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Abstract

We introduce a set of useful expressions of Differential Privacy (DP) notions in terms of the
Laplace transform of the privacy loss distribution. Its bare form expression appears in several
related works on analyzing DP, either as an integral or an expectation. We show that recognizing
the expression as a Laplace transform unlocks a new way to reason about DP properties by
exploiting the duality between time and frequency domains. Leveraging our interpretation,
we connect the (q, ρ(q))-Rényi DP curve and the (ε, δ(ε))-DP curve as being the Laplace and
inverse-Laplace transforms of one another. This connection shows that the Rényi divergence
is well-defined for complex orders q = γ + iω. Using our Laplace transform-based analysis,
we also prove an adaptive composition theorem for (ε, δ)-DP guarantees that is exactly tight
(i.e., matches even in constants) for all values of ϵ. Additionally, we resolve an issue regarding
symmetry of f -DP on subsampling that prevented equivalence across all functional DP notions.

1 Introduction

Differential privacy (DP) [13] has become a widely adopted standard for quantifying privacy of
algorithms that process statistical data. In simple terms, differential privacy bounds the influence a
single data-point may have on the outcome probabilities. Being a statistical property, the design
of differentially private algorithms involves a pen-and-paper analysis of any randomness internal
to the processing that obscures the influence a data-point might have on its output. A clear
understanding of the nature of differential privacy notions is therefore tantamount to study and
design of privacy-preserving algorithms.

Throughout its exploration, various functional interpretations of the concept of differential privacy
have emerged over the years. These include the privacy-profile curve δ(ϵ) [5] that traces the (ϵ, δ)-DP
point guarantees, the f -DP [11] view of worst-case trade-off curve between type I and type II errors
for hypothesis testing membership [19, 6], the Rényi DP [23] function of order q that admits a natural
analytical composition [1, 23], the view of the privacy loss distribution (PLD) [29] that allows for
approximate numerical composition [20, 18], and the recent characteristic function formulation of
the dominating privacy loss random variables Zhu et al. [32]. Each of these formalisms have their
own properties and use-cases, and none of them seem to be superior in all aspects.

Regardless of their differences, they all have some shared difficulties—certain types of manipu-
lations on them are harder to perform in the time-domain, but considerably simpler to do in the
frequency-domain. For instance, Koskela et al. [20] noted that composing PLDs of two mechanisms
involve convolving their probability densities, which can be numerically approximated efficiently
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by multiplying their Discrete Fast-Fourier Transformations (DFFT) and then inverting it back
to get the convolved density using Inverse-DFFT. Such maneuvers are also frequently performed
for analytical reasons while proving properties of differential privacy, often without even realizing
this detour through the frequency-domain. A notable example of this is the analysis of Moments’
accountant by Abadi et al. [1], where the authors bound higher-order moments of subsampled
Gaussian distributions, compose the moments through multiplication, and then derive the (ε, δ)-DP
bound on the DP-SGD mechanism. Their analysis goes the through frequency space, as the moment
generating function of a random variable corresponds to the two-sided Laplace transform of its
probability density function [22]. Often times when dealing with a functional notion of DP, expressing
components like expectations or cumulative densities their integral form ends up being a Fourier or
a Laplace transform. Realizing them as such can be tremendously useful in analysis.

In this paper, we formalize these time-frequency domain dualisms enjoyed by the functional
representations into a new interpretation of differential privacy. In addition to augmenting existing
perspectives on DP, this interpretation provides a flexible analytical toolkit that greatly extends
our cognitive reach in reasoning about DP and its underpinnings. This interpretation is based
on recognizing that the privacy-profile δP |Q(ε) := supS P (S)− eε ·Q(S) and the Rényi-divergence
Rq (P∥Q) := 1

q−1
∫
Ω P qQ1−qdθ between any two distributions P,Q on the same space Ω can be seen

as a Laplace transform1 of the privacy loss distribution PLD(P∥Q), the distribution of privacy loss
random variable Z = LP |Q(Θ) where Θ ∼ P :

∀ε ∈ R : δP |Q(ε) = E
Z←PLD(P∥Q)

[
max{0, 1− eε−Z}

]
= L{1− FZ(t+ ε)} (1), (1)

∀q ∈ C : e(q−1)·Rq(P∥Q) = E
Z←PLD(P∥Q)

[
e(q−1)·Z

]
= B {fZ(t)} (1− q), (2)

where FZ(t) = Pr[Z < t] is the cumulative distribution function and fZ(t) =
∫
{θ∈Ω:LP |Q(θ)=z} Pdθ

is the (generalized) density function of the privacy loss random variable Z. The first equality
in (1) is a widely used way to represent the (ε, δ(ε))-DP curve in literature [29, 6, 5, 20, 18, 30, 9].
Similarly, the first equality in (2) represents the well-known moment-generating function of privacy
loss [23, 1, 6]. The second equalities above are part of a set of Laplace expressions presented
in this paper. Together, these expressions unlock a formal approach to perform a wide-variety
of manipulations and transformations on them using the fundamental properties of the Laplace
functional (see Table 1). Using them, we show that the privacy-profile and Rényi divergence between
any two distributions have the following equivalence.

∀q ∈ C : e(q−1)·Rq(P∥Q) = q(q − 1) · B
{
δP |Q(t)

}
(1− q), (3)

which again is a Laplace transform expression. Furthermore, Zhu et al. [32]’s characteristic function
of the privacy loss ϕP |Q(q) := E

P

[
eiq log(P/Q)

]
also turns out to be a Fourier transform, which is a

special case of the bilateral Laplace transform:

∀q ∈ R : ϕP |Q(q) = E
Z←PLD(P∥Q)

[
eiqZ

]
= B {fZ} (−iq). (4)

These expressions can take advantage of the relationship between their time-domain and complex
frequency-domain representations, as certain manipulations are more straightforward in one domain
as compared to the other. Using the Laplace transform interpretations extensively, our paper presents
the following findings.

1Laplace transform maps a time-domain function g(t) with t ∈ R to a function L{g} (s) :=
∫∞
0
e−stg(t)dt with

s ∈ C in the complex space. Similarly, bilateral Laplace transform of g(t) is defined as B {g} (s) :=
∫∞
−∞ e−stg(t)dt.
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1. We note that the Laplace transform expression of Rényi divergence permits the order q to be
a complex number in C. Based on this observation, we revisit the discussion on equivalence
and interconversion between (q, ρ)-Rényi DP and (ε, δ)-DP in literature [6, 32, 2, 9]. We show
that the privacy-profile curve δP |Q(ε) and the Rényi divergence Rq (P∥Q) as a function of q
are equivalent as long as either P is absolutely continuous w.r.t. Q (denote as P ≪ Q) or
Q≪ P ; absolute continuity in both directions is not necessary. Moreover, we establish that
while δP1|Q1

(ε) ≤ δP2|Q2
(ε) for all ε implies that Rq (P1∥Q1) ≤ Rq (P2∥Q2) for all q > 1, the

converse does not hold. This is due to the fact that the dominance relationship between privacy
profiles δP1|Q1

(ε) and δP2|Q2
(ε) depends on how the Rényi divergence curves Rq (P1∥Q1) and

Rq (P2∥Q2) behave along the complex line {q ∈ C : Re(q) = c} at any c ∈ R for which the two
divergences exist; not along (1,∞).

2. Among all functional notions of DP, exactly tight adaptive composition theorem is only known
for Rényi DP in an explicit form2[23, 8]. And, for the PLD formalism, only non-adaptive
composition theorems are known that are exactly tight3 [18, 29, 20]. In this paper, we establish
an exactly tight theorem for composing any two privacy profiles, δP1|Q1

(ε) and δP2|Q2
(ε),

leveraging time-frequency dualities with their Rényi divergence curves. Our composition
method also extends to adaptive scenarios, provided that the conditional distributions P θ

2 and
Qθ

2, given an observation θ from the first distribution pair, are dominated by a privacy profile
for all θ, which is a standard assumption for adaptive composition guarantees.

3. We apply our composition theorem for privacy profiles to derive an optimal composition theorem
for (ϵi, δi)-point guarantees of differential privacy. Our approach begins by determining the
worst-case privacy profile δi(ϵ) that any (ϵi, δi)-DP mechanism must satisfy. We then use our
composition theorem to derive the combined privacy profile δ⊗(ϵ). This provides the most
precise composition guarantee possible when given only that a sequence of mechanisms each
satisfies an (ϵi, δi)-DP point guarantee. Our bound surpasses the optimal composition result
in Kairouz et al. [19, Theorem 3.3] because, whereas their result only provides a discrete set of
(ϵ, δ) values met by the composed curve, ours forms a continuous curve. This continuity enables
us to determine the tightest ϵ value for any given δ budget. We also show that our results
align with the bounds generated by numerical accountants such as Google’s PLDAccountant
[12] and Microsoft’s PRVAccountant [18].

4. The concept of f -DP introduced by Dong et al. [11] provides a functional perspective on
the indistinguishability between two distributions P and Q through hypothesis testing. The
function f : [0, 1]→ [0, 1] represents a bound on the trade-off T (P,Q) : [0, 1]→ [0, 1] between
Type-I and Type-II errors for any test aimed at determining whether a sample θ originates
from P or Q. Unlike other functional notions of differential privacy, f -DP is unique in being
not connected to the rest via a Laplace transform. Instead, Dong et al. [11] establish that
the privacy profile δ(ε) and the trade-off curve f of a mechanism exhibit a convex-conjugate
relationship, also known as Fenchel duality. However, Dong et al. [11, Proposition 2.12]
confirm this functional equivalence only when f is symmetric. With Poisson subsampling at
probability p, the resulting amplified curve fp(x) = pf(x) + (1− p) · x becomes asymmetric.

2Dong et al. [11] examine tight composition under the f -DP framework by defining an abstract composition
operation, denoted f1 ⊗ f2. However, they do not provide an explicit form for this operator for a general trade-off
function f , offering it only for the specific case of the Gaussian trade-off function Gµ.

3Unlike under non-adaptivity, composing two privacy loss random variables Z1 and Z2 does not amount to
convolving their privacy loss distributions (PLDs) fZ1 ⊛ fZ2 when the mechanisms are adaptive because Z1, Z2 become
dependent. We note that Gopi et al. [18] seem to incorrectly assert their Theorem 5.5 to be valid under adaptivity.
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To ensure symmetry, the subsampling result [11, Theorem 4.2] applies a p-sampling operator
Cp(f) : min{fp, f−1p }∗∗ that overestimates the fp-curve. We show that this symmetrization
step disrupts the equivalence between f -DP and privacy profile formalisms (and thereby with
other functional notions). To address this, we propose maintaining the natural asymmetry
in f -DP and avoid the need for this symmetrization step by adopting a convention on the
direction of skew. This completes the equivalences across all functional notions of DP.

Related work: Our work builds an interpretation of differential privacy by leveraging several
works that appeared before. This includes, but not limited to the works on various interpretations
of privacy by Dong et al. [11], Dwork and Rothblum [14], Dwork et al. [16], Mironov [23], Bun and
Steinke [8], Sommer et al. [29], Gopi et al. [18], Koskela et al. [20], Zhu et al. [32]. In particular,
the work of Zhu et al. [32] shares the most similarity with ours, as they were the first to observe
that many functional notions of differential privacy appear to be linked via Laplace or Fourier
transforms. However, their work centers on using the characteristic function of privacy loss (in (4))
as an intermediate functional representation connecting various DP notions. In contrast, we examine
the nature of these connections themselves to harness the perspective of Laplace transformations as
an analytical toolkit for differential privacy.

