
A Game Theoretic Adversarial Synthetic Data
Generation Method to Address Privacy Concerns in

the Use of Deep Learning Models for IoT
Applications

Abhijit Singh
Department of Electrical and Computer Engineering

National University of Singapore
Singapore

abhijit.singh@u.nus.edu

Biplab Sikdar
Department of Electrical and Computer Engineering

National University of Singapore
Singapore

bsikdar@nus.edu.sg

Abstract—Internet of Things (IoT) applications are widely
prevalent in the age of Industry 4.0. These applications generate
vast amounts of data that need to be processed efficiently.
In some of these applications, there may be privacy concerns
associated with the generated data being used to train Artificial
Intelligence (AI) models. Thus, solutions are needed that can
address such problems. This paper develops a methodology
to generate diversified synthetic datapoints for IoT datasets,
using adversarial machine learning in a game-theoretic setting.
The proposed method jointly optimizes two 2-player games
being played simultaneously, where the players in each 2-player
game have a competing objective. The experimental results on
a publicly-available dataset demonstrate that when Machine
Learning (ML) models are retrained using only these synthetic
datapoints, they perform better than the ML models trained on
the original smart meter data, thus alleviating the need for using
private data for training ML models.

Index Terms—Adversarial machine learning; IoT; privacy.

I. INTRODUCTION

The advent of Industry 4.0 has exponentially increased
the proliferation of Internet-of-Things (IoT). The IoT devices
used in these settings generate enormous amounts of raw
data, which need to be processed efficiently to truly unlock
the benefits of Industry 4.0. Artificial Intelligence (AI) and
Machine Learning (ML) tools are ideally placed to meet these
needs. In recent years, there have been several use-cases where
ML models have been used in IoT applications. These include
network traffic profiling [1], pollution monitoring [2] in smart
cities, energy management [3] in smart homes, and cardiovas-
cular disease diagnosis [4] in smart health applications.

In many applications, using data collected from end-users
to train AI models is going to be a major issue in the near
future due to privacy concerns. With increasing data-literacy,
a growing number of people are uncomfortable with data
generated by them being used by corporate entities for profit-
making applications [5]. For example, if we consider a smart
home scenario where data from a smart meter is used for Non-
Intrusive Load Monitoring (NILM) tasks such as deep learning

based appliance classification, a user may not consent to data
generated from their home being used to train an AI model, as
they may feel it is an invasion of their privacy. In recent years,
several jurisdictions have passed laws that restrict the use of
data collected from users to train AI systems [6]. In such a
scenario, it is important to develop methods that mitigate these
privacy concerns.

Recently, variations of Generative Adversarial Networks
(GANs) [7] have been used to generate synthetic datapoints.
Using synthetic data can alleviate some of the privacy concerns
associated with the use of real-world data collected from end-
users. However, GANs can be notoriously difficult to train [8].
They may suffer from non-convergence of parameters, mode
collapse and vanishing gradients, among other issues. Addi-
tionally, they are generally quite sensitive to hyperparameters,
and have a large number of hyperparameters that need to be
tuned. This can be resource-intensive and cost-prohibitive.

In this paper, we develop a methodology that leverages
principles of adversarial datapoint generation in a game-
theoretic setting, which avoids the pitfalls that may be en-
countered when training GANs. We show that when only
synthetic datapoints generated using this methodology are
used to retrain ML models, they perform better than the ML
models trained on the original data. Essentially, we mimic
the decision boundary of the original classifier using the
synthetic datapoints, eliminating the need to use any real-
world data during training. The validation of the proposed
method is done on the UK-DALE (United Kingdom-Domestic
Appliance-Level Electricity) smart meter dataset [9]. The main
contributions of this paper can be summarized as:

• This paper develops a methodology for generating diver-
sified synthetic datapoints for IoT datasets using adver-
sarial methods in a game-theoretic setting.

• The proposed methodology is validated by demonstrating
that ML models trained on only these synthetic datapoints
can mimic or improve upon the performance of ML
models trained on the original data, eliminating the need

to use any real-world data which may have privacy
concerns associated with it.

The organization of the rest of the paper is as follows. Sec-
tion II provides a brief overview of the related work. Section
III describes the appliance classification task considered in this
work, the dataset used for generating the experimental results,
and the proposed method for generating synthetic datapoints.
Section IV presents the results of our experiments validating
the proposed methodology. Section V discusses the results and
Section VI concludes the paper.

