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Abstract—The increasing adoption of Internet of Things (IoT)
has resulted in the availability of big data, which can reveal
valuable insights if processed efficiently. Classification tasks are
very important in such applications, and Artificial Intelligence is
widely used to solve these problems. This paper demonstrates
that Deep Learning classifiers used in IoT environments are
vulnerable to black-box adversarial attacks. Such attacks can
render these models ineffective by causing severe performance
issues. This paper develops a black-box adversarial attack
mechanism to generate adversarial examples for data obtained
from smart meters installed in residential houses. An analysis
is presented to demonstrate that the statistical properties of
these adversarial examples are indistinguishable from those of
the true examples, and the performance of the targeted models
degrades sharply when exposed to the proposed attack. Further,
the inherent properties of the attack mechanism imply that it is
able to evade the entire class of gradient masking based defence
methods. The effectiveness of the proposed black-box adversarial
attack is demonstrated on the publicly available United Kingdom-
Domestic Appliance-Level Electricity smart meter dataset.

Index Terms—Adversarial attacks; IoT; machine learning;
cyber-security.

I. INTRODUCTION

Internet of Things (IoT) applications are increasingly using
Artificial Intelligence (AI). The transition towards Industry
4.0 [1] is hastening the generation of vast quantities of data,
and Machine Learning (ML) techniques such as deep learning
are particularly useful in gaining new insights by efficiently
processing large volumes of data.

Over the past few years, ML techniques have been used in
diverse IoT applications such as energy management [2] and
activity detection [3] in smart homes, load classification [4]
and detection of anomalous meter readings or energy theft [5]
in smart grids, and vehicular traffic monitoring [6] and noise
classification [7] in smart cities. Using ML-based classifica-
tion techniques in these scenarios has provided remarkable
improvements in performance and efficiency of systems. As
a result, there has been a rise in interest in the development
of ML-based IoT solutions in a wide range of applications.
One such area is Non-Intrusive Load Monitoring (NILM).
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NILM has been a difficult problem to solve using automated
feature extraction methods like Deep Neural Networks (DNN).
However, the authors of [8] have recently proposed NILM
strategies which use deep learning models and get competitive
results while addressing the household appliance classification
problem.

While there has been a lot of research on using AI
techniques such as deep learning to solve various complex
tasks, not enough attention has been paid to the adversarial
robustness of such solutions. The authors of [9] were the first
to show that DNNs used for image classification tasks were
sensitive to small distortions in the input. An adversary could
use this to their advantage to generate targeted perturbations,
which when added to the input, could force the DNN classifier
into misclassifying that input. Following this development,
several adversarial attacks were proposed for popular data
domains such as image, audio [10] and text [11] data.

However, the vulnerability of ML models for IoT applica-
tions has not been as well-explored. As DNNs have been found
to be one of the best performing model architectures, a major-
ity of the ML models in IoT applications use DNNs for their
classification tasks. This makes them particularly susceptible
to adversarial attacks [12]. Such attacks may increase the error-
rates of models by forcing the targeted models into classifying
adversarial datapoints as belonging to a different class than its
true class. For example, if an adversary targets an appliance
classification model which uses smart meter data as input, it
may misclassify an appliance A as being appliance B, which
will severely impact its downstream tasks such as dynamic
pricing or demand-side management, causing economic losses
to the utility providers.

In this paper, a methodology is developed which shows
that ML algorithms used in IoT applications are vulnerable
to adversarial attacks. In particular, this paper considers smart
meters in power grids. We show that adversarial examples
may be generated for such environments without requiring
any knowledge about the targeted oracle models or access to
the data that they were trained on, and that the adversarial
examples are indistinguishable from true examples in terms
of their statistical properties. The effectiveness of the pro-
posed attack methodology is demonstrated and validated on
the public UK-DALE (United Kingdom-Domestic Appliance-



Level Electricity) dataset [13]. To summarize, the contributions
of this paper are as follows:

• This paper develops a black-box method for generating
adversarial examples for data from smart meters that is
used in smart home applications. The inherent properties
of this methodology imply that an entire class of defen-
sive schemes will fail to protect ML models from this
attack.

• This paper presents an analysis which shows that outlier
detection methods are unable to detect and protect against
such adversarial examples. Thus, it is imperative to
develop and implement ML models in IoT environments
that are robust against adversarial attacks.

The paper’s organization is as follows. Section II presents
an overview of the related work. Descriptions of the classi-
fication task, datasets used for evaluation, threat model, and
the proposed method for generating adversarial examples are
presented in Section III. Section IV presents the experimental
results of the adversarial attack. Section V analyzes and
discusses the results. Section VI concludes the paper.