Relevant studies on composition theorems for differential privacy include Dwork et al. [15], Kairouz
et al. [19], Murtagh and Vadhan [24], Bun and Steinke [8], Mironov [23], along with numerical
accounting methods such as those by Gopi et al. [18], Koskela et al. [20], Doroshenko et al. [12].

Paper structure: After reviewing preliminaries on DP and Laplace transforms in Section 2,
we present an equivalent description of both the δP |Q(ε) privacy profile and the Rq (P∥Q)-Rényi
divergence curve in terms of a set of Laplace transforms of the privacy loss distribution’s probability
function in Section 3 and use them to connect the two notions. After discussing the implications
of these connections, we provide our composition results for privacy profiles and (ε, δ)-DP point
guarantees in Section 4. Finally, in Section 5 we discuss the problem of asymmetry in functional
notions and an approach to handling it without breaking equivalences.

2 Preliminaries

Here we introduce our notations, provide some background related to Differential Privacy and a
short introduction to Laplace transforms.

2.1 Background on Differential Privacy

For a data universe X , we consider datasets D of size n: D = (x0, . . . , xn) ∈ X n and algorithms
M : X n → Ω that return a random output in space Ω. We assume that X includes a sentinel
element ⊥, representing an empty entry, to simulate ‘add’ and ‘remove’ adjacency within ‘replace’
adjacency. Two datasets D and D′ in X n are considered neighboring (denoted by D ≃ D′) if they
differ by a single record replacement. Throughout the paper, we denote the distributions of the
output random variablesM(D) andM(D′) as P and Q, respectively, and focus our study on the
indistinguishability behavior of these two distributions. For simplicity, we use the same symbols P
and Q to refer to their probability mass or density functions.

Definition 2.1 ((ε, δ)-Differential Privacy and Privacy Profiles [16, 5]). Let ε ≥ 0 and 0 ≤ δ ≤ 1. A
randomized algorithm M is (ε, δ)-differentially private (hereon (ε, δ)-DP)

if ∀D ≃ D′ and ∀S ⊂ Ω, P[M(D) ∈ S] ≤ eε · P[M(D′) ∈ S] + δ. (5)
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The privacy profile of M on a pair of neighbours D ≃ D′ is the function δP |Q(ε) for ε ∈ R, where

δP |Q(ε) := sup
S⊂Ω

P (S)− eεQ(S) =

∫
Ω
max{0, P (θ)− eε ·Q(θ)}dθ. (6)

For any ε > 0, algorithm M tightly satisfies (ε, δ)-DP if δ = supD≃D′ δM(D)|M(D′)(ε).

Remark 2.1. The privacy profile δP |Q(ε) is equivalent to the Hockey-stick divergence Heϵ(P∥Q).
Our definition of the privacy profile allows ε < 0, in contrast to the original definitions of privacy
profile by Balle et al. [5] and of Hockey-stick divergence by Sason and Verdú [28], which consider
only non-negative ε. Although permitting ε < 0 might seem counterintuitive, it is both accurate and
efficient, as negative values of ε yield the privacy profile with P and Q reversed.

δQ|P (ε) = sup
S⊂Ω

Q(S)− eεP (S) = 1− eε + eε[sup
S⊂Ω

P (S∁)− e−εQ(S∁)] = 1− eε + eεδP |Q(−ε). (7)

Definition 2.2 (Rényi Differential Privacy [23]). Let q > 1 and ρ ≥ 0. A randomized algorithm
M is (q, ρ)-Rényi differentially private (henceforth (q, ρ)-Rényi DP) if, for all datasets D ≃ D′, the
q-Rényi divergence satisfies Rq (M(D)∥M(D′)) ≤ ρ. For two distributions P,Q over the same space,
we define the Rényi divergence Rq (P∥Q) of any order q ∈ ROCP,Q as

Rq (P∥Q) :=
1

q − 1
log Eq (P∥Q) , where Eq (P∥Q) :=

∫
θ∈Ω

P (θ)qQ(θ)1−qdθ, (8)

and ROCP,Q is the region consisting of all orders q ∈ C where the integral is conditionally convergent.

Remark 2.2. It is known that Rényi divergence converges to Kullback-Leibler divergence as order q
tends to one4. Among real orders q ∈ R, privacy researchers typically restrict themselves to q > 1
without thinking much about values smaller than 1. Just like privacy profile δP |Q(ε), Rényi divergence
for orders q < 1 yield the Rényi divergence with P and Q reversed.

e(q−1)·Rq(P∥Q) = Eq (P∥Q) =

∫
θ∈Ω

P (θ)qQ(θ)1−qdθ = E1−q (Q∥P ) = e−q·R1−q(Q∥P ). (9)

Definition 2.3 (f -Differential Privacy [11]). Let f : [0, 1] → [0, 1] be a convex, continuous, non-
increasing function such that f(x) ≤ 1 − x for all x ∈ [0, 1]. A randomized algorithm M is
f -differentially private (henceforth f -DP) if

∀α ∈ [0, 1] : fM(D)|M(D′)(α) ≥ f(α), (10)

where for any distributions P,Q on Ω, the fP |Q : [0, 1]→ [0, 1] is the trade-off function defined as

∀α ∈ [0, 1] : fP |Q(α) := inf
ϕ:Ω→[0,1]

{βϕ : αϕ ≤ α}, (11)

where αϕ := E
P
[ϕ], and βϕ := 1− E

Q
[ϕ].

Remark 2.3. For a hypothesis test ϕ on a sample θ originating from either P or Q, we follow the
convention that θ ∼ Q represents the positive event, and ϕ(θ) = 1 denotes a positive prediction. With
this convention, αϕ and βϕ represent the false positive rate (Type I error) and false negative rate
(Type II error), respectively. Note that the left-continuous inverse of the trade-off function f−1P |Q(β)
gives the trade-off curve with P and Q reversed.

f−1P |Q(β) := {inf α ∈ [0, 1] : fP |Q(α) ≤ β} = inf
ϕ:Ω→[0,1]

{αϕ : βϕ ≤ β} = fQ|P (β). (12)

4It follows from the replica trick : E [logX] = limn→0
1
n
logE [Xn], when logX is the privacy loss rv Z ← PLD(P∥Q).
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Theorem 2.4 (Privacy of Gaussian Mechanism [16, 3, 23]). If P = N (µ, σ2Id) and Q = N (µ′, σ2Id)
are two multivariate Gaussian distributions on Rd such that κ = ∥µ−µ′∥22/2σ2, then Rq (P∥Q) = κq
for all q > 1 and for all ε ∈ R 5,

δP |Q(ε) = Φ

(
ε− κ√

2κ

)
− eεΦ

(
ε+ κ√

2κ

)
= O(e−ε

2/4κ), where Φ(t) = P
G∼N (0,1)

[G > t] . (13)

2.2 Background on Laplace Transforms

Laplace transform is an integral transform that maps time domain functions with real arguments
(t ∈ R) to frequency domain functions with complex arguments (s ∈ C). The one-sided and two-sided
Laplace transformations of a function g(t) at complex frequency s is defined respectively as

L{g(t)} (s) :=
∫ ∞
0+

e−stg(t)dt, and B {g(t)} (s) :=
∫ ∞
−∞

e−stg(t)dt, (14)

where 0+ is the shorthand notation for limit approaching 0 from positive side. We can express
two-sided Laplace transforms using one-sided transform as

B {f(t)} (s) = L{f(t)} (s) +
∫ 0+

0−
f(t)dt+ L{f(−t)} (−s), (15)

where
∫ 0+

0− f(t)dt may not be 0 if f has an impulse (aka. integrable singularity) at 0, informally
defined to be an infinitely dense point but with a finite mass.

Remark 2.5. Conventionally, one-sided Laplace transform is defined to include point mass located at
0 entirely (i.e., integration is from 0− instead of 0+). For aligning with the conventions in differential
privacy, our definition entirely excludes the point mass located at 0 by convention. The Laplace
transform properties presented in this paper are adjusted to reflect the same.

The values of s ∈ C for which the integrals in (14) converges conditionally6 is referred to as the
region of (conditional) convergence (ROC) of the respective transforms. This region is always a
strip parallel to the imaginary axis ωi where i =

√
−1 and ω ∈ R, which follows from dominated

convergence theorem [25]. We denote the region of convergence for a function g as ROCL{g} in case
of one-sided Laplace transform and as ROCB{g} for two-sided Laplace transforms.

Uniqueness and Inversion. Laplace transforms are unique [10]: if two continuous functions g
and h share the same Laplace transform, then, g(t) = h(t) holds for all t ∈ R+ in the case of a
one-sided Laplace transform and for all t ∈ R for a two-sided Laplace transform. As a consequence
of uniqueness, Laplace transform ḡ(s) = L{g(t)} (s) can be inverted to get back g(t) by applying an
Inverse Laplace transform [26], defined as

g(t) = L−1{ḡ(s)}(t) := 1

2πi
lim
ω→∞

∫ γ+iω

γ−iω
estḡ(s)ds =

1

2πi

∫ γ+i∞

γ−i∞
estḡ(s)ds, (16)

where the integral is taken over the line consisting of all points s with Re(s) = γ for any γ lying in
the ROC of ḡ(s). The formula (16) also inverts two-sided Laplace transform B {g(t)}, as long as we
choose γ in the ROC of the two-sided transform [25].

5While the original result by Balle and Wang [3] was stated only for non-negative ε, the expression remains identical
for ε < 0 on invoking (7), thanks to the symmetry property Φ(−x) = 1− Φ(x) of normal distribution.

6Conditional convergence for L{g} at s ∈ C means that the limit limγ→∞
∫ γ

0+
e−stg(t) dt exists. Similarly, the

limit limγ→∞
∫ γ

−γ
e−stg(t) dt should exist for B {g} to be conditionally convergent at s.
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Remark 2.6. Uniqueness of Laplace transforms extends to discontinuous functions as well. If g and
h are continuous almost everywhere, i.e. the set where either isn’t continuous has a total Lebesgue
measure of zero, then g(t) = h(t) almost everywhere in the respective time-domains. In such cases, it
can be shown [17] that the inversion formula (16) gives

1

2πi

∫ γ+i∞

γ−i∞
estḡ(s)ds =

1

2
[g(t−) + g(t+)]. (17)

Relation to Fourier transform. The Fourier transform G(ω) of a function g is defined as

G(ω) =

∫ ∞
−∞

e−i2πωtg(t)dt, (18)

which is the same as the two-sided laplace transform B {g(t)} (s) for a purely imaginary s = i2πω.
As such, Fourier transform is seen as a special case of Laplace transforms.

Properties of Laplace transforms. The Laplace transformation is a very useful tool because a
lot of operations in the time-domain correspond to simpler operations in the frequency domain and
vice versa. For a detailed exposition on these properties, refer to Cohen [10] for one-sided Laplace
transform and to Oppenhiem et al. [25] for the two-sided counterpart. In Appendix A.1, we provide a
table summarizing all the properties that we rely on in this paper. We reference properties of Table 1

throughout the paper using the notation
(m)
= , where (m) is the equation number of the used property.

