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Abstract— This paper addresses the surveillance problem using
sensor networks with mobile sinks. Sensors’ low computational
capabilities and limited energy motivate our design of a swarm
intelligence based, energy aware protocol, SSP, to route data to a
mobile destination. Using the swarm agent technique to integrate
nodes’ residual energy as a metric for the route selection, SSP
prolongs the network lifetime by evenly balancing residual energy
across nodes and minimizing the protocol’s overhead. The protocol
scales well. Simulation results show that SSP outperforms similar
protocols that are previously proposed.

I. I NTRODUCTION

With recent advances in device fabrication technology, eco-
nomical deployment of large scale sensor networks, capable
of pervasive monitoring and control of physical systems has
become possible. Sensor networks can be deployed, for exam-
ple, for surveillance of forests or civilian areas. In this paper
we present a swarm intelligence based surveillance protocol
using sensor networks with mobile supervisors. Supervisors
are actually sinks that issue queries to sensors under its con-
trol or collects data from them. Supervisors, which can be
forest rangers or policemen respectively in the two scenarios
mentioned above, do not have to stay static or rely on base
stations so that sensors can reach them when alert data emerge.
In these scenarios, which reflect the scenarios of interest in
this paper, most of the sensors stay static while supervisors
are mobile. The problem of interest is:how should the static
sources report their data to the mobile supervisors so that
network and the individual sensor’s lifetime is maximized?To
address this issue, we present an on-line, energy aware sensor
network surveillance protocol motivated by swarm intelligence
theory(which we call SSP) to keep the mobile supervisors
informed timely with alert data to carry out surveillance of
the covered area.

The constant and unpredictable changes in the supervisor’s
location pose the major challenge for design of the surveillance
protocol: how should each data source deliver their report to
the mobile supervisors efficiently?[1] and [2] present protocols
that aiming at information disseminating with the network
lifetime maximized. However, they desire full knowledge of
traffic demands. In [4], [5] “maximizing network lifetime” is
taken as the objective and online algorithms are developed for
static networks to route the data. The similar offline algorithm
of [6] deals with static or slowly changing dynamic networks.

Most of the aforementioned routing protocols assume knowl-
edge of the destination’s identifier-based address. In the mobile

sink scenario, frequently updating all sensors with supervisors’
current location leads to significant overheads. Recent literature
suggests several alternative approaches. Directed diffusion [10]
routes data based on data interests periodically broadcasted by
the sink. Certain paths for a given source are reinforced by the
sink based on previously received data from the source. The
fact that once the sink moves the reinforced paths are not valid
anymore makes the scheme ineligible for accommodating high
level of sink dynamics. A two-tier approach for data dissemi-
nation (TTDD) is proposed in [3] wherein each source forms
a grid like path to the sink. However, aside from being energy
unaware, the communication and state overhead associated with
maintaining these routes degrade the protocol’s scalability and
ability to maximize network lifetime. In addition, all data to the
sink/supervisor are relayed through the primary and immediate
agents, which introduces central points of failure.

With the specific goal of maximizing the network or sensor
lifetime in the mobile supervisor scenarios, this paper presents
a protocol based on the concept of swarm intelligence [9]. In-
troducing of swarm intelligence techniques exempts individual
sensors from possessing much intelligence or cooperating with
each other tightly. Each of them follows simple rules and by
their collective behavior the optimum is achieved. Our protocol
ensures that supervisors are kept updated with information from
data sources in an energy efficient and balanced manner to
prolong the network lifetime.

The proposed protocol performs very well as far as the net-
work lifetime, reliability, adaptability to network dynamics are
concerned. It also achieves scalability. These properties of the
protocol are verified using extensive simulations. Simulations
also show that SSP outperforms even an ideal realization of the
protocol (TTDD) proposed in [3].

The rest of the paper is organized as follows: background
information and the SSP protocol are elaborated upon in
Section II and Section III respectively. Section IV analyzes
the proposed protocol. The simulation results are presented in
Section V and conclusion in Section VI.