II. RELATED WORK

Since their introduction, GANs have been the most popular
method for generating synthetic data in the field of computer
vision. The authors of [10] used a Deep Convolutional GAN
(DCGAN) to generate synthetic prohibitory sign images for
a traffic sign recognition task. They augmented the original
dataset with the generated synthetic images and found that
using the augmented dataset improved the intersection over
union (IoU) and accuracy of traffic sign recognition.

In [11], the authors proposed a novel GAN-based pipeline
which they called SinGAN-Seg, to create synthetic medical
images. Their method was different from traditional GANs
because it needed only a single image and the corresponding
ground-truth for training. They used style transfer techniques
in their pipeline to synthesize additional copies of images
with rare medical abnormalities. The authors of [12] presented
a hybrid model which consisted of a feature extractor that
decoupled feature representations from CT scans of COVID-
infected and Non-COVID patients from the local noise. The
extracted features were then used to conditionally-generate
new CT scans which were used to augment the original dataset,
which resulted in an improvement in COVID-19 detection.

While GANs have been used heavily to generate new
datapoints in image and audio domains, their use in generating
synthetic datapoints in other domains has been compara-
tively limited. The authors of [13] used an infoGAN [14] to
synthesize photoplethysmography (PPG) signals which were
then used to augment the existing dataset by inferring blood
pressure values corresponding to different age and body mass
index (BMI) combinations.

In the IoT domain, the authors of [15] use a GAN archi-
tecture to generate labelled synthetic load patterns to train
ML models. However, in their work they note the difficulties
faced in building such a GAN and its dependence on finely
tuned hyperparameters, which makes it difficult to be reused
when using different datasets or in different applications. The
authors of [16] use a Jacobian-based method to generate
synthetic datapoints to train a substitute model while launching
a black-box adversarial attack. While the focus of this work is
not to use the synthetic datapoints to train an efficient classifier
for true datapoints, we nevertheless use it as an additional
baseline to compare against the methodology proposed in this
paper.

Based on the existing literature, we note that to the best
of our knowledge, there is no work that completely replaces

original datapoints with adversarially generated synthetic dat-
apoints to train an ML model for IoT environments. While
[15] uses a GAN for a similar use-case, our motivation is to
avoid the use of GANs to accomplish this task, as stated in
Section I. Thus, our work provides novel contributions in a
field of growing importance.

III. METHODOLOGY

This section presents the proposed methodology for adver-
sarially generating synthetic datapoints in a game-theoretic
setting. We begin with a brief overview of the ML task and
the datasets used, followed by a description of the proposed
methodology.

A. Appliance Classification Task

The surge in adoption of IoT devices has enabled the
collection of fine-grained power consumption data from smart
meters installed in residential buildings. This data can be
utilized for detecting and classifying the appliances being used
in households, which can allow further downstream tasks such
as improved load forecasting, dynamic pricing mechanisms,
consumer profiling and classification, and demand-side man-
agement methods.

While traditional NILM techniques use statistical methods
such as maximum likelihood estimation or change detection
[17] to disaggregate power consumption into that of individual
appliances, some papers have proposed ML techniques using
deep learning to perform appliance classification using smart
meter data [18]. We use these ML models to validate the
methodologies proposed in this paper. The authors of [18] pre-
process smart meter data from residential buildings to train
a deep learning model to perform the appliance classification
task. The methodology in [18] follows the standard practice in
this area of transforming the problem into a binary classifica-
tion task, as existing techniques are unreliable in decomposing
the profiles of multiple appliances from smart meter data at
the same time. An overview of this pipeline is as follows: (i)
appliance profiles are extracted from the aggregated data one
at a time (with the rest of the input treated as noise), (ii) deep
learning models are trained to determine whether a specific
appliance is in use or not. Thus, a new model is trained for
classifying each appliance.

B. Dataset

The UK-DALE [9] is an open-access dataset collected from
five houses in London over several years. It has aggregated and
disaggregated appliance-level data recorded at a granularity of
six seconds using a smart meter. Five appliances from this
dataset are used for the experiments in this paper: hair dryer,
kettle, microwave, toaster and vacuum cleaner.