3 Laplace Transform Expressions of Differential Privacy

Differential privacy bounds the maximum divergence in the output distribution caused by including
or omitting a data-point from the dataset. This principle is mirrored in the notion of privacy loss
distribution which expresses how much an algorithm’s output reveals about the inclusion of a specific
data-point.

Definition 3.1 (Privacy Loss Distribution [29]). The privacy loss of an observation θ ∈ Ω from an
algorithm M, when comparing datasets D ≃ D′, is defined as LP |Q(θ) := log(P (θ)/Q(θ)), where P
and Q are the probability mass/density functions of M(D) and M(D′), respectively. The privacy
loss distribution PLD(P∥Q) is the distribution of LP |Q(Θ) when Θ ∼ P .

Remark 3.1. Similar to other functional privacy notions, the PLD formalism possesses a reversal
property [18, Definition 3.1]. Let fZ and fZ′ represent the generalized density functions of the
random variables Z ← PLD(P∥Q) and Z ′ ← PLD(Q∥P ), respectively. Then

∀z ∈ R : fZ(z) = ez · fZ′(−z). (19)

The PLD(P∥Q) describes how outputs arising from D increase an observer’s confidence that
they did not come from D′. Many prior works make use of the following set of DP expressions in
terms of the privacy loss distribution [29, 6, 5, 20, 18, 30, 9]. The privacy profile δP |Q(ε) is expressed
as

δP |Q(ε) = E
PLD(P∥Q)

[
1− eε−Z

]
+
= E

PLD(Q∥P )

[
e−Z

′ − eε
]
+
= Pr

PLD(P∥Q)
[Z > ε]−eε· Pr

PLD(Q∥P )
[Z ′ < −ε],

(20)
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and the Rényi divergence Rq (P∥Q) is expressed as

Rq (P∥Q) =
1

q − 1
log E

PLD(P∥Q)

[
e(q−1)·Z

]
=

1

q − 1
log E

PLD(Q∥P )

[
e−q·Z

′
]
. (21)

In the following theorem, we present a more dynamic version of these relationships by expressing
them as a set of Laplace transforms of the privacy loss distributions PLD(P∥Q) and PLD(Q∥P ).

Theorem 3.2. For a random variable X, let FX(t) := Pr[X ≤ t] denote its cumulative distribution
function and fX(t) denote its generalized probability density function7. Let P and Q be probability
distributions and Z ∼ PLD(P∥Q) and Z ′ ∼ PLD(Q∥P ) denote their privacy loss random variables.
If Z ∼ PLD(P∥Q) and Z ′ ∼ PLD(Q∥P ), then for all ε ∈ R,

δP |Q(ε) = L{1− FZ(t+ ε)} (1) (22)

= eε · L {FZ′(−t− ε)} (−1) (23)
= eε · L {fZ′(−t− ε)} (−1)− L{fZ(t+ ε)} (1) (24)
= L{fZ(t+ ε)} (0)− eε · L {fZ′(−t− ε)} (0). (25)

And, for all q ∈ ROCB{fZ′} (or equivalently, 1− q ∈ ROCB{fZ}),

e(q−1)·Rq(P∥Q) = Eq (P∥Q) = B{fZ(t)}(1− q) = B{fZ′(t)}(q). (26)

Laplace expressions in Theorem 3.2 often arise in their explicit integral forms within several
proofs in related works on differential privacy, for instance [9, Lemma 9], [30, Proposition 7], and [3,
Theorem 5]. In their integral forms, they frequently undergo manipulations like integration-by-parts
or change-of-variables which can quickly get complicated. Our Theorem 3.2 offers a way to simplify
the complexity of such manipulations as one can express the concerned terms in their Laplace
expressions and invoke its properties from Table 1, like (69) and (71) for shifting or scaling variable
of integration and (73) and (74) for integrating-by-parts. Examples in this paper will illustrate
that reasoning about privacy this way through its Laplace transform interpretation could be quite
effective.

In the following theorem, we show that the Rényi divergence Rq (P∥Q) and the privacy profile
δP |Q(ε) are connected through a Laplace transform as well. We can show this using only the
expressions in Theorem 3.2.

Theorem 3.3 (Rényi DP from privacy profile). Let q > 1. For any two distributions P and Q,

e(q−1)·Rq(P∥Q) = Eq (P∥Q) = q(q − 1) · B
{
δP |Q(t)

}
(1− q), (27)

for all orders q such that 1− q ∈ ROCB{δP |Q}.

Proof. Let Z ∼ PLD(P∥Q) and Z ′ ∼ PLD(Q∥P ). From (25),

δP |Q(ε) = L{fZ(t+ ε)} (0)− eε · L {fZ′(−t− ε)} (0) (28)

=

∫ ∞
0+

e0 · fZ(t+ ε)dt− eε ·
∫ ∞
0+

e0 · fZ′(−t− ε)dt (29)

= 1− FZ(ε)− eε · FZ′(−ε). (30)

7We define density as fX(t)dt = lima→0+
∫ t+a

t−a
FX(u)du to handle cases where FX isn’t differentiable ev-

erywhere, such as when PLD is a discrete distribution. This density is expressible with Dirac delta △(t) as

fX(t) =

 ḞX(t) if derivative ḞX exists at t

[FX(t+)− FX(t−)]△(t) otherwise
, and satisfies FX(t) =

∫ t+

−∞ fX(u)du.

8



We apply the linearity, time-shifting, and reversal properties of two-sided Laplace transforms to
simplify the Laplace transform of privacy profile as follows

B
{
δP |Q(t)

}
(1− q) = B

{
1− FZ(t)− et · FZ′(−t)

}
(1− q) (31)

(68)
= B {1− FZ(t)} (1− q)− B

{
et · FZ′(−t)

}
(1− q) (32)

(70)
= B {1− FZ(t)} (1− q)− B {FZ′(−t)} (−q) (33)

(72)
= B {1− FZ(t)} (1− q)− B {FZ′(t)} (q). (34)

Next, we apply the derivative property of Laplace transforms to get

B {1− FZ(t)} (1− q)
(73)
=
B {fZ(t)} (1− q)

q − 1
and B {FZ′(t)} (q) (73)

=
B {fZ′} (q)

q
. (35)

Finally, noting from Theorem 3.2 and (8) that B {fZ} (1− q) = B {fZ′} (q) = Eq (P∥Q), we have

B
{
δP |Q(t)

}
(1− q) = Eq (P∥Q)

[
1

q − 1
− 1

q

]
=

e(q−1)Rq(P∥Q)

q(q − 1)
. (36)

The privacy profile δP |Q, for any pair of distributions P,Q, is a continuous function8. Therefore,
by Lerch’s theorem (cf. discussion on uniqueness in Section 2.2), any two privacy profiles share the
same Rényi divergence curve if and only if they are identical. In other words, a privacy profile δP |Q is
equivalent to its Rényi divergence curve Rq (P∥Q), provided the Laplace transform B

{
δP |Q

}
(1− q)

exists at some q ∈ C, i.e., ROCB{δP |Q} ≠ ∅.
Note that Theorem 3.3 establishes a connection between Rényi divergence and privacy profile that

applies to all distributions P and Q, whether P is absolutely continuous9 (denoted as P ≪ Q) with
respect to Q or not. The choice of P,Q however influences the region of convergence ROCB{δP |Q}
where the Rényi divergence can be defined. One can verify that if P ≪ Q, the Laplace transform
B
{
δP |Q

}
(1 − q) converges for all real q > 1; and if Q ≪ P , it converges for all q < 1, except

for q = 0. At q = 0 or q = 1, the transform does not converge as the expression for δP |Q(ε) has
singularities at these points because numerator Eq (P∥Q) =

∫
P qQ1−qdθ = 1 when q = 0 or 1 while

denominator becomes zero. Since region of convergence is always a strip in the complex plane C
parallel to the imaginary line, the Rényi divergence exists not just for real orders q, but also for
imaginary orders: {q ∈ C : Re(q) > 1} when P ≪ Q and {q ∈ C : Re(q) < 1 and Re(q) ̸= 0}
when Q≪ P . Therefore, as long as either P ≪ Q or Q≪ P , the region ROCB{δP |Q} is not empty
and a characterizing curve Rq (P∥Q) exists for the profile δP |Q(ε). That is to say, Theorem 3.3
can be used to derive the exact privacy profile δP |Q using the Rényi divergence Rq (P∥Q) function.
We can do this by substituting 1 − q = s in (27), rearranging, and applying the inverse Laplace
transform (16), to get the following explicit form:

δP |Q(ε) = L−1
{
e−sR1−s(P∥Q)

s(s− 1)

}
(ε) =

1

2πi
lim
ω→∞

∫ γ+iω

γ−iω
esε · e

−sR1−s(P∥Q)

s(s− 1)
ds, (37)

where γ ∈ R can be any real point in ROCB{δP |Q}.
8We can write δP |Q(ε) = supS ψS(ε) where ψS(ε) := P (S)−eε ·Q(S) is a continuous decreasing function. Therefore,

the supremum of ϕS over all S is also a continuous decreasing function.
9P is absolutely continuous with respect to Q if for all measurable subsets S ⊂ Ω, P (S) > 0 =⇒ Q(S) > 0. We

say that distribution pair (P,Q) is absolutely continuous (w.r.t. each other) if P ≪ Q and Q≪ P .

9
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Case study. The following example demonstrates an application of the Laplace transform
identity in (3.3). We first describe the privacy profile of the randomized response mechanism [19]
and then use (27) on it to reason about its Rényi divergence characteristics.

Theorem 3.4 (Privacy profile of randomized response). Fix ε > 0 and δ ∈ [0, 1]. Let Mε,δ
RR :

{0, 1} → {0, 1} × {⊥,⊤} be the randomized response mechanism, which has the following output
probabilities.

Mε,δ
RR(0) =



(0,⊥) with probability δ,

(0,⊤) with probability (1−δ)eε
eε+1 ,

(1,⊤) with probability (1−δ)
eε+1 ,

(1,⊥) with probability 0,

Mε,δ
RR(1) =



(0,⊥) with probability 0,

(0,⊤) with probability (1−δ)
eε+1 ,

(1,⊤) with probability (1−δ)eε
eε+1 ,

(1,⊥) with probability δ.

(38)

For P =Mε,δ
RR(0) and Q =Mε,δ

RR(1), the privacy profiles are

∀t ∈ R : δRR := δP |Q(t) = δQ|P (t) =


δ if ε < t,

1− et+1
eε+1(1− δ) if − ε < t ≤ ε,

1− et(1− δ) if t ≤ −ε.

(39)

Theorem 3.4 extends Balle et al. [5, Theorem 2], which provides the privacy profile for randomized
response only in the case where δ = 0 and for values t ≥ 0. From (38), we can see that neither
P ≪ Q nor Q ≪ P holds for the output distributions of randomized response mechanism when
δ > 0. As such, the Laplace transform B

{
δP |Q

}
(1− q) must not converge for any q ∈ R. One can

check that when q ≥ 1, the transform has a term
∫∞
ε e(q−1)t · δdt which blows up to ∞, and when

q < 1, the transform has a term
∫ −ε
−∞ e(q−1)t · (1 − et(1 − δ))dt that blows up to −∞. Hence, the

Rényi divergence of the privacy profile (39) cannot be defined for any order q ∈ R when δ > 0.