II. BACKGROUND AND DEFINITIONS

A. Assumptions and Terminology

In this section we list the assumptions made in this paper
and define the terminology. Following are assumptions:

1) No prior knowledge about supervisors’ mobility charac-
teristics is available.



2) All sensors in the network are potential sources. No prior
knowledge about source data generation characteristics is
available.

These assumptions reflect the conditions in most realistic
deployment scenarios and are necessary to ensure that the
developed protocol is practical. Following are some definitions
that will be used throughout this paper:

• Lifetime of the network is defined as the time till the first
sensor in the network dies.

• Downstream and UpstreamDownstream is defined as
“to-the-supervisor” direction, while upstream refers to the
opposite.

• The Shortest PathSuppose between a given source and
destination there existn paths, which we denote aspj , j ∈
1, 2, · · · , n. The residual energy of thekth sensorvk

j on
pathpj is denoted byek

j , k ∈ 1, 2, · · · , hj , wherehj is the
hop count on pathpj . Max-min routing chooses the path
px where:

x = arg max
j∈1,2,···n

min
k∈1,2,···,hj

ek
j (1)

i.e. it chooses the path which contains the sensor with the
highest minimum residual energy.

• Gradient of a sensor indicates its next hop neighbor on
its shortest path leading to the supervisor.

Note that other shortest path definitions are proposed in
literature [4], [1], [5]. Our shortest path definition excels in that
it involves less parameter tuning and has a far lower algorithm
complexity.

III. SSP: THE SENSORNETWORK SURVEILLANCE

PROTOCOL

Supervisors’ mobility brings up critical issues to each data
source: where should the data be delivered? How to fulfill
this energy-wise efficiently? In this section we address these
issues and present our protocol, SSP, which is motivated by
swarm intelligence theory that argues a set of simple rules
can be designed for low intelligence agents such that by
following the rules their collective behavior can achieve the
optimum. In following sections we present rules designed for
both supervisors and sensors. For ease of illustration, we first
start with the case of a single supervisor in the network.
Multiple supervisors scenario will be addressed later.

A. Rules of the Supervisor

The supervisor’s mobility makes possession of accurate
information about its locations at each data source at all times
rather difficult considering the scalability issue and energy
limitation. To ensure reliable data delivery in the presence of
partial or outdated information at the data origins, we introduce
swarm agent to distributively set up and update for each sensor
the gradient pointing to the downstream neighbor on its shortest
path leading to the supervisor. The swarm agent is advertised by
the supervisor only when it loses contact with some of its one
hop neighbors. Data from the sources reach the supervisor by
taking the path marked out by the gradient at each sensor. Each

swarm agent is identified by its sequence number and consists
of two very short packets, theprecursorand thefollower. The
supervisor advertises its swarm agent to its current neighbors
when losing contact with one or more of it neighbors or at
certain frequency, which will be addressed later.

B. Rules of Individual Sensor

Each sensor maintains the latest swarm agent’s sequence
number, denoted asN here. The protocol is event-driven and
we define 3 major events that occur at sensors as follows:

• ROP(receive ofprecursor) Upon receiving of aprecursor
with the sequence number bigger thanN , a sensor for-
wards it to all it neighbors and starts a timer with value
T defined as:

T = 2− Er

whereer is the remaining energy of the sensor. Note that
that the function above for calculatingT is just an exam-
ple. Realization of our scheme does not depend on any
specific function as long as it is monotonously decreasing
with certain bounds. A received swarm agent with out-of-
order sequence number will simply gets dropped.

• ROF(receive offollower) If a follower is first received and
has the same sequence number as the lastprecursor that
the sensor previously receives, it will be forwarded to the
sensor’s neighbor upon expiration of its timer mentioned
above. Duplicates of thefollower are dropped without any
further action. Most importantly, the sensor updates its
shortest path gradient pointing to the sensor that the first
follower comes from.