II. RELATED WORK

Black-box adversarial attacks are a well-studied problem
in the field of computer vision. There is extensive literature
on different types of black-box attacks using popular image
datasets such as MNIST [14], CIFAR-10 [15], and ImageNet
[16]. The authors of [17] were the first to propose a black-
box method for generating adversarial examples for deep
neural network based image classifiers. They trained a local
substitute model using synthetic data, which was obtained after
implementing a Jacobian-based data augmentation method.
The labels for the synthetic data were generated by querying
the targeted oracle model. The substitute model was used to
generate adversarial examples, which were then used to attack
the oracle.

As most of the black-box attacks were based on transfer-
ability, [18] proposed a novel Gradient Estimation black-box
attack. This attack used finite-differences method to estimate
the gradient and required access to the probability vector
generated by the targeted oracle model, rather than just the
output label. However, each adversarial example required a
large number of queries to the oracle, which scaled with the
dimension d of the input.

The simplified attack proposed in [19] also required
continuous-valued confidence scores from the oracle. This
attack was based on the intuition that if there was only a
small distance between the input and the decision boundary,
then there was no need to be careful about the exact direction
along which the adversarial datapoint must be pushed. While
this method was query-efficient compared to the other method-
ologies at that time, it still required over a thousand queries to
the oracle on average, before a successful adversarial example
was generated.

In the domain of AI-powered applications in IoT, only a
few papers have considered adversarial examples, and these
have primarily been white-box adversarial attacks. In [20],

the authors studied FGSM [21], Projected Gradient Descent
(PGD) [22], and BIM [23] adversarial attacks on Feed-forward
Neural Networks (FNN) and Self-normalizing Neural Net-
works (SNN) used for classifying intrusion attacks on IoT
networks using the BoT-IoT dataset [24]. In [25], various
attacks such as L-BFGS [9], FGSM [21], DeepFool [26], BIM
[23] and PGD [22] were compared on Covid-19 deep learning
systems used in medical IoT devices. The authors used the
CORD dataset [27], and found that the deep learning models
were not robust to adversarial perturbations.

Focusing specifically on smart meter datasets, the authors of
[28] were the first to propose a white-box adversarial attack on
deep learning models used for Non Intrusive Load Monitoring
(NILM) applications. They demonstrated the effectiveness of
their attack on models trained on UK-DALE and REFIT
datasets. A black-box adversarial attack was proposed in
[29] for a model trained on Almanac of Minutely Power
(AMP) dataset [30] and Pecan Street dataset, which classified
whether a furnace was in an active state or inactive state. The
methodology in [29] was inspired from [17], and involved
using data augmentation techniques on some datapoints used
to train the oracle, to create synthetic data, and using this
synthetic data to train a substitute model.

In the existing literature, there is no work that considers
the problem of black-box adversarial attacks on deep learning
based classification tasks in IoT environments, which require
zero queries on the oracle or access to the data that it was
trained on. Thus, this work makes a novel and important
contribution in an area of growing importance.

III. ATTACK METHODOLOGY

In this section, we give a brief overview of the ML
task, datasets used, threat model, and the proposed black-
box methodology for generating adversarial examples for such
scenarios.

A. Appliance Classification Task

Smart meters are being increasingly deployed in homes to
collect power consumption data. This can facilitate detection
and classification of appliances being used in a household,
which can enable downstream tasks such as consumer profiling
and classification, improved load forecasting, dynamic pricing
mechanisms and methods for demand-side management. Tra-
ditional Non-Intrusive Load Monitoring (NILM) techniques
for disaggregation of power consumption into that of indi-
vidual appliances are based on statistical methods such as
maximum likelihood estimation and change detection [31].

Recently, the authors of [8] have proposed deep learning
based appliance classification methods. The NILM strategy
proposed in [8] uses substantially pre-processed residential
smart meter data to train a deep learning model to perform the
appliance classification task. The standard practice in this area
is to transform the task into a binary classification problem,
because existing methods are unable to reliably decompose
appliance profiles of multiple appliances from smart meter
data at the same time. A high-level overview of this pipeline



is as follows: (i) extraction of appliance profiles from the
aggregated data one at a time (the rest of the input is treated
as noise), (ii) followed by training a model to predict whether
that particular appliance was in use or not. Thus, a new model
is trained to classify each appliance.