10
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Figure 1: Comparison between the indistinguishability characteristic of Gaussian mechanism of The-
orem 2.4 (κ = ∥µ− µ′∥2/2σ2 = ε2/2) and randomized response mechanism defined in Theorem 3.4
(with δ = 0). This figure visualizes the singularities at q = 0 and q = 1 that exists for the Laplace
transform B

{
δP |Q

}
(1−q) disappears for Rényi divergence Rq (P∥Q), which is an effect of the replica

trick unfolding. This figure also demonstrates that neither the dominance Rq (P1∥Q1) ≤ Rq (P2∥Q2)
for all q > 1, nor the dominance B

{
δP1|Q1

}
(1−q) ≤ B

{
δP2|Q2

}
(1−q) for all q ∈ R\{0, 1} is enough

to bound δP1|Q1
(ε) ≤ δP2|Q2

(ε) at all ε ∈ R. Additionally, the black dotted line in the rightmost plot
shows that even the tightest10conversion on the Rényi curve considering only real orders q > 1 fails
to characterize its own privacy profile.

When δ = 0, note that both P ≪ Q and Q ≪ P . Therefore, the Laplace transform δP |Q(ε)
must exist for all q ∈ R \ {0, 1}. The following theorem shows the resulting Rényi divergence curve,
derived by computing the Laplace transform.

Theorem 3.5 (Rényi DP of (ε, 0)-Randomized Response). For any ε > 0 and δ = 0, the output
distributions of randomized response mechanism in Theorem 3.4 exhibit a Rényi divergence

∀q ∈ C s.t. Re(q) ̸∈ {0, 1} : Rq (P∥Q) =
1

q − 1
log

(
eε

1 + eε
e−qε +

1

1 + eε
eqε
)
. (40)

Theorem 3.5 generalizes Mironov [23, Proposition 5], which gives the Rényi divergence of
randomized response only for real orders q > 1. In the following section, we elaborate on the
significance of complex orders in Rényi divergence. Figure 1 visualizes the privacy profile δP |Q, its
Laplace transform B

{
δP |Q

}
, and the corresponding Rényi divergence Rq (P∥Q) of this randomized

response mechanism, and compares it with that of Gaussian mechanism (cf. Theorem 2.4).

3.1 Dominance: Rényi Divergence vs. Privacy Profile

Differential privacy is a study of distributional divergence between output distributions P and Q
not just for a pair of neighboring inputs D,D′ but across all neighboring inputs. When considering
functional notions of DP, comparing indistinguishability characteristics of two output-distribution
pairs, say (P1, Q1) and (P2, Q2), requires a notion of dominance. Zhu et al. [32] define a dominating

10The tightest conversion by Asoodeh et al. [2] lacks a closed-form expression and is challenging to approximate
numerically in a stable way. Therefore, we compare with Canonne et al. [9, Corollary 13], which yields similar values.
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pair of distribution specific to a mechanismM as a pair of distributions P,Q such that

∀ε ∈ R : sup
D≃D′

δM(D)|M(D′)(ε) ≤ δP |Q(ε). (41)

Following the definition by Zhu et al. [32], we define the following notions of dominance.

Definition 3.2 (Dominance for Distribution Pairs). We say that the distribution pair (P2, Q2)
dominates (P1, Q1) in privacy profile (denote as (P1, Q1) ⪯δ (P2, Q2)) if

∀ε ∈ R : δP1|Q1
(ε) ≤ δP2|Q2

(ε). (42)

And, we say (P2, Q2) dominates (P1, Q1) in Rényi divergence (denote as (P1, Q1) ⪯R (P2, Q2)) if

∀q > 1 : Rq (P1∥Q1) ≤ Rq (P2∥Q2) . (43)

The following theorem reveals the surprising fact that, while the Rényi divergence curve and
privacy profile curve are equivalent for all absolutely continuous distribution pairs, this equivalence
does not imply an identical dominance ordering across absolutely continuous distribution pairs.

Theorem 3.6. Consider two absolutely continuous distribution pairs (P1, Q1) and (P2, Q2). Then

(P1, Q1) ⪯δ (P2, Q2) =⇒ (P1, Q1) ⪯R (P2, Q2). (44)

However, the opposite direction does not hold:

(P1, Q1) ⪯R (P2, Q2) ≠⇒ (P1, Q1) ⪯δ (P2, Q2). (45)

Proof. First part directly follows from (26) by noting that

B
{
δP1|Q1

}
(1−q) =

∫ ∞
−∞

e−(1−q)t ·δP1|Q1
(t)dt ≤

∫ ∞
−∞

e−(1−q)t ·δP2|Q2
(t)dt = B

{
δP2|Q2

}
(1−q) (46)

and that for q > 1, q(q − 1) > 0.
The proof of the second statement is based on the example by Zhu et al. [32] comparing the

Rényi DP curve and privacy profile of Gaussian mechanism described in Theorem 2.4 (denote
with (P2, Q2)) with that of randomized response mechanism, defined in Theorem 3.4 (denote with
(P1, Q1)). For any ε > 0, we set κ = ε2/2 in the Gaussian mechanism where (ε, 0) is the parameter
of the randomized response and compare them in Figure 1. From the leftmost plot, we can see that
(P1, Q1) ⪯R (P2, Q2) holds.11 However, note that in the rightmost plot that their privacy profiles
cross one another. Hence, the dominance (P1, Q1) ⪯δ (P2, Q2) does not hold.

Zhu et al. [32] point out that it is troubling that identifying a dominating pair of distributions
in Rényi divergence does not guarantee a corresponding dominance in privacy profiles. Although
the Rényi divergence curve Rq (P∥Q) is an equivalent representation of the privacy profile δP |Q(ε),
converting the Rq (P∥Q) curve into a tight upper bound for privacy profile will always introduce a
gap. This gap can be substantial, as shown in Figure 1, where we compare the (nearly) tight upper
bound (black dotted line) derived for the privacy profile from the Rényi divergence curve (red line
on the left) of the Gaussian mechanism with the actual privacy profile of this Gaussian mechanism.

11Dong et al. [11, Proposition B.7 (a)] show that Rq

(
Mε,0

RR(0)
∥∥∥Mε,δ

RR(1)
)
≤ Rq (N (0, 1)∥N (ε, 1)) for all q > 1, but

the bound actually holds for all q > 0.
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Role of complex orders. While recognizing the fundamental gap between the tightest achievable
bound on the privacy profile derived from a bound on the Rényi divergence curve and the privacy
profile itself, no such tight bound has yet been established. The best available bounds rely on taking
an infimum over pointwise conversions from Rényi divergence at a single order q > 1 to (ε, δ)-DP [9, 8].
However, since pointwise guarantees offer a lossy characterization of indistinguishability, taking an
infimum over privacy profiles implied by these guarantees is unlikely to achieve tight upper bounds.
Notably, from the Inverse Laplace Transform expression (37) for privacy profiles, we observe that the
value of δP |Q at any ϵ depends on the behavior of the Rényi divergence Rq (P∥Q) along the complex
line Re(1− q) = γ for any γ ∈ R \ {0, 1}, and not along the real line. In fact, the choice of γ on R
does not matter at all, as long as it lies in the ROCB{δP |Q}. Thus, we believe that establishing a
tight functional conversion will require examining how the Rényi divergence curls as we move the
order q along the complex line γ + iω.

4 Exactly-Tight Composition Theorems

Unlike functional DP guarantees, point guarantees like (ε, δ)-DP or (q, ρ)-Rényi DP are a lossy
characterization of the indistinguishability between two distributions P and Q. Despite this, using
them for reporting or certifying an algorithm’s worst-case privacy is generally acceptable as the privacy
protection they guarantee, although conservative, is adequate. The main issue arises when attempting
to compose point DP guarantees, as the quantification loss often compounds drastically, resulting in
a significant overestimation of the actual privacy protection provided by an algorithm. Consider the
k-fold (non-adaptive) composition of a one-dimensional Gaussian mechanism with L2 sensitivity 1 and
noise variance σ2 = 1. For individual 1D Gaussian distributions P = N (0, 1) and Q = N (1, 1), the
privacy profile is of the order δP |Q(ε) = O(e−ε

2/2) (cf. Theorem 2.4), indicating that the mechanism
satisfies a point guarantee of (O(

√
log(1/δ)), δ)-DP for any δ ∈ (0, 1]. When we extend this to

k-fold non-adaptive self-composition, the resulting output distribution is a k-dimensional Gaussian,
specifically P⊗k = N (⃗0, Ik) and Q⊗k = N (⃗1, Ik). The privacy profile of this composition is of the
asymptotic order δP⊗k|Q⊗k(ε) = O(e−ε

2/2k), yielding a point guarantee of (O(
√
k log(1/δ)), δ)-DP.

However, if we attempt to compose the individual (O(
√

log(1/δ)), δ)-DP point guarantees for each
Gaussian mechanism, even with the optimal composition theorem for (ε, δ)-DP point guarantees
from Kairouz et al. [19], the best achievable guarantee is (O(

√
k log(1/δ)), (k + 1)δ)-DP. This result

is significantly more pessimistic than the true privacy profile—a factor of O(
√
log(k/δ)) in the ε for

the same δ.
Functional notions of DP effectively address this problem by capturing the indistinguishability

between any two distributions P and Q accurately [11, 20]. However, Rényi DP (as a function of
order q) remains the only functional DP notion with an exactly tight composition theorem (i.e.,
matching even the constants) that can accommodate adaptively chosen heterogeneous mechanisms.12

Remark 4.1. The previous statement requires some justifications. We note that the PLD formalism
for composition is limited to non-adaptive mechanisms [29, 20, 18]. On the other hand for f-
DP, there is no general composition formula for arbitrary trade-off curves fPi|Qi

. Instead, Dong
et al. [11] provides an explicit composition operator expression applicable only to Gaussian trade-off
functions (Corollary 3.3). Furthermore, Zhu et al. [32]’s characteristic function formalism (4)
appears equivalent to Rényi divergence, as we have learned that the order q in (26) can assume
imaginary values.

12Adaptive means each mechanism’s output may depend on previous outputs; heterogeneous means the mechanisms
need not be identical.
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In the following theorem, we provide an exactly tight composition result that applies to arbitrary
privacy profiles δP1|Q1

and δP2|Q2
. Later we also extend this theorem to handle adaptivity.

Theorem 4.2 (Exactly Tight Composition of Privacy Profiles). If P = P1 × P2 and Q = Q1 ×Q2

are two product distributions on Ω1 × Ω2 such that (P1, Q1) and (P2, Q2) are absolutely continuous
at least in one direction, then

δP |Q(ε) =
(
δP1|Q1

⊛
(
δ̈P2|Q2

− δ̇P2|Q2

))
(ε) =

∫ ∞
−∞

δP1|Q1
(ε− τ) ·

(
δ̈P2|Q2

(τ)− δ̇P2|Q2
(τ)
)
dτ, (47)

where δ̇P2|Q2
and δ̈P2|Q2

are the first and second order gradient functions of δP2|Q2
.

