculateTn→0. This is done by
noting that given a start staten + 1, where0 ≤ n ≤ N − 2,
we must visit staten before absorption. Hence, we have

Tn+1→0 = Tn+1→n + Tn→0 (25)

Along the same line, given a start stateN + n, where1 ≤

n ≤ N − 1, before absorption, we must visit staten. Hence

TN+n→0 = TN+n→n + Tn→0. (26)

Thus, if we calculateTn+1→n andTN+n→n we have

Tn→0 =

n
∑

k=1

Tk→k−1 (27)

and

TN+n→0 = TN+n→n +

n
∑

k=1

Tk→k−1 (28)

for 0 ≤ n ≤ N .
The value ofT2N−1→N−1 can be calculated without recur-

sion. That is, we have

T2N−1→N−1 =

∞
∑

k=0

(k + 1)(1 − r)kr =
1

r
(29)

Now consider statesn, n+1, N +n andN +n+1, where



0 ≤ n ≤ N − 2. For TN+n→n we can write

TN+n→n =

∞
∑

i=0

(i + 1)[p(1 − r)]ipr

+

∞
∑

i=0

(i + 1 + Tn+1→n)[p(1 − r)]i(1 − p)r

+

∞
∑

i=0

(i + 1 + TN+n+1→n)

×[p(1 − r)]i(1 − p)(1 − r)

=
pr

(1 − p + pr)2
+

(1 − p)r

(1 − p + pr)2

+
(1 − p)r

1 − p + pr
Tn+1→n +

(1 − p)(1 − r)

(1 − p + pr)2

+
(1 − p)(1 − r)

1 − p + pr
TN+n+1→n

=
1

1 − p + pr
+

(1 − p)r

1 − p + pr
Tn+1→n

+
(1 − p)(1 − r)

1 − p + pr
TN+n+1→n

= a + bTn+1→ncTN+n+1→n, (30)

wherea = 1
1−p+pr

, b = (1−p)r
1−p+pr

, andc = (1−p)(1−r)
1−p+pr

.
Along the same lines, forTn+1→n we have

Tn+1→n =

∞
∑

i=0

(i + 1)[(1 − p)(1 − w)]ip(1 − w)

+
∞
∑

i=0

(i + 1 + TN+n→n)[(1 − p)(1 − w)]ipw

+

∞
∑

i=0

(i + 1 + TN+n+1→n)

×[(1 − p)(1 − w)]i(1 − p)w

=
p(1 − w)

(p + w − pw)2

+
pw

(p + w − pw)2
+

pw

p + w − pw
TN+n→n

+
(1 − p)w

(p + w − pw)2
+

(1 − p)w

p + w − pw
TN+n+1→n

=
1

p + w − pw
+

pw

p + w − pw
TN+n→n

+
(1 − p)w

p + w − pw
TN+n+1→n

= d + eTN+n→n + fTN+n+1→n, (31)

whered = 1
p+w−pw

, e = pw

p+w−pw
, andf = (1−p)w

p+w−pw
.

Also, for TN+n+1→n we have

TN+n+1→n = TN+n+1→n+1 + Tn+1→n. (32)

By employing (32) in (30) and (31) we can solve forTn+1→n

andTN+n→n as a linear function ofTN+n+1→n+1. That is

Tn+1→n = ATN+n+1→n+1 + B (33)

and
TN+n→n = CTN+n+1→n+1 + D (34)

whereA = f+ec
1−f−eb−ec

, B = d+ea
1−f−eb−ec

, C = A(b + c) + c,
andD = B(b + c) + a.

Now, by recursively applying (34) we get

TN+n→n = CN−1−nT2N−1→N−1 + D
1 − CN−1−n

1 − C

= CN−1−n 1

r
+ D

1 − CN−1−n

1 − C
. (35)

And by applying (33) we get

Tn→n−1 = ACN−1−n 1

r
+ AD

1 − CN−1−n

1 − C
+ B. (36)

Therefore, using (27) we have

Tn→0 =

n
∑

k=1

(

ACN−1−k 1

r
+ AD

1 − CN−1−k

1 − C
+ B

)

= ACN−1

(

1

r
−

D

1 − C

) n
∑

k=1

C−k

+n

(

AD

1 − C
+ B

)

= ACN−2

(

1

r
−

D

1 − C

)

1 − C−n

1 − C−1

+n

(

AD

1 − C
+ B

)

. (37)

Also, TN+n→0 is given by (26), (35) and (37).

V. RESULTS

Figure 2 compares the LPERO obtained from theory (Eq.
(3) and (23)) with those obtained from simulations. We have
assumed thatw = 0.005 andr = 0.045, which means that the
device is in theactive state 10% of the time. Moreover, we
have assumed thatN = 20. We observe that the simulation
results and the theoretical results match perfectly.

Figure 3 presents the LPERO versusN . Once again, we
have assumed thatw = 0.005 and r = 0.045. We can see
that as expected larger battery capacities lead to significant
drop in the event loss probability. We observe that to achieve
event loss probability of10−5 or better, we would require
a battery size ofB ≥ 32E0 and B ≥ 99E0 for p = 0.01
and p = 0.03, respectively. Even battery sizes as large as
B ≥ 1000E0, however, will not be sufficient to reduce the
event loss probability near10−5.

Figure 4 compares the ATERO obtained from theory (Eq.
(37) and (26)) with those obtained from simulations. Again,
we have assumed thatw = 0.005 andr = 0.045. Furthermore,
we assume thatp = 0.09 which is 10% lower than the average
harvesting rate. Moreover, we have assumed thatN = 20. We
see that the simulation results and the theoretical resultsmatch
very closely.

Figures 5 depicts the ATERO for the three cases where
w = 0.05 and r = 0.45, w = 0.005 and r = 0.045, and
w = 0.0005 and r = 0.0045, respectively. In all three cases,
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the average harvested power is equal toρ = w
w+r

ρa = 0.1ρa.
However, these three cases represent different average lengths
of active and inactive periods. We observe that for largew
and r, the statesn and N + n have similar ATERO values.
This means that the vulnerability of the node can simply be
represented by the level of remaining energy in the node
and the harvesting state has little information. In contrast,
we can see that for smallw and r, all of the active states
have rather large ATERO compared with theinactive states.
Thus, the vulnerability of the node can be represented only by
its harvesting state, with good approximation. In the middle
range of ther andw, however, both the remaining energy and
the harvesting state information are necessary to represent the
relative vulnerability level of each node in the system.

VI. CONCLUSIONS

In this paper we have presented a Markov based model
for energy harvesting nodes in wireless sensor networks.
The presented model considers both the state of the energy
harvesting process as well as the remaining energy supply
of the node to determine the state of the node. Closed form
solutions for the event loss probability and average time
to run-out are then derived from the presented model. The
results provide insight into the relationship between system
parameters such as average harvested power and average traffic
rate and maximum battery capacity and give us guidance to
set the requirements for energy harvesting nodes in wireless
sensor networks. Also, the derived vulnerability metric can
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be used in various harvesting aware techniques at different
protocol layers.
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