B. Dataset
The UK-DALE dataset [13] was used by the authors of [8]

to test their deep learning based NILM method. It is a publicly
available dataset that has aggregated and disaggregated appli-
ance data collected over several years from five households
in London. It has smart meter data from each household that
captures the mains power demand for the whole-house, as well
as appliance-level power demand, recorded at a granularity of
six seconds. This paper considers the five appliances recorded
in the dataset: kettle, vacuum cleaner, microwave, hair dryer,
and toaster.

C. Threat Model
This paper considers the following realistic threat model for

deep learning classifiers for use on smart meter data:
• The adversary has the ability to modify the data from

smart meters. The adversary gains such capabilities if it
can launch physical attacks on a smart meter, and/or it
has cracked any encryption keys in use, and if it has
compromised any network element such as access points
and routers.

• We consider black-box attacks where the adversary has no
knowledge of the targeted deep learning model (oracle),
or access to the data that it was trained on. Additionally,
in two of the four attack versions, the oracle is not queried
at any stage. This allows for a stronger evaluation of the
oracle’s robustness and provides a lower bound on the
adversary’s effectiveness in terms of performance.

D. Adversarial Attack Mechanism
A black-box attack is one where the adversary has no

information about the targeted deep learning model (oracle). In
this paper, the adversary does not have access to the data that it
was trained on either. To implement the proposed adversarial
attack, a local substitute model is first trained on the same
classification task as the oracle. The training data used for the
substitute is distinct from the training data used for the oracle.
Practically, this is achieved by using 80% of the available
training data of the UK-DALE dataset to train the oracle
model, and the rest of the 20% is used to train the substitute
model.

Once the substitute model is trained, a white-box attack
is performed on the substitute model to generate adversarial
examples. For the attack versions which do not make any
queries on the oracle, the attack follows Algorithm 1. For
the attack versions which make a query on the oracle, the
attack follows Algorithm 2. Once the adversarial examples
are generated, they are then used to attack the oracle.

In a classification problem that is solved using DNNs, the
model tries to learn a function f that is parameterized by
weights and hyperparameters θ:

Algorithm 1 Generating an adversarial example without
querying the oracle
Input: True example (X), Target class (y tar), Trained substitute
model (sub mod)
Output: Adversarial example (X adv)
Other variables: Maximum iterations allowed (iter max), Learning
Rate (lr), Class scores generated by sub mod (sub mod sc), Pre-
dicted label (label pred), Target class’ score (tar sc), Gradient of
X adv (dx adv)

1: function CREATE ADV EX(X, y tar, sub mod)
2: Use substitute model in evaluation/inference mode
3: Initialize adversarial example (copy of true example:

X adv = X)
4: Set lr and iter max
5: for i < iter max do
6: Compute sub mod sc of X adv
7: Extract label pred from sub mod sc
8: if label pred = y tar then
9: break from for-loop

10: else
11: Extract tar sc from sub mod sc
12: Perform backpropagation on tar sc
13: Extract gradient update of X adv (dx adv)
14: Normalize the gradient update:

r = lr × (dx adv/norm(dx adv))
15: Update X adv with r:

X adv + = r
16: Clear current gradients
17: end if
18: end for
19: end function
20: Return X adv

f(x; θ) = y (1)

where x and y are training inputs and labels respectively. In
probabilistic terms, the training procedure can be expressed
as trying to maximize the probability that θ models the
underlying relationship between the training inputs x and
labels y:

θ∗ = argmax
θ

n∑
i=1

log p(yi|xi, θ) (2)

where the training dataset is assumed to have n datapoints.
After training, the trained weights and hyperparameters θ∗ are
obtained. During inference, these can then be used to make
predictions on test datapoints xtest by computing:

max {p(ytest = ki|xtest, θ
∗)}, (3)

where ki = k1, k2, ..., kc for c possible classes. Thus, the
adversarial objective can be framed as:

min
∥∥∥(xtest − x

′

test)
∥∥∥
2
, (4)

such that,

max {p(ytest = ki|x
′

test, θ
∗)} = p(ytest = kadv|x

′

test, θ
∗)



Algorithm 2 Generating an adversarial example while query-
ing the oracle
Input: True example (X), Target class (y tar), Trained substitute
model (sub mod), Trained oracle model (orc mod)
Output: Adversarial example (X adv)
Other variables: Maximum iterations allowed (iter max), Learning
Rate (lr), Class scores generated by sub mod (sub mod sc), Class
scores generated by orc mod (orc mod sc), Predicted label (la-
bel pred), Score of target class (tar sc), Gradient of X adv (dx adv)