Proof. Let’s consider the random variables Z ∼ PLD(P∥Q), Z1 ∼ PLD(P1∥Q1), and Z2 ∼
PLD(P2∥Q2). For a pair (Θ1,Θ2) ∼ P , the privacy loss random variable Z is given by LP |Q(Θ1,Θ2),
which simplifies to:

log
P1(Θ1)P2(Θ2)

Q1(Θ1)Q2(Θ2)
= LP1|Q1

(Θ1) + LP2|Q2
(Θ2). (48)

This decomposition implies that Z can be expressed as the sum of Z1 and Z2, i.e., Z = Z1 + Z2.
Consequently, the probability density of Z, fZ , is the convolution of fZ1 and fZ2 :

fZ(t) =

∫ ∞
−∞

fZ1(τ)fZ2(t− τ)dτ = (fZ1 ⊛ fZ2)(t). (49)

Invoking Theorem 3.2, we then obtain the Laplace transform of fZ at (1− q):

B {fZ(t)} (1− q)
(75)
= B {fZ1(t)} (1− q) · B {fZ2(t)} (1− q). (50)

From Definition 2.2, this directly implies that the Rényi divergence of order q for the pair (P,Q) is
the sum of the Rényi divergences for the pairs (P1, Q1) and (P2, Q2) as

Rq (P∥Q) = Rq (P1∥Q1) + Rq (P2∥Q2) . (51)

Now suppose s = 1− q < 0. Thanks to absolute continuity, we can express the Rényi divergences in
terms of the Laplace transform using Theorem 3.3 as follows, cancelling out the common terms:

s(s− 1)B
{
δP |Q(t)

}
(s) = s(s− 1)B

{
δP1|Q1

(t)
}
(s) · s(s− 1)B

{
δP2|Q2

(t)
}
(s). (52)

Since q = 1− s cannot be 0 or 1, we can divide by s(s− 1) on both sides:

B
{
δP |Q(t)

}
(s) = B

{
δP1|Q1

(t)
}
(s) · s(s− 1)B

{
δP2|Q2

(t)
}
(s) (53)

= B
{
δP1|Q1

(t)
}
(s) ·

(
s2B

{
δP2|Q2

(t)
}
(s)− sB

{
δP2|Q2

(t)
}
(s)
)

(54)
(73)
= B

{
δP1|Q1

(t)
}
(s) ·

(
B
{
δ̈P2|Q2

(t)
}
(s)− B

{
δ̇P2|Q2

(t)
}
(s)
)

(55)

(68)
= B

{
δP1|Q1

(t)
}
(s) · B

{
δ̈P2|Q2

(t)− δ̇P2|Q2
(t)
}
(s) (56)

(75)
= B

{(
δP1|Q1

⊛
(
δ̈P2|Q2

− δ̇P2|Q2

))
(t)
}
(s). (57)

Hence, from the uniqueness of Laplace transform, we get

∀ε ∈ R, δP |Q(ε) =
(
δP1|Q1

⊛
(
δ̈P2|Q2

− δ̇P2|Q2

))
(ε). (58)
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Theorem 4.2 provides an exactly tight composition theorem—not only because the terms in (47) are
equal, but also because the privacy profiles δP1|Q1

and δP2|Q2
precisely capture the indistinguishability

of their respective distributions. This theorem mirrors the composition property of Rényi divergence
but works in the time domain ε instead of the frequency domain q. It assumes absolute continuity
in at least one direction (Pi ≪ Qi or Qi ≪ Pi) for both i = 1 and 2.

Interestingly however, our result in (47) appears to hold even when absolute continuity fails in
either direction. We will see an example of this in the next section where we apply (47) to compose
the privacy profile of randomized mechanisms δε1,δ1RR ⊗ δε2,δ2RR and get a tight expression for δ1, δ2 > 0
without running into a singularity. This happens because even when the Laplace transform is
undefined everywhere, the frequency-domain manipulations performed on it still correspond to valid
manipulation steps in the time domain. Since our main interest lies in the time domain function—the
composed privacy profile—taking advantage of this flexibility proves beneficial. To emphasize the
significance of this, Theorem 4.2 allows us to tightly derive composed privacy profiles with the
same exact-tightness as Rényi DP even for mechanisms that do not satisfy Rényi-DP for any order
q ∈ R \ {0, 1}, opening exciting possibilities beyond the limitations of Rényi DP.

Remark 4.3. Formally proving why dropping the absolute continuity assumption in Theorem 4.2
does not compromise the validity of (47) appears to be a challenging yet intriguing problem. Our
efforts to resolve this suggests that a mathematical understanding of the number 0i is necessary.

Adaptive Composition. For two mechanisms M1 and M2, if mechanism M2 sees the output
fromM1, then the output distribution ofM1 andM2 are no longer independent. Theorem 4.2 can
still be applied as long as their exists a distribution pair P2, Q2 that dominates the privacy profile
of output distribution pairsM2(D, θ) andM2(D

′, θ) across all θ for a given dataset pair D ≃ D′,
which is a reasonable assumption for adaptively compositing functional guarantees for DP.13 This is
possible due to the following result.

Lemma 4.4 (Zhu et al. [32, Theorem 27]). Let P (x, y) = P1(x) ·P x
2 (y) and Q(x, y) = Q1(x) ·Qx

2(y)
be two joint distributions on Ω1 × Ω2. Then for any distributions P2 and Q2 on Ω2 such that
δPx

2 |Qx
2
(ε) ≤ δP2|Q2

(ε) for all ε ∈ R and x ∈ Ω1, we have δP |Q(ε) ≤ δP1×P2|Q1×Q2
(ε).

4.1 Tight Composition for (ε, δ)-DP

In this section, we use Theorem 4.2 to prove an exactly-tight composition theorem for adaptive
composition of a sequence of (εi, δi)-DP mechanisms. We begin with a variant of Kairouz et al.
[19]’s result that the privacy profile δP |Q(ε) under an (ε, δ)-DP point guarantee is dominated by the
privacy profile of randomized response mechanism.

Theorem 4.5 (Dominating Privacy Profile under (ε, δ)-DP [19]). Fix ε ≥ 0 and δ ∈ [0, 1]. Suppose
distributions P and Q over Ω satisfy (ε, δ)-differential privacy. Then,

∀ε ∈ R : δP |Q(ε) ≤ δRR(ε) and δQ|P (ε) ≤ δRR(ε), (59)

where δRR(t) is the privacy profile of the randomized response mechanism Mε,δ
RR.

Kairouz et al. [19] do not express their notion of dominance in the same way as we do in
Definition 3.2—they say distribution pair (P1, Q1) dominates (P2, Q2) if their trade-off curves satisfy

∀α ∈ [0, 1] : fP1|Q1
(α) ≥ fP2|Q2

(α). (60)
13Adaptive composition for point DP guarantees requires that for fixed D ≃ D′, conditioned on any observation

fromM1, the point DP guarantee holds forM2. Adaptively composing DP curves needs a stronger assumption that
conditioned on any output ofM1, the privacy profile of M2 lies below a worst-case DP curve.
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Figure 2: Comparison of (ε, δ)-DP bounds from various composition theorems for k-fold composition
of a (0.1, 10−8)-DP point guarantee, with the budget constraint δ < 10−6. The spikes in the right
plot, showing exact δ < 10−6 values from Kairouz et al. [19, Theorem 3.3], occur because, out of
a set of ⌊k/2⌋ DP point guarantees by their result, we select the smallest ε corresponding to the
largest δ < 10−6 in the set, which fluctuates as k increases.

Nonetheless, our notion of dominance and their notion is equivalent, which was established by [11]
by showing that the privacy profile δPi|Qi

and the corresponding trade-off curve fPi|Qi
are primal

and dual with respect to Frenchel duality. We also provide a direct proof of Theorem 4.5 in the
Appendix A.3.

As a side note, observe that combining Theorem 4.5 with Theorem 3.5 gives a tight Rényi DP
guarantee for a pure ε-DP mechanism, which has recently attracted interest [27].

δP |Q(ε) = δQ|P (ε) = 0 =⇒ ∀q > 1 : Rq (P∥Q) ≤ 1

q − 1
log

(
eε

eε + 1
e−qε +

1

eε + 1
eqε
)
. (61)

Following the objective of this section, we use our Theorem 4.2 on the above worst-case privacy
profile under (ε, δ)-DP point guarantees, resulting in an exactly-tight composition guarantee as
stated below.

Theorem 4.6 (Tight Composition for (ε, δ)-DP). For any εi ≥ 0, δi ∈ [0, 1] for i ∈ {1, · · · , k},
the k-fold composition of (εi, δi)-differentially private mechanisms satisfies (ε, δ⊗k(ε))-DP for all ε,
defined recursively as

∀t ∈ R : δ⊗l(t) = δl +
(1− δl)

eεl + 1

[
eεl · δ⊗l−1(t− εl) + δ⊗l−1(t+ εl)

]
, (62)

with δ⊗0(t) = [1− et]+.

Theorem 4.6 introduces a convenient recursive method for computing compositions of heteroge-
neous DP guarantees. While this bound matches each of the ⌊k⌋ discrete (ε, δ)-DP values given by
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the optimal composition theorem from Kairouz et al. [19, Theorem 3.3], our result offers a continuous
curve over all ε ∈ R. Consequently, for a given budget on δ, our bound provides a tighter limit on ε
than that of [19], as shown in Figure 2. Furthermore, the recursion reduces to the following exact
expression when composing homogeneous DP guarantees.

Corollary 4.7. For any ε ≥ 0, δ ∈ [0, 1], the k-fold composition of (ε, δ)-DP mechanisms satisfies
(ε, δ⊗k(ε))-DP for all ε, where

∀t ∈ R : δ⊗k(t) = 1− (1− δ)k

(
1− E

Y←Binomial(k, eε

1+eε )

[
1− et−ε·(2Y−k)

]
+

)
. (63)

Figure 2 illustrates the enhanced privacy quantification achieved by our bound for k-fold compo-
sition of (ε, δ)-DP guarantees. We also compare our results with Google’s PLDAccountant [12] and
Microsoft’s PRVAccountant [18], which utilize the Discrete Fast Fourier Transform. This comparison
shows that our analytical approach closely matches the values approximated by these numerical
methods. Additionally, through Figure 4 in the appendix, we show that these numerical methods
can be unstable at edge case values and yield non-negligible gaps in their approximation.

5 Asymmetry and DP Notion Equivalences

An important characteristic of functional notions of DP is that they can be asymmetric, in the
sense that switching P ↔ Q may yield a different curve δQ|P than the original δP |Q. In context of a
mechanism M, such an asymmetry between its output distribution P =M(D) and Q =M(D′)
means that a sample Θ ∼ P might reveal more (or less) information that it came from D than a
sample Θ′ ∼ Q reveals about coming from D′. Since D and D′ are neighboring datasets differing
by the presence or absence of a single record, this asymmetry in indistinguishability means that an
attacker might have an easier time trying to detect the presence of a record from the output ofM
than to detect its absence. In other words, optimal hypothesis tests would experience a skew in the
trade-off between their false positive and false negative rates.

Such skewness often arises due to subsampling, which is a heavily used technique to boost an
algorithm’s intrinsic privacy properties [5, 7, 1, 31, 4]. For instance, Poisson subsampling in the
context of the add or remove relationship between neighboring datasets, which is commonly used in
DP-SGD [1] algorithm, skews the privacy profile of a base mechanism, as illustrated in the following
example.