C. Synthetic Data Generation

In game theory, 2-player games are those where two players
are playing against each other. Each player has a selection of
strategies that they can choose from, and the pay-off associated
with each strategy depends on the strategy chosen by the other

player. For example, if we represent PlayerA’s strategies by
A and PlayerB ’s strategies by B, the pay-off matrices for
PlayerA and PlayerB are:

U =

B1 B2[]
A1 u11 u12

A2 u21 u22

where uij = (aij , bij), and aij is the pay-off for PlayerA
and bij is the pay-off for PlayerB when PlayerA chooses
strategy Ai and PlayerB chooses strategy Bj .

Pure strategies are those where a player only selects one of
the strategies available to them. For example, PlayerA only
chooses either A1 or A2. Mixed strategies are those where
a player selects multiple strategies available to them, with
a particular probability distribution. For example, PlayerA
selects A1 with a probability of 0.3 and A2 with a probability
of 0.7. In this work, we only consider pure strategies.

In game theory, Nash equilibrium is the state when neither
player can increase their pay-off by unilaterally changing their
strategy. Mathematically, this can be expressed as a strategy
(Ai∗, Bj∗) where:

∀i, ai∗,j∗ ≥ ai,j∗ ,

∀j, bi∗,j∗ ≥ bi∗,j .

It is well-established that while Nash equilibrium always
exists for finite non-cooperative games, there is no guarantee
that it uses pure strategies. This is important because in this
work we only consider pure strategies. Thus, we will later
describe how at least one partial Nash equilibrium will exist in
our setting, even though we impose the constraint of allowing
only pure strategies. By partial Nash equilibrium, we mean the
scenario where the Nash equilibrium condition for PlayerA
(∀i, ai∗,j∗ ≥ ai,j∗) is satisfied, but there is no requirement
for the Nash equilibrium condition for PlayerB (∀j, bi∗,j∗ ≥
bi∗,j) to be satisfied.

In adversarial machine learning, to generate an adversarial
example for a test datapoint xtest, we can frame the objective
function as:

min
∥∥∥(xtest − x

′

test)
∥∥∥
p
, (1)

such that,

max {p(ytest = ki|x
′

test, θ
∗)} = p(ytest = kadv|x

′

test, θ
∗)

where p is the chosen Lp norm, kadv is the class prediction
as desired by the adversary (with ki = k1, k2, · · · , kc for c
possible classes), θ∗ are the final weights, and x

′

test is the
adversarial example.

Proposed mechanism: In this work, we introduce a game-
theoretic setting while working towards an adversarial objec-
tive. Instead of generating one adversarial example at a time,
we generate two adversarial examples simultaneously. Each
of the two adversarial examples is initialized with a perturbed
version of the true datapoint. Different perturbations are used
for the two adversarial examples, so that they do not have
the same starting point. When considering a pair consisting
of the true datapoint and one of the adversarial examples, the

goal remains as described in Equation (1). However, there is
an additional objective function that is added to it, when we
consider the pair of adversarial examples being generated:

max
∥∥∥(x′(1)

test − x
′(2)
test)

∥∥∥
p

(2)

where x
′(1)
test and x

′(2)
test are the two adversarial examples that

are being generated.
We can view this setting as two 2-player non-zero sum

games occurring simultaneously (one game for each adver-
sarial example). In each game, the pay-off for PlayerA can
be the Lp norm between the true datapoint and the adversarial
example (Equation (1)), and the pay-off for PlayerB can be
the Lp norm between the two adversarial examples (Equation
(2)).

To be consistent with game theory terminology, the pay-offs
are to be maximized. So, we can take the negative of the Lp

norm between the true and adversarial example (because we
want to minimize this norm) as the pay-off for PlayerA. The
pay-off matrix U can then be constructed as shown:

U =

B1 B2 · · · BJ


A1 u11 u12 · · · u1J

A2 u21 u22 · · · u2J

...
...

...
. . .

...
AI uI1 uI2 · · · uIJ

·

Here, the strategies A1 to AI and B1 to BJ correspond to
the different positions of the adversarial example in the high-
dimensional space, during the adversarial example generation
process. Each position has a different norm value (with respect
to the true datapoint and the other adversarial example that is
being generated simultaneously). As mentioned earlier, two
games are occurring simultaneously (one for each adversarial
example), and they are linked by the fact that both games will
have identical pay-offs associated with strategies B1 to BJ

(because the Lp norm between the two adversarial examples
(Equation (2)) will be the same for both).