1: function CREATE ADV EX(X, y tar, sub mod, orc mod)
2: Use substitute and oracle model in evaluation/inference mode
3: Initialize adversarial example (copy of true example:

X adv = X)
4: Set lr and iter max
5: for i < iter max do
6: Compute sub mod sc of X adv
7: Compute orc mod sc of X adv
8: Extract label pred from orc mod sc
9: if label pred = y tar then

10: break from for-loop
11: else
12: Extract tar sc from sub mod sc
13: Perform backpropagation on tar sc
14: Extract gradient update of X adv (dx adv)
15: Normalize the gradient update:

r = lr × (dx adv/norm(dx adv))
16: Update X adv with r:

X adv + = r
17: Clear current gradients
18: end if
19: end for
20: end function
21: Return X adv

where kadv is the class prediction as desired by the adversary,
and x

′

test is the adversarial datapoint. To generate x
′

test,
Algorithms 1 and 2 are used. As they are both largely similar,
we describe Algorithm 1 in detail, and then mention the key
differences in Algorithm 2.

The algorithm begins by using the substitute model in
inference mode, and making a copy of the true datapoint.
This serves as the initial value of the adversarial datapoint.
After setting a suitable learning rate, a loop begins where the
completion criteria is checked at the top of the loop. The
current value of the adversarial datapoint is used as input
to the substitute model, and the predicted label is extracted
from the model prediction. If the predicted label is the same
as that desired by the adversary, the loop is exited and the
adversarial datapoint is returned. If it is not, then the score
of the target class is extracted from the model prediction and
backpropagation gradients are computed starting from it. The
gradient update of the input is then extracted, normalized, and
multiplied with the learning rate. This value r (step 14) is
then used to update the adversarial datapoint, and the process
continues until either the adversarial objective is achieved, or
the maximum number of iterations allowed are exceeded.

The only differences between Algorithms 1 and 2 are the
addition of step 7 and modification of step 8 in Algorithm
2. In step 7, the model score generated by the oracle is
computed, because this is used in step 8 to check whether

TABLE I: Differences between the four attack versions used.
Guide to acronyms: Ground-truth test set labels used to
determine target class of adversarial datapoints (GT label),
Oracle test set predictions used to determine target class of
adversarial datapoints (OG label), attack versions 1-4 (v1-v4).

Attack Version GT label OG label Oracle Queried
v1 ✓ × ×
v2 ✓ × ✓
v3 × ✓ ×
v4 × ✓ ✓

the goal has been accomplished. Thus, while the adversarial
example generation process is happening on the substitute, the
completion check is done on the oracle. The oracle is only
queried a maximum of four times for each datapoint.

IV. EVALUATION OF ATTACK STRATEGY

This section presents the experimental evaluation of the
adversarial attack strategy proposed in Algorithms 1 and 2.
Table I summarizes the different attack versions. In attack
v1, the ground-truth label of the test set datapoints is used
when determining which class the adversarial datapoint should
be predicted as, to consider that the oracle has been forced
into a misclassification, and the oracle is never queried during
the adversarial example generation process. In attack v2, the
ground-truth test set labels are used again, but the oracle
is queried a maximum of four times during the adversarial
example generation process. Attack v3 is analogous to v1, with
the only difference being that ground-truth labels of the test set
datapoints are discarded, and instead, the test set predictions
made by the oracle are used to determine the target class of
adversarial datapoints. Similarly, the attack v4 is analogous to
v2, with the difference that the test set predictions made by the
oracle are used to determine the target class of the adversarial
datapoints. Thus, attacks v1 and v3 use Algorithm 1, while
attacks v2 and v4 use Algorithm 2.

Table II reports the percentage of test datapoints for which
the adversarial examples generated on the substitute model
were able to force the targeted oracle model into misclassify-
ing them, for all the four attack versions.

To provide a visual representation of the results, Figures
1 and 2 compare the accuracy of the targeted oracle models
with cases when they are attacked by adversarial datapoints
generated in the different attack versions. Figure 1 compares
the accuracy of the oracle models in no-attack scenario, under
attack v1, and under attack v2, when ground-truth labels are
used. Figure 2 compares the accuracy of the oracle models in
no-attack scenario, under attack v3, and under attack v4, when
oracle-generated labels are used (and as a result, the accuracy
of the oracle is always 100%).