Effect of Poisson Subsampling on δP |Q. Without loss of generality, assume datasets D ≃ D′

are such that the record at index i is present in D but empty in D′, i.e., D[i] ̸= D′[i] = ⊥. If we
randomly filter the records using an iid selection mask U ∼ Bernoulli(λ)⊗n, the subsampled datasets
DU and D′U are defined as follows for all i ∈ [n]:

DU [i] :=

{
D[i] if Ui = 1

⊥ otherwise
and D′U [i] :=

{
D′[i] if Ui = 1

⊥ otherwise
. (64)

The distributions P and Q of the outputsM(DU ) andM(D′U ) for any algorithmM will be identical
with probability 1− λ, which amplifies privacy considerably. More precisely, let PIN and QIN be the
distributions ofM(DU ) andM(D′U ) conditioned on i ∈ U , and POUT and QOUT be the distributions
conditioned on i ̸∈ U . For any event S ⊆ Ω, we have:

P (S) = Pr[i ̸∈ U ] · POUT(S) + Pr[i ∈ U ] · PIN(S)

= (1− λ) ·QOUT(S) + λ · PIN(S) (65)
= (1− λ) ·QIN(S) + λ · PIN(S). (66)
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Equation (65) holds because if i ̸∈ U , then DU = D′U , and equation (66) holds because the ith
record in D′ is empty, so conditioning on i ∈ U or i ̸∈ U does not affect the output distribution,
i.e., QIN = QOUT = Q. Using this fact, we the following theorem shows the exact effect Poisson
subsampling has on the privacy profile.

Theorem 5.1 (Poisson subsampling on add/remove neighbours). Let 0 < λ ≤ 1. For any distribu-
tions P , Q, PIN and QIN such that P = λPIN + (1− λ)QIN and Q = QIN,

δP |Q(ε) =

{
λδPIN|QIN

(log(1 + (eε − 1)/λ)) if ε > log(1− λ),

1− eε otherwise.
(67)

This privacy amplification result was first provided by Li et al. [21], and since has appeared in
several works [5, 4, 1, 30]. But unlike other works, we present this amplification effect as a single
curve that exactly captures the impact of subsampling on both directions. This effect is visualized
in the top-left plot in Figure 3 (solid orange curve vs. dashed orange curve).

Imprecise Handling of Asymmetry. We observe that several works on privacy handle
asymmetric notions of DP in a somewhat imprecise manner, which can introduce significant slack in
the analysis or numerical bounds. For example, Dong et al. [11, Theorem 4.2] uses the biconjugation
operation min{fP |Q, fQ|P }∗∗ to quantify amplification for Poisson subsampling on the trade-off curve
fP |Q (corresponding to the subsampled profile δP |Q in Theorem 5.1), leading to an overestimation
of the actual trade-off curve fP |Q (see the bottom-right plot in Figure 3 for a comparison of the
overestimated trade-off after symmetrization in the red line versus the actual trade-off fP |Q in the
orange dashed line). Similarly, Dong et al. [11, Proposition 30] defines a dominating profile under
subsampling by taking the max of δP |Q and δQ|P (see the top-left plot in Figure 3 to compare the
overestimated privacy profile in red with the actual profiles).

The reasoning behind these operations is that a DP guarantee function should hold in both
directions, requiring consideration of the worst-case aspects from each direction. However, these
symmetrization steps can introduce small gaps that may compound significantly when several privacy
profiles are composed. Moreover, these operations disrupt the equivalence across different privacy
notions, as after symmetrization, converting to another notion, such as the privacy profile, no longer
aligns with the actual privacy profile.

Proposed Solution. We note that all these functional notions of privacy possess a reversal
property (see Remarks 2.1, 2.2, 2.3, and 3.1), which allows us to bypass the need for symmetrization
operations. The key idea is to retain the chosen characterizing function in only one direction,
without attempting to control its asymmetry. Additionally, while composing functional notions,
we refrain from changing the notion of adjacency (or its direction). Doing this enables lossless
composition operations, thanks to Theorem 4.2 or Rényi DP composition [23], without running
the risk of accidentally underestimating the privacy. When a pointwise DP guarantee is required,
we can leverage the reversal properties to query the curve at a specific budget constraint in both
directions, providing the max of the two, which results in an exactly-tight pointwise DP guarantee.
Additionally, we also avoid the overhead of maintaining the functional representation, such as the
PLD, in both directions as currently done in Google’s PLDAccountant.

6 Conclusion

In summary, this paper presents a novel interpretation of differential privacy by leveraging time-
frequency dualities across various functional representations, including privacy profiles, Rényi
divergence, and privacy loss distributions. By framing these within the context of Laplace transforms,
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Figure 3: Visualization of the four functional notions of DP, namely privacy profile δP |Q(ε) as a
function of ε, the generalized density function of privacy loss distribution PLD(P∥Q), the Rényi
divergence Rq (P∥Q) as a function of order q, and the trade-off function fP |Q(α) for hypothesis
testing between P and Q. We also provide the reversal theorems for each of the plots.

we develop a versatile analytical toolkit for DP, enhancing both theoretical understanding and
practical composition methods. Our approach addresses limitations in existing adaptive composition
bounds, provides continuous guarantees for composed privacy profiles, and bridges gaps between
different DP frameworks without needing approximations or symmetrizations. Together, these results
push forward the capabilities of differential privacy research, setting a foundation for more nuanced
and robust privacy-preserving algorithms.
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A Appendix

A.1 Table of Properties of Laplace Transform

Table 1: Properties of the Laplace Transform. Let g(t) and h(t) be two functions defined for t ∈ R
and let a, b ∈ R be arbitrary constants.

Property Expression

Linearity :
L{ag(t) + bh(t)} (s) = aL{g(t)} (s) + bL{h(t)} (s)
B {ag(t) + bh(t)} (s) = aB {g(t)} (s) + bB {h(t)} (s)

(68)

Time-Shifting :
L{g(t− a)I{t > a}} (s) = e−asL{g(t)} (s), for a > 0

B {g(t− a)} (s) = e−asB {g(t)} (s), for a ∈ R
(69)

Frequency-Shifting :
L
{
eatg(t)

}
(s) = L{g(t)} (s− a)

B
{
eatg(t)

}
(s) = B {g(t)} (s− a)

(70)

Time-Scaling :
L{g(at)} (s) = 1

a
L{g(t)}

(s
a

)
for a > 0

B {g(at)} (s) = 1

|a|
B {g(t)}

(s
a

)
for a ∈ R

(71)

Reversal : B {g(−t)} (s) = B {g(t)} (−s) (72)

Derivative :
L{ġ(t)} (s) = sL{g(t)} (s)− g(0+)

B {ġ(t)} (s) = sB {g(t)} (s)
(73)

Integration :
L
{∫ t

0
g(t)dt

}
(s) =

1

s
L{g(t)} (s), for Re(s) > 0

B
{∫ t

−∞
g(t)dt

}
(s) =

1

s
B {g(t)} (s), for Re(s) > 0

(74)

Convolution :
L
{∫ t

0
g(τ)h(t− τ)dτ

}
(s) = L{g(t)} (s) · L {h(t)} (s)

B
{∫ ∞
−∞

g(τ)h(t− τ)dτ

}
(s) = B {g(t)} (s) · B {h(t)} (s)

(75)
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A.2 Deferred Proofs for Section 3

Theorem 3.2. For a random variable X, let FX(t) := Pr[X ≤ t] denote its cumulative distribution
function and fX(t) denote its generalized probability density function. Let P and Q be probability
distributions and Z ∼ PLD(P∥Q) and Z ′ ∼ PLD(Q∥P ) denote their privacy loss random variables.
If Z ∼ PLD(P∥Q) and Z ′ ∼ PLD(Q∥P ), then for all ε ∈ R,

δP |Q(ε) = L{1− FZ(t+ ε)} (1) (76)

= eε · L {FZ′(−t− ε)} (−1) (77)
= eε · L {fZ′(−t− ε)} (−1)− L{fZ(t+ ε)} (1) (78)
= L{fZ(t+ ε)} (0)− eε · L {fZ′(−t− ε)} (0). (79)

And, for all q ∈ ROCB{fZ′} (or equivalently, 1− q ∈ ROCB{fZ}),

e(q−1)·Rq(P∥Q) = Eq (P∥Q) = B{fZ(t)}(1− q) = B{fZ′(t)}(q). (80)

Proof. Denote the set where privacy loss LP |Q(θ) exceeds ε as

S∗>ε = {θ ∈ Ω : P (θ) > eεQ(θ)}. (81)

Note that for all S ⊂ Ω, and all ε ∈ R, we have

P (S)− eεQ(S) ≤ P (S∗>ε)− eεQ(S∗>ε) = δP |Q(ε), (82)

because S∗>ε includes any and all points where P (θ) > eεQ(θ). We can express the probabilities
P (S∗>ε) and Q(S∗>ε) using the Laplace transform as follows:

P (S∗>ε) =

∫
S∗
>ε

P (θ)dθ (83)

=

∫
S∗
>ε

(
P (θ)

Q(θ)

)
Q(θ)dθ (84)

=

∫
S∗
>ε

e−LQ|P (θ)Q(θ)dθ (85)

=

∫ ∞
ε+

et
∫
{θ∈Ω:LQ|P (θ)=−t}

Q(θ)dθ (86)

=

∫ ∞
ε+

et
∫ −t+
−t−

FZ′(u)du (87)

=

∫ ∞
ε+

etfZ′(−t)dt (88)

= eε
∫ ∞
0+

et
′
fZ′(−t′ − ε)dt′ (89)

= eεL{fZ′(−t− ε)} (−1). (90)

Q(S∗>ε) =

∫
S∗
>ε

Q(θ)dθ (91)

=

∫
S∗
>ε

(
Q(θ)

P (θ)

)
P (θ)dθ (92)

=

∫
S∗
>ε

e−LP |Q(θ)P (θ)dθ (93)

=

∫ ∞
ε+

e−t
∫
{θ∈Ω:LP |Q(θ)=t}

P (θ)dθ (94)

=

∫ ∞
ε+

e−t
∫ t+

t−
FZ(u)du (95)

=

∫ ∞
ε+

e−tfZ(t)dt (96)

= e−ε
∫ ∞
0+

e−t
′
fZ(t

′ + ε)dt (97)

= e−εL{fZ(t+ ε)} (1). (98)
Combining the two, we get equation (78):

δP |Q(ε) = eε · L {fZ′(−t− ε)} (−1)− L{fZ(t+ ε)} (1). (99)
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Alternatively, we can express the profile directly as:

P (S∗>ε)− eεQ(S∗>ε) =

∫
S∗
>ε

(1− eε
Q(θ)

P (θ)
)P (θ)dθ (100)

=

∫
S∗
>ε

(1− eε−LP |Q(θ))P (θ)dθ (101)

=

∫ ∞
ε+

(1− eε−t)fZ(t)dt (102)

=

∫ ∞
ε+

fZ(t)dt−
∫ ∞
0+

e−t
′
fZ(t

′ + ε)dt′ (Change t = t′ + ε)

= 1− FZ(ε
+)− L{fZ(t+ ε)} (1) (103)

(73)
= L{1− FZ(t+ ε)} (1). (104)

Similarly, we can express it in terms of Z ′ as

P (S∗>ε)− eεQ(S∗>ε) =

∫
S∗
>ε

(
P (θ)

Q(θ)
− eε)Q(θ)dθ (105)

=

∫
S∗
>ε

(eLP |Q(θ) − eε)Q(θ)dθ (106)

=

∫ ∞
ε+

(et − eε)fZ′(−t)dt (107)