The pay-off matrix U (more specifically, U1 and U2 for
the two simultaneous games) can be of an arbitrary size, as
the datapoint has infinitely many positions that it can take up
in the high-dimensional space. However, this is not an issue
since we can choose to use suitably discretized positions in
the vicinity of the true datapoint and the decision boundary.

An important fact to note is that in this pay-off matrix
U , not all strategies result in fulfilling the main adversarial
objective (that the adversarial example has to be classified in
the desired class). Only one or more elements will fulfill that
condition. Our goal then becomes to find the element that
meets the main adversarial objective, and has the highest pay-
off among all elements that meet the adversarial objective.
This element can be viewed as a partial Nash equilibrium
under the specified conditions, because the Nash equilibrium
condition is satisfied only for PlayerA (∀i, ai∗,j∗ ≥ ai,j∗),
and it need not satisfy the Nash equilibrium condition for
PlayerB (∀j, bi∗,j∗ ≥ bi∗,j).

This element can be found by optimizing the final objective
function, which can be modelled by combining Equations (1)
and (2):

min
∥∥∥(xtest − x

′(1)
test)

∥∥∥
p
, (3)

min
∥∥∥(xtest − x

′(2)
test)

∥∥∥
p
,

max
∥∥∥(x′(1)

test − x
′(2)
test)

∥∥∥
p

such that,

max {p(ytest = ki|x
′(1)
test, θ

∗)} = p(ytest = kadv|x
′(1)
test, θ

∗)

and,

max {p(ytest = ki|x
′(2)
test, θ

∗)} = p(ytest = kadv|x
′(2)
test, θ

∗).

To solve these constrained equations, we use approxima-
tions that can work almost as well as the theoretically optimal
solution, much like how in complex DNNs, a local mini-
mum may suit the application’s needs well-enough, without
requiring to reach the global minimum. Optimizing Equation
(3) simultaneously produces the approximations of the partial
Nash equilibrium for both the 2-player games.

To explain these approximations, we describe the algorithm
used to generate the synthetic datapoints (to better convey their
purpose, the adversarial examples are henceforth referred to
as synthetic datapoints). The algorithm begins with initializing
the pair of synthetic datapoints that will be created. The initial
datapoints are perturbed versions of the input datapoint, with
the level of perturbation chosen as desired by the user. After
setting the learning rate and maximum number of iterations
allowed, a loop begins and the completion check is done at the
top. The predicted label of the current value of the synthetic
datapoints is extracted from their model score (step 8). If the
predicted label is the same as the target label for both the
synthetic datapoints, then we have achieved the adversarial
objective (Equation (3)) and we exit the loop.

If the predicted label is the same as the target label for
only one of the synthetic datapoints, then we move the syn-
thetic datapoint that hasn’t achieved the adversarial objective
away from the synthetic datapoint that has already achieved
its adversarial objective (as it has achieved its adversarial
objective, it’s left unmodified). After this, we extract the score
of the target class for the synthetic datapoint which is yet to
achieve its adversarial objective, and compute backpropagation
gradients using the score of the target class as the beginning
point. The gradient update for the synthetic datapoint is then
normalized for stability, and this normalized gradient update
is used to modify the current value of the synthetic datapoint.

If neither of the synthetic datapoints have predicted labels
that match their target class, then both the synthetic datapoints
are moved away from each other. The rest of the process for
both the datapoints remains the same as described in the pre-
vious paragraph. The score of the target class is extracted for
both the synthetic datapoints, and backpropagation gradients
are computed and normalized. These are then used to modify
the respective current values of the synthetic datapoints. This

Algorithm 1 Generating two synthetic datapoints for every
input datapoint
Input: Original datapoint (X), Target class (tar y), Trained original
model (orig mod)
Outputs: Synthetic datapoints (X syn 1 and X syn 2)
Other variables: Initial perturbations applied (init perturb 1 and
init perturb 2), Maximum iterations allowed (max iter), Learning
Rate (lr), Class scores generated by orig mod (orig mod sc), Pre-
dicted label (label pred), Score of target class (sc tar), Gradient of
X syn 1 and X syn 2 (dx syn 1 and dx syn 2)

1: function CREATE SYN DATA(X, tar y, orig mod)
2: Use evaluation/inference mode of orig mod
3: Initialize the synthetic datapoints