Figure 3 presents the histogram of magnitudes and angle
with respect to a particular unit vector for each datapoint,
when they are interpreted as a vector in a high-dimensional
space, following the same scheme as that proposed in [28].
The histograms in green denote true datapoints, while the
histograms in red denote adversarial datapoints. Sub-figures



TABLE II: Percentage of adversarial datapoints generated us-
ing substitute models which could force the oracle model into
misclassifying them. Guide to acronyms: Appliances (Appl.),
Kettle (KT), Vacuum Cleaner (VC), Microwave (MW), Hair
Dryer (HD), Toaster (TS), attack versions 1-4 (v1-v4).

Appl. v1 v2 v3 v4
KT 35.9% 71.3% 47.5% 76.7%
VC 30.0% 56.4% 21.8% 57.9%
MW 37.2% 60.9% 35.5% 54.7%
HD 45.9% 74.4% 52.5% 82.1%
TS 42.6% 68.6% 37.3% 69.7%
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Comparison of accuracy of the oracle model in attack versions v1 and v2
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Fig. 1: Comparison of accuracy of the oracle models when
using ground-truth labels in no-attack scenario (blue), under
attack v1 (orange), and under attack v2 (green).

(a) and (c) show the histograms of magnitudes for true and
adversarial datapoints, respectively, and sub-figures (b) and
(d) show the histograms of angle with respect to the chosen
unit vector, for true and adversarial datapoints, respectively.
To enable easy comparison, sub-figures inside each figure use
the same ranges for their x-axis and y-axis. We note that the
histograms of the true and adversarial datapoints have a close
resemblance to each other. The figure presented is for attack v1
on one appliance classifier. The figures for the other appliances
and attack versions are similar, and are available for viewing
in the linked code [32].

V. DISCUSSION

The four attack versions were used to understand the impact
of the adversarial attack from different perspectives. In attacks
v1 and v2, since the ground-truth labels of the test were used
to determine the target class of the adversarial datapoints, the
results provide the actual number of misclassifications made
by the oracle. However, there is also an argument for the
fact that in real-world scenarios, ground-truth labels for new
datapoints for which the oracle needs to make predictions will
not be available. Thus, it is important to judge the efficacy
of the adversarial attack based on how many adversarial
datapoints were misclassified by the oracle, when the oracle’s
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Fig. 2: Comparison of accuracy of the oracle models when
using oracle-generated labels in no-attack scenario (blue),
under attack v3 (orange), and under attack v4 (green).
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Fig. 3: Histograms of the magnitude ((a) and (c)) and angle
with unit vector ((b) and (d)) for true (green) and adversarial
(red) datapoints (when interpreted as a vector in a high-
dimensional space). Appliance: Kettle. Other appliances can
be found at [32].

predictions on true datapoints are considered to be the new
“ground-truth”. To do this, attacks v3 and v4 were used.

The results in Table II show the efficacy of the proposed
methodology. It is clear that even attacks v1 and v3, which
have the hardest constraints of not being able to query the
oracle at all, have high rates of success of forcing the oracle
models into misclassifying them. Once the constraints are
relaxed in attacks v2 and v4, we see even higher rates of
success, as expected.

Figures 1 and 2 make it easier to see the efficacy of the
proposed adversarial attack. These figures graphically compare
the accuracy of the oracle models in their original state versus
when they are subjected to the four versions of the proposed



attack. We see that there is a sizable drop in accuracy when
the oracle is subjected to attack v1, and a much steeper drop
in attack v2. This remains the same for attacks v3 and v4 as
well. With such low accuracies, the models will not be suitable
for deployment in any applications.

Figure 3 shows that the true and adversarial datapoints are
statistically indistinguishable from each other. As a result,
outlier detection methods will not be able to defend against
these adversarial datapoints.

An important aspect of the proposed adversarial attack
methodology is that it does not require estimation of the
oracle’s gradient information. This means that it will be able
to evade all defence methods that rely on variations of gradient
masking, which gives the adversary an advantage over the
defender. This illustrates the need to deploy strong defence
methods, particularly those which are agnostic to the attack
methodology used by an adversary, if ML models are to be
deployed in large-scale applications.

VI. CONCLUSION

This paper demonstrated that ML classifiers trained on data
generated in IoT environments, such as those from smart
meters, are vulnerable to black-box adversarial attacks, and
that the adversarial examples are statistically indistinguishable
from true examples. This paper developed a strategy for
generating adversarial examples on a locally trained substitute
model which did not have access to the training data used for
the oracle model or any knowledge about its model details, to
target ML classifiers for NILM methods proposed in existing
literature. The proposed attack methodology had high rates of
success on all the appliances on a publicly available smart
meter dataset. Further, as the proposed attack methodology
does not require estimation of the oracle’s gradients, it can
evade an entire class of defence methods.
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