= eε
(∫ ∞

0+
et

′
fZ′(−t′ − ε)dt′ −

∫ ∞
ε+

fZ′(−t)dt
)

(Change t = t′ + ε)

= eε
(
L{fZ′(−t− ε)} (−1)− FZ′(−ε−)

)
(108)

(73)
= eεL{FZ′(−t− ε)} (−1). (109)

For showing (79), we apply the derivative property of Laplace transform to (76) and (77) to get

δP |Q(ε) = L{1− FZ(t+ ε)} (1) (73)
= −L{fZ(t+ ε)} (1) + 1− FZ(ε

+), and (110)

δP |Q(ε) = eε · L {FZ′(−t− ε)} (−1) (73)
= eε ·

(
L{fZ′(−t− ε)} (−1)− FZ′(−ε−)

)
. (111)

Adding the above two equations and subtracting (78) from it, we get

δP |Q(ε) = 1− FZ(ε
+)− eεFZ′(−ε−) (112)

= Pr[Z > ε]− eε Pr[Z ′ < −ε] (113)

=

∫ ∞
0+

e0·t · fZ(t+ ε)dt− eε ·
∫ ∞
0+

e0·tfZ′(−t− ε)dt (114)

= L{fZ(t+ ε)} (0)− eε · L {fZ′(−t− ε)} (0). (115)

For the last part, recall from definition that Rényi divergence Rq (P∥Q) = 1
q−1 log Eq (P∥Q), for

which we show the following two equivalences:
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Eq (P∥Q) =

∫
Ω

(
P (θ)

Q(θ)

)q−1
P (θ)dθ (116)

=

∫
Ω
e(q−1)LP |Q(θ)P (θ)dθ (117)

=

∫ ∞
−∞

e(q−1)tfZ(t)dt (118)

= B {fZ(t)} (1− q). (119)

Eq (P∥Q) =

∫
Ω

(
P (θ)

Q(θ)

)q

Q(θ)dθ (120)

=

∫
Ω
e−qLQ|P (θ)Q(θ)dθ (121)

=

∫ ∞
−∞

e−qtfZ′(t)dt (122)

= B {fZ′(t)} (q). (123)

Theorem 3.4 (Privacy profile of randomized response). Fix ε > 0 and δ ∈ [0, 1]. Let MRR :
{0, 1} → {0, 1} × {⊥,⊤} be the randomized response mechanism, which has the following output
probabilities.

MRR(0) =



(0,⊥) with probability δ,

(0,⊤) with probability (1−δ)eε
eε+1 ,

(1,⊤) with probability (1−δ)
eε+1 ,

(1,⊥) with probability 0,

MRR(1) =



(0,⊥) with probability 0,

(0,⊤) with probability (1−δ)
eε+1 ,

(1,⊤) with probability (1−δ)eε
eε+1 ,

(1,⊥) with probability δ.

(124)

For P =MRR(0) and Q =MRR(1), the privacy profiles are

∀t ∈ R : δP |Q(t) = δQ|P (t) =


δ if ε < t,

1− (et+1)
eε+1 (1− δ) if − ε < t ≤ ε,

1− et(1− δ) if t ≤ −ε.

(125)

Proof. Let S1 = {(0,⊥)}, S2 = S1 ∪ {(1,⊥)}, and S3 = S2 ∪ {(1,⊤)}. From (30),

δP |Q(t) = Pr
Z←PLD(P∥Q)

[Z > t]− eε · Pr
Z′←PLD(Q∥P )

[Z ′ < −t] (126)

= Pr
P
[log

P (Θ)

Q(Θ)
> t]− eε · Pr

Q
[log

Q(Θ)

P (Θ)
< −t] (127)

= Pr
P
[P (Θ) > et ·Q(Θ)]− eε · Pr

Q
[P (Θ) < et ·Q(Θ)] (128)

=


P (S1)− et ·Q(S1) if ε < t,

P (S2)− et ·Q(S2) if − ε < t ≤ ε,

P (S3)− et ·Q(S3) otherwise

(129)

=


δ if ε < t,

δ + 1−δ
eε+1 · (e

ε − et) if − ε < t ≤ ε,

1− et · (1− δ) otherwise

(130)

The same holds for δQ|P due to symmetry of (124).

Theorem 3.5 (Rényi DP of (ε, 0)-Randomized Response). For any ε > 0 and δ = 0, the output
distributions of randomized response mechanism in Theorem 3.4 exhibit a Rényi divergence

∀q ∈ C s.t. Re(q) ̸∈ {0, 1} : Rq (P∥Q) =
1

q − 1
log

(
eε

1 + eε
e−qε +

1

1 + eε
eqε
)
. (131)
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Proof. From Theorem 3.4, when δ = 0, the privacy profile of randomized response algorithm’s
output-distributions P and Q is

δP |Q(t) =


0 if ε < t,

eε−et
1+eε if − ε < t ≤ ε,

1− et otherwise.

(132)

From the equivalence (27) of Theorem 3.3,

e(q−1)Rq(P∥Q)

q(q − 1)
= B

{
δP |Q(t)

}
(1− q) (133)

=

∫ ∞
−∞

e(q−1)tδP |Q(t)dt (134)

=

∫ −ε
−∞

e(q−1)t · (1− et)dt+

∫ ε

−ε
e(q−1)t · e

ε − et

1 + eε
dt (135)

=

[
e(q−1)t

q − 1
− eqt

q

]−ε
−∞

+
1

1 + eε

[
eε · e(q−1)t

q − 1
− eqt

q

]ε
−ε

(136)

=

(
e−(q−1)ε

q − 1
− e−qε

q

)
+

1

1 + eε

[(
eqε

q − 1
− eqε

q

)
−

(
eε · e−(q−1)ε

q − 1
− e−qε

q

)]
(137)

=
e−(q−1)ε

q − 1
·
(
1− eε

1 + eε

)
− e−qε

q
·
(
1− 1

1 + eε

)
+

eqε

1 + eε
·
(

1

q − 1
− 1

q

)
(138)

=
e−(q−1)ε

1 + eε
·
(

1

q − 1
− 1

q

)
+

eqε

1 + eε
·
(

1

q − 1
− 1

q

)
(139)

=
eε · e−qε + eqε

1 + eε
· 1

q(q − 1)
. (140)

Therefore, for any q ∈ R \ {0, 1} we can cancel q(q − 1) from the denominator in both sides, which
proves the theorem statement for real orders. From dominated convergence theorem the theorem
statement holds for complex orders as well on corresponding real orders (cf. Section 2.2).

A.3 Deferred Proofs for Section 4

Lemma A.1 ([30, Corollary 24]). Let P and Q be probability distributions over Ω. Fix ε ≥ 0 and
δ ∈ [0, 1]. Suppose P,Q satisfy (ϵ, δ)-differential privacy. Then there exists distributions A,B, P ′, Q′

over Ω such that

P = (1− δ)
eε

eε + 1
A+ (1− δ)

1

eε + 1
B + δP ′, (141)

Q = (1− δ)
eε

eε + 1
B + (1− δ)

1

eε + 1
A+ δQ′. (142)

Theorem 4.5 (Dominating Privacy Profile under (ε, δ)-DP). Fix ε ≥ 0 and δ ∈ [0, 1]. Suppose
distributions P and Q over Ω satisfy (ε, δ)-differential privacy. Then,

∀t ∈ R : δP |Q(t) ≤ δRR(t) and δQ|P (t) ≤ δRR(t), (143)

where δRR(t) is the privacy profile of the randomized response mechanism Mε,δ
RR.
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Proof. Since the output distributions P and Q are (ε, δ)-differentially private, Lemma A.1 from Steinke
[30] tells us that we can simulate these two distributions as post-processing of the randomized re-
sponse mechanism Mε,δ

RR. To see this, imagine that P =M(D) and Q =M(D′) are the output
distributions of some mechanism M. Define another mechanism G : {0, 1} × {⊥,⊤} → Ω with
output distribution:

G(u) =


P ′ if u = (0,⊥),
A if u = (0,⊤),
B if u = (1,⊤),
Q′ if u = (1,⊥).

(144)

From Lemma A.1, see that G(Mε,δ
RR(0)) = M(D) and G(Mε,δ

RR(1)) = M(D′). Therefore, by
expressing P and Q in terms of distributions P ′, A,B,Q′, we can conclude that for all t ∈ R,

δP |Q(t) = sup
S⊂Ω

P (S)− et ·Q(S) (145)

= sup
S⊂Ω

(
δ · P ′(S) + (1− δ)(eε − et)

eε + 1
·A(S) +

(1− δ)(1− eε+t)

eε + 1
·B(S)− δet ·Q′(S)

)
(146)

≤ δ +


0 if ε < t,

(1−δ)(eε−et)
eε+1 if − ε < t ≤ ε,

(1− δ)(1− et) if t ≤ −ϵ,

(147)

=


δ if ε < t,

1− (et+1)(1−δ)
eε+1 if − ε < t ≤ ε,

1− et(1− δ) if t ≤ −ε.

(148)

Note that the expression on the right is the privacy profile of the randomized response mechanism
Mε,δ

RR. An identical bound follows for δQ|P (t) as well, with the switched roles: P ′ ↔ Q′ and
A↔ B.

Theorem 4.6 (Tight Composition for (ε, δ)-DP). For any εi ≥ 0, δi ∈ [0, 1] for i ∈ {1, · · · , k},
the k-fold composition of (εi, δi)-differentially private mechanisms satisfies (ε, δ⊗k(ε))-DP for all ε,
defined recursively as

∀t ∈ R : δ⊗l(t) = δl +
(1− δl)

eεl + 1

[
eεl · δ⊗l−1(t− εl) + δ⊗l−1(t+ εl)

]
, (149)

with δ⊗0(t) = [1− et]+.

Proof. Let P1:k, Q1:k be the joint output distributions of the k-fold composed mechanism on neigh-
boring inputs. To prove the statement, we need to show that

∀t ∈ R : δP1:k|Q1:k
(t) ≤ δ⊗(t). (150)

Let’s define P x<i

i , Q
x<i

i be the output distributions of the ith mechanism, conditioned on the preceding
i− 1 mechanisms’ output being x<i. From Theorem 4.5 and from Theorem 4.4, we know that under
adaptive (εi, δi)-DP, the privacy profiles for conditional distributions are dominated as follows.

∀i ∈ {1, · · · , k} : sup
x<i∈Ω1×···×Ωi−1

δ
P

x<i
i |Qx<i

i
(t) ≤ δεi,δiRR (t), (151)
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where δεi,δiRR (t) is the privacy profile ofMεi,δi
RR .

Using this, we prove the theorem statement inductively.
Base step. Let’s denote the Heaveside step function as H(t) := I{t > 0}. Then, we can write

δ⊗0(t) = (1−H(t)) · (1− et). Using this, we can express

δ⊗1(t) = δ1 +
1− δ1
eε1 + 1

[
eε1 · δ⊗0(t− ε1) + δ⊗0(t+ ε1)

]
(152)

= δ1 +
1− δ1
eε1 + 1

[
eε1 · (1−H(t− ε1)) · (1− et−ε1) + (1−H(t+ ε1)) · (1− et+ε1)

]
(153)

= 1 + ex(1− δ1) +H(t− ε1) ·
(1− δ1)(e

t − eε1)

eε1 + 1
+H(t+ ε1) ·

(1− δ1)(e
t+ε1 − 1)

eε1 + 1
(154)

=


δ1 if ε1 < t,

1− (et+1)(1−δ1)
eε1+1 if − ε1 < t ≤ ε1,

1− et(1− δ1) if t ≤ −ε1.