X syn 1 = X × init perturb 1
X syn 2 = X × init perturb 2

4: Set lr and max iter
5: for i < max iter do
6: Compute orig mod sc 1 of X syn 1
7: Compute orig mod sc 2 of X syn 2
8: Extract label pred 1 from orig mod sc 1 and

label pred 2 from orig mod sc 2
9: if (label pred 1 and label pred 2) = tar y then

10: break from for-loop
11: else if label pred 1 = tar y and

label pred 2 != tar y then
12: Move X syn 2 away from X syn 1
13: Extract sc tar 2 from orig mod sc 2
14: Perform backpropagation on sc tar 2
15: Extract gradient update of X syn 2 (dx syn 2)
16: Gradient update normalization:

r 2 = lr × (dx syn 2/norm(dx syn 2))
17: Update X syn 2 with r 2:

X syn 2 + = r 2
18: Clear current gradients
19: else if label pred 1 != tar y and

label pred 2 = tar y then
20: Move X syn 1 away from X syn 2
21: Extract sc tar 1 from orig mod sc 1
22: Perform backpropagation on sc tar 1
23: Extract gradient update of X syn 1 (dx syn 1)
24: Gradient update normalization:

r 1 = lr × (dx syn 1/norm(dx syn 1))
25: Update X syn 1 with r 1:

X syn 1 + = r 1
26: Clear current gradients
27: else
28: Move X syn 1 and X syn 2 away from

each other
29: Extract sc tar 1 from orig mod sc 1

and sc tar 2 from orig mod sc 2
30: Perform backpropagation on sc tar 1

and sc tar 2
31: Extract gradient updates of X syn 1 (dx syn 1)

and X syn 2 (dx syn 2)
32: Gradient update normalization:

r 1 = lr × (dx syn 1/norm(dx syn 1))
r 2 = lr × (dx syn 2/norm(dx syn 2))

33: Update X syn 1 and X syn 2:
X syn 1 + = r 1
X syn 2 + = r 2

34: Clear current gradients
35: end if
36: end for
37: end function
38: Return X syn 1 and X syn 2

(a) (b) (c) (d) (e)

Fig. 1: Synthetic datapoint generation process. (a) The original datapoint (blue) is sent as input to the algorithm, and perturbed
versions of the original datapoint are used as initial points of the synthetic datapoints (red). (b) In every subsequent iteration,
the synthetic datapoints move towards the decision boundary, while also moving farther apart from each other (distance
b increases). (c) The algorithm ends when the synthetic datapoints have crossed the decision boundary and achieved their
adversarial objective (green), in a way that a1 and a2 are as low as possible. (d) After the algorithm is run once, we get
two synthetic datapoints (green) for the original datapoint (blue), as shown in (c). These points are then used as inputs in the
algorithm again, (e) and we eventually get four synthetic datapoints (the red circles in (d) cross over the decision boundary.
These are the new green circles in (e)).

process continues until either the adversarial objective is satis-
fied (step 9), or we reach the maximum number of iterations.

The main component of r (referred to as r 1 and r 2 in Al-
gorithm 1) is the gradient update for the respective datapoint.
This is obtained by backpropagating gradients. An important
point to note is that while in general backpropagation of
gradients starts from the cost function, in this case it starts
from the score of the target class (steps 14, 22, and 30). Thus,
r can be computed in the following manner:

r = learning rate× dx

norm(dx)
(4)

dx =
∂F

∂a(l+1)

∂a(l+1)

∂z(l)
∂z(l)

∂a(l)
∂a(l)

∂z(l−1)
· · · ∂z

(1)

∂a
(1)
i

(5)

for i = 1, · · · , d for d-dimensional input. In Equation (4),
dx will be dx syn 1 or dx syn 2 depending on whether we
are considering X syn 1 or X syn 2. In Equation (5), F is
the score of the target class. z(l) refers to the weighted sum of
inputs (

∑
i wiai) computed in the last hidden layer l (assuming

there are a total of l hidden layers in the network). a(l) refers to
the activations generated as output by hidden layer l−1 (thus,
a(l) = g(z(l−1)), where g is the activation function used in that
hidden layer). a(1) is simply the input datapoint to the model
(X syn 1 or X syn 2). The perturbations to be applied to
the adversarial datapoint in that iteration can be obtained by
using Equations (4) and (5).

The magnitude of the update r decides the actual values of
the pay-off matrix U . The pay-offs of each subsequent strategy
of PlayerA and PlayerB can be obtained after each iteration
of the loop in step 5. These are the “suitably discretized
position” that were mentioned earlier in this section.

Algorithm 1 allows us the luxury of not needing to compute
the entire pay-off matrix U (also recall that as we are playing
two simultaneous games, one for each synthetic datapoint,
there will be two different pay-off matrices U1 and U2, for
each of the synthetic datapoints, respectively). We proceed
with the algorithm, and in each iteration we find one value

of the pay-off matrix U . We stop the algorithm as soon as
we arrive at the first pay-off which also fulfills the adversarial
objective.

This will be our partial Nash equilibrium point in a pure
strategy, because according to our definition of the pay-off
for PlayerA, we want the distance between the synthetic
datapoint and original datapoint to be as low as possible.
Any subsequent step would increase this distance, because
the synthetic datapoint will be moved farther away from the
original datapoint. We may also achieve a better partial Nash
equilibrium if the other synthetic datapoint hasn’t achieved
its adversarial objective in the same iteration. This is because
in each subsequent step, the other synthetic datapoint will be
moved farther away from the stationary synthetic datapoint,
which increases the pay-off value for PlayerB (while the
pay-off for PlayerA remains constant) for both the games
being played.

Finally, we use the two generated synthetic datapoints as
individual inputs to Algorithm 1 again, to eventually end
up with four synthetic datapoints. This repetition is done so
that the final synthetic datapoints will be very close to the
decision boundary, and also relatively far away from each
other, increasing their diversity. This can potentially improve
how well the new retrained classifier’s decision boundary
mimics that of the original classifier. A high-level visual
summary of this process is explained in Figure 1.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our experimen-
tal evaluation of the synthetic data generation methodology
presented in Algorithm 1. As explained in Section III-C and
visually depicted in Figure 1, when Algorithm 1 is used to
generate synthetic datapoints, every input datapoint results
in the generation of four synthetic datapoints. As a result,
to ensure that the original ML models and the retrained
ML models are trained on an equal number of datapoints,
we randomly select 25% of the original training datapoints

TABLE I: Comparison of F1 scores obtained on the test set, of
original models retrained on the synthetic datasets generated
by different techniques.

Appliance F1 scores
Original

[18]
GAN method

[15]
Jacobian

[16] Ours

Hair Dryer 0.65 0.54 0.60 0.70
Kettle 0.65 0.57 0.58 0.70

Microwave 0.65 0.57 0.61 0.71
Toaster 0.68 0.61 0.59 0.75

Vacuum Cleaner 0.70 0.49 0.48 0.76

(while preserving the class ratios) to be used as inputs to the
algorithm.

To compare the methodology proposed in this work with
existing techniques, we use the methods proposed in [15] and
[16]. As described in Section II, the authors of [15] use a GAN
architecture to generate synthetic datapoints, while the authors
of [16] use a Jacobian-based method to generate synthetic
datapoints. We use both methods to generate the same number
of synthetic datapoints as those present in the original dataset.

Table I compares the performance of the retrained ML
models with that of the original models. F1 scores are used as
the evaluation metric, and the test set used for obtaining the
final performance remains the same in every case.

We note that for every appliance, the proposed methodology
results in a better performance than [15] and [16].

V. DISCUSSION

The results presented in Table I demonstrate the effective-
ness of the proposed synthetic datapoint generation mecha-
nism. The GAN method [15] suffers from several of the issues
discussed in Sections I and II, especially mode collapse. This
is the primary reason for its poor performance on this task.
Similarly, the Jacobian method [16] is unable to get enough di-
versity in its synthetic datapoints to accurately reconstruct the
original decision boundary, leading to a poorer performance
than the original models.

In contrast, using only synthetic datapoints generated by
Algorithm 1 to retrain the ML models results in decision
boundaries that have a better performance on the test set than
the original models. This is because the adversarial game-
theoretic setting explained in Section III-C ensures that a
diverse set of synthetic datapoints are generated, and that they
lie close to the decision boundary of the original models, as
illustrated in Figure 1. This allows the decision boundaries
of the newly trained classifiers to closely mimic those of
the original models. Thus, we can get more private models
that have not been trained on real-world data collected from
end-users, but have at least an equal or better generalization
performance on the real-world test set.