(155)

= δε1,δ1RR (x) (156)

From (151), we therefore get that δP1|Q1
(t) ≤ δ⊗1(t) for all t ∈ R.

Induction step. Suppose for any l ∈ {2, · · · , k} the composition of first l − 1 mechanisms have
a privacy profile dominated by δ⊗l−1. More precisely,

∀t ∈ R : δP1:l−1|Q1:l−1
(t) ≤ δ⊗l−1(t). (157)

We need to show that
∀t ∈ R : δP1:l|Q1:l

(t) ≤ δ⊗l(t). (158)

Recall that from the adaptive (εl, δl)-DP assumption on the lth mechanism, (151) says that

sup
x<l∈Ω1×···×Ωl−1

δ
P

x<l
l |Qx<l

l
(t) ≤ δεl,δlRR (t). (159)

Therefore, from Theorem 4.2, Theorem 4.4 and the induction assumption, we have that

δP1:l|Q1:l
(t) ≤

(
δP1:l−1|Q1:l−1

⊛
(
δ̈εl,δlRR − δ̇εl,δlRR

))
(t) (160)

≤
(
δ⊗l−1 ⊛

(
δ̈εl,δlRR − δ̇εl,δlRR

))
(t) (161)

=

∫ ∞
−∞

δ⊗l−1(t− τ)×
(
δ̈εl,δlRR (τ)− δ̇εl,δlRR (τ)

)
dτ. (162)

To differentiate properly, in a manner that handles discontinuity, we state the function δε,δRR(t) in
terms of Heaviside functions as in (154):

δε,δRR(t) = 1− et(1− δ)︸ ︷︷ ︸
I1(t)

+H(t− ε) · (e
t − eε)(1− δ)

eε + 1︸ ︷︷ ︸
I2(t)

+H(t+ ε) · (e
t+ε − 1)(1− δ)

eε + 1︸ ︷︷ ︸
I3(t)

. (163)
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Then, by chain rule, its first and second derivatives are:

δ̇ε,δRR(t) = İ1(t) +

H(t− ε) · İ2(t) +△(t− ε) · I2(t)︸ ︷︷ ︸
J2(t)

+

H(t+ ε) · İ3(t) +△(t+ ε) · I3(t)︸ ︷︷ ︸
J3(t)


(164)

δ̈ε,δRR(t) = Ï1(t) +
(
H(t− ε) · Ï2(t) +△(t− ε) · İ2(t) + J̇2(t)

)
+
(
H(t+ ε) · Ï3(t) +△(t+ ε) · İ3(t) + J̇3(t)

)
(165)

Note that İ1(t) = Ï1(t) = −et(1 − δ), İ2(t) = Ï2(t) = et · (1−δ)eε+1 and İ3(t) = Ï3(t) = et · e
ε(1−δ)
eε+1 .

Therefore, on subtracting the two, a lot of terms cancel out, and we get:

δ̈ε,δRR(t)− δ̇ε,δRR(t) = △(t− ε) · (İ2(t)− I2(t)) + J̇2(t) +△(t+ ε) · (İ3(t)− I3(t)) + J̇3(t) (166)

= △(t− ε) · (1− δ)eε

eε + 1
+ J̇2(t) +△(t+ ε) · (1− δ)

eε + 1
+ J̇3(t). (167)

Note that J2(t) = 0 everywhere except at t = ε. Similarly, J3(t) = 0 everywhere except t = −ε.
On substituting and convolving, we get

δP1:l|Q1:l
(t) ≤

∫ ∞
−∞

δ⊗l−1(t− τ)×
(
δ̈εl,δlRR (τ)− δ̇εl,δlRR (τ)

)
dτ (168)

=

∫ ∞
−∞

δ⊗l−1(t− τ)×
(
△(τ − εl) ·

(1− δl)e
εl

eεl + 1
+△(τ + εl) ·

(1− δl)

eεl + 1
+ J̇2(τ) + J̇3(τ)

)
dτ

(169)

= δ⊗l−1(t− εl) ·
(1− δl)e

εl

eεl + 1
+ δ⊗l−1(t+ εl) ·

1− δl
eεl + 1

(170)

+

∫ ∞
−∞

δ⊗l−1(t− τ)× J̇2(τ)dτ︸ ︷︷ ︸
K2(t)

+

∫ ∞
−∞

δ⊗l−1(t− τ)× J̇3(τ)dτ︸ ︷︷ ︸
K3(t)

(171)

For the last integral, apply integration by parts to get

K2(t) =

∫ ∞
−∞

δ⊗l−1(t− τ)İ2(τ) · △(τ − εl)dτ +

∫ ∞
−∞

δ⊗l−1(t− τ)I2(τ) · △̇(τ − εl)dτ (172)

= δ⊗l−1(t− εl)İ2(εl)−
(
δ⊗l−1(t− εl)İ2(εl) + δ̇⊗l−1(t− εl)I2(εl)

)
(173)

= 0− 0 (174)

since I2(εl) = 0 and for any function f on R it holds that,
∫
R f · △̇dτ = −

∫
R ḟ · △dτ . Similarly,

K3(t) =

∫ ∞
−∞

δ⊗l−1(t− τ)İ3(τ) · △(τ + εl)dτ +

∫ ∞
−∞

δ⊗l−1(t− τ)I3(τ) · △̇(τ + εl)dτ (175)

= δ⊗l−1(t+ εl)İ3(−εl)− δ⊗l−1(t+ εl)İ3(−εl)− δ̇⊗l−1(t− εl)I3(−εl) (176)
= 0− 0 (177)

since I3(−εl) = 0. Therefore, we have

δP1:l|Q1:l
(t) ≤ (1− δl)

eεl + 1

[
eεl · δ⊗l−1(t− εl) + δ⊗l−1(t+ εl)

]
≤ δ⊗l(t). (178)

Hence, the induction statement holds.
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Corollary 4.7. For any ε ≥ 0, δ ∈ [0, 1], the k-fold composition of (ε, δ)-DP mechanisms satisfies
(ε, δ⊗k(ε))-DP for all ε, where

∀t ∈ R : δ⊗k(t) = 1− (1− δ)k

(
1− E

Y←Binomial(k, eε

1+eε )

[
1− et−ε·(2Y−k)

]
+

)
. (179)

Proof. We just have to show that recurrence relationship in Theorem 4.6, that is ∀l ∈ {1, · · · , k}

∀t ∈ R : δ⊗l(t) = δl +
(1− δl)

eεl + 1

[
eεl · δ⊗l−1(t− εl) + δ⊗l−1(t+ εl)

]
, where δ⊗0(t) = [1− et]+,

(180)
simplifies to the theorem statement when εi = εj = ε and δi = δj = δ for all i, j ∈ {1, · · · , k}. Let’s
define p = eε

eε+1 . The recurrence can then be stated as

δ⊗l(t) = δ + (1− δ) E
Yl←Bernoulli(p)

[
δ⊗l−1(t− ε(2Yl − 1))

]
(181)

= δ + (1− δ) E
Yl←Bernoulli(p)

[
δ + (1− δ) E

Yl−1←Bernoulli(p)

[
δ⊗l−2(t− ε(2Yl − 1)− ε(2Yl−1 − 1))

]]
(182)

= δ
2∑

i=1

(1− δ)i−1 + (1− δ)2 E
Yl←Bernoulli(p)

Yl−1←Bernoulli(p)

[
δ⊗l−2(t−

l∑
i=l−1

ε(2 · Yi − 1))

]
(183)

= δ
l∑

i=1

(1− δ)i−1 + (1− δ)l E
Yl←Bernoulli(p)

Yl−1←Bernoulli(p)

[
δ⊗0(t−

l∑
i=1

ε(2 · Yi − 1))

]
(184)

= 1− (1− δ)l + (1− δ)l E
Y←Binomial(k,p)

[
δ⊗0(t− ε(2 · Y − l))

]
(185)

= 1− (1− δ)l
(
1− E

Y←Binomial(k,p)

[
1− et−ε·(2Y−k)

]
+

)
. (186)

A.4 Deferred Proofs for Section 5

Theorem 5.1 (Poisson subsampling). Let 0 ≤ λ ≤ 1. For any two distributions P and Q on Ω,

δλP+(1−λ)|Q(ε) =

{
λδP |Q(log(1 + (eε − 1)/λ)) if ε > log(1− λ)

1− eε otherwise
. (187)

Proof. Recall from Definition 3.1 that PLD(Q∥P ) and PLD(Q∥λP + (1− λ)Q) are the distributions
of LQ|P (Θ) and LQ|Pλ+(1−λ)Q(Θ) respectively with Θ ∼ Q. Since for any θ ∈ Ω,

LQ|λP+(1−λ)Q(θ) = − log
λP (θ) + (1− λ)Q(θ)

Q(θ)
= − log(1− λ+ λ · e−LQ|P (θ)), (188)

the random variables Z ′λ ∼ PLD(Q∥λP + (1− λ)Q) and Z ′ ∼ PLD(Q∥P ) are related as

Z ′λ = − log(1 + λ(e−Z
′ − 1)). (189)
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Using Theorem 3.2 that we can express the privacy profile as:

δλP+(1−λ)Q|Q(ε) = eεL
{
FZ′

λ
(−t− ε)

}
(−1) (190)

(73)
= eε

[
L
{
fZ′

λ
(−t− ε)

}
(−1)− FZ′

λ
(ε−)

]
(191)

= eε

[∫ ∞
0+

etfZ′
λ
(−t− ε)dt−

∫ 0−

−∞
fZ′

λ
(t− ε)dt

]
(192)

= eε
∫ 0−

−∞
(e−t − 1)fZ′

λ
(t− ε)dt (193)

=

∫ −ε−
−∞

(
e−t

′ − eε
)
fZ′

λ
(t′)dt′ (194)

= E
[
e−Z

′
λ − eε

]
+
, (195)

where [x]+ := max{0, x}. On substituting Z ′λ, we get:

δλP+(1−λ)Q|Q(ε) = E
[
e−Z

′
λ − eε

]
+

(196)

= E
[
1− λ+ λe−Z

′ − eε
]
+

(197)

= λE
[
e−Z

′ − eε + λ− 1

λ

]
+

(198)

=


λE
[
e−Z

′ − elog(1+(eε−1)/λ)
]
+

if ε > log(1− λ)

λE
[
e−Z

′
]
+ 1− λ− eε otherwise

(199)

=

{
λδP |Q(log(1 + (eε − 1)/λ)) if ε > log(1− λ)

1− eε otherwise
. (∵ E

[
e−Z

′
]
= 1)
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Figure 4: Comparison of (ε, δ)-DP bounds between numerical accountants and our Theorem 4.7
for 100-fold composition of a (0.1, 10−10)-DP point guarantee, with the budget constraint δ < 10−8.
Note that at k = 100, the constraint on δ cannot be satisfied and so the corresponding ε = ∞
at that value. We note that at smaller values of k, numerical accountants can sometimes over
exceed the budget constraints on δ. Additionally, the gap for ε between our exact bound and those
approximated by numerical accountant tend to be of the order ≈ 10−7 for Google’s PLDAccountant
and ≈ 10−3 for Microsoft’s PRVAccountant.
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