VI. CONCLUSION

This paper developed a methodology for generating diversi-
fied synthetic datapoints for IoT datasets using an adversarial
strategy in a game-theoretic setting. The original ML models
were retrained using only these diverse synthetic datapoints,

and the results validated the proposed methodology by show-
ing that the retrained classifiers had a better performance than
the ML models trained on the original data. This could help
mitigate privacy concerns about data collection amongst end-
users, as they could be assured that their data would not be
used to train ML models directly.

REFERENCES

[1] R. Kumar, M. Swarnkar, G. Singal, and N. Kumar, “Iot network
traffic classification using machine learning algorithms: an experimental
analysis,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 989–1008,
2021.

[2] P. Ferrer-Cid, J. M. Barcelo-Ordinas, and J. Garcia-Vidal, “Graph signal
reconstruction techniques for iot air pollution monitoring platforms,”
IEEE Internet of Things Journal, vol. 9, no. 24, pp. 25 350–25 362,
2022.

[3] S. S. Shuvo and Y. Yilmaz, “Home energy recommendation system
(hers): A deep reinforcement learning method based on residents’
feedback and activity,” IEEE Transactions on Smart Grid, vol. 13, no. 4,
pp. 2812–2821, 2022.

[4] D. Zhang, X. Liu, J. Xia, Z. Gao, H. Zhang, and V. H. C. de Al-
buquerque, “A physics-guided deep learning approach for functional
assessment of cardiovascular disease in iot-based smart health,” IEEE
Internet of Things Journal, 2023.

[5] O. Lucas, M. Sokalski, and R. Fisher, “Corporate data responsibility:
Bridging the consumer trust gap,” KPMG Advisory, 2021.

[6] G. D. P. Regulation, “General data protection regulation (gdpr)–official
legal text,” Gen Data Prot Regul, 2016.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
and S. Ozair, “& bengio, y.(2014),” Generative adversarial nets, vol. 27,
2014.

[8] H. Chen, “Challenges and corresponding solutions of generative ad-
versarial networks (gans): a survey study,” in Journal of Physics:
Conference Series, vol. 1827, no. 1. IOP Publishing, 2021, p. 012066.

[9] J. Kelly and W. Knottenbelt, “The uk-dale dataset, domestic appliance-
level electricity demand and whole-house demand from five uk homes,”
Scientific data, vol. 2, no. 1, pp. 1–14, 2015.

[10] C. Dewi, R.-C. Chen, Y.-T. Liu, and S.-K. Tai, “Synthetic data generation
using dcgan for improved traffic sign recognition,” Neural Computing
and Applications, vol. 34, no. 24, pp. 21 465–21 480, 2022.

[11] V. Thambawita, P. Salehi, S. A. Sheshkal, S. A. Hicks, H. L. Hammer,
S. Parasa, T. d. Lange, P. Halvorsen, and M. A. Riegler, “Singan-seg:
Synthetic training data generation for medical image segmentation,”
PloS one, vol. 17, no. 5, p. e0267976, 2022.

[12] H. P. Das, R. Tran, J. Singh, X. Yue, G. Tison, A. Sangiovanni-
Vincentelli, and C. J. Spanos, “Conditional synthetic data generation
for robust machine learning applications with limited pandemic data,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 11, 2022, pp. 11 792–11 800.

[13] B.-F. Wu, L.-W. Chiu, Y.-C. Wu, C.-C. Lai, and P.-H. Chu, “Contactless
blood pressure measurement via remote photoplethysmography with
synthetic data generation using generative adversarial network,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 2130–2138.

[14] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” Advances in neural information
processing systems, vol. 29, 2016.

[15] S. El Kababji and P. Srikantha, “A data-driven approach for generating
synthetic load patterns and usage habits,” IEEE Transactions on Smart
Grid, vol. 11, no. 6, pp. 4984–4995, 2020.

[16] J. Wang and P. Srikantha, “Stealthy black-box attacks on deep learning
non-intrusive load monitoring models,” IEEE Transactions on Smart
Grid, vol. 12, no. 4, pp. 3479–3492, 2021.

[17] G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of
the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[18] M. A. Devlin and B. P. Hayes, “Non-intrusive load monitoring and
classification of activities of daily living using residential smart meter
data,” IEEE transactions on consumer electronics, vol. 65, no. 3, pp.
339–348, 2019.

	Introduction
	Related Work
	Methodology
	Appliance Classification Task
	Dataset
	Synthetic Data Generation

	Experimental Results
	Discussion
	Conclusion
	References