• ROM(receive of message) The message will be forwarded
to the neighbor that the sensor’s gradient is pointing to.

C. An Example

In this section we examine how the rules described above
enable the mobile supervisor to stay notified with data reports
from source sensors in an energy efficient manner. Take figure 1
as the example topology. Sensor 4 will be taken as an example
to show how it can keep in touch with the mobile supervisor via
setting up the shortest path in between using the light-weight
swarm agent. For ease of explanation, we omit transmission
and queueing delays, which will be addressed later. In figure
1 two metrics are associated with each sensor, its remaining
energy(denoted by the number outside of the parenthesis) and
timer (denoted by the number inside the parenthesis).

The procedure of how SSP marks out the shortest path is
shown in figure 2:

1) At time 0 the supervisor sends out the swarm agent,
including aprecursorand afollower. Since theprecursor
simply cuts through the network, all sensors, including
sensor 4, will receive theprecursorat time 0; Sensor 1
and 6 set their gradients to the supervisor directly;

2) Node 1’s timer expires at time 1.2, and thefollower is
sent out;

3) Node2 receives thefollower at time 1.2 and sends it out
at time 1.5 when its timer expires;
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Fig. 1. Example: using swarm agent to update the shortest path.
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Fig. 2. Propagation of theprecursorand follower.

4) Node3’s timer has already timed out when it receives the
follower at time 1.5 and thus forwards it immediately. The
follower reaches node4 at time 1.5;

5) Node6 receives thefollower at time0;
6) Node6 sends out thefollower at time1.6 when its timer

expires. Node4 gets a second copy of thefollower from
node6 at time 1.6 and it is simply dropped.

The swarm agent consists of two very short packets, whose
typical one-hop transmission delay would be less than 1ms in
typical MAC protocols [11]. If we bound the timer’s minimum
value as 1s, it will take 1000 hops for the accumulative
transmission delay to reach the magnitude of the timer’s value.

D. Multiple Supervisors Scenario

When multiple supervisors are present in a network, we
define a sensor’sleading supervisoras the supervisor that the
sensor reports to. A sensor’sbackup supervisoris defined as the
supervisor that the sensor is able to report to when the leading
supervisor becomes unavailable. Note that a sensor can have
more than oneback supervisors.

Two different ways of supervision can be applied based on
different network scales:

1) Networks of large scaleThe supervised area can be
pre-divided into sub-regions with one supervisor in each

of them. An example of the application scenario is a
policeman patrolling in the areas that he is responsible
for; In this case the swarm agent from each supervisor
will only traverse sensors located in the area that the
supervisor belongs to.

2) Networks of small scale Each supervisor can move
liberally within the whole supervised area. Its swarm
agent will also traverse the whole network. In this case
each sensor will choose the supervisor that is the least
hops away. The route to this supervisor will still be the
shortest path defined previously.

These two schemes can be applied collaboratively in the
same network, in which case each sub-area is covered by
multiple supervisors.

IV. A NALYSIS OF SSP

A. Validity of the Shortest Path

Theorem 1:When MAC and other delays are negligible
compared to the swarm agent’s timer, paths to the sink specified
by Eqn. (1) are accurately marked out by the swarm agent.

Proof: Consider an arbitrary nodev with n paths to the
sink which form a setP = {pi|i ∈ 1, 2 · · ·n}. At time t the
sink sends out a swarm agent that consists of aprecursorand
a follower. Define a mapping function:

tv = M(ev) (2)

whereM(ev) can be any bounded and monotonous decreasing
function, whereev is the residual energy of nodev. tv gives
the initial value of nodev’s timer for the swarm agent. The
swarm agent traveling along pathpj is also attached with an
“agent timer”,Tj , with initial value0 when advertised from the
sink. Letvk

j denote thek-th hop on pathpj with initial energy
ek
j and timertkj . As the swarm agent passes through this node,

the agent timer, denoted asT k
j , will be updated as:

T k
j = max{T k−1

j , tkj } = max{T k−1
j ,M(ek

j )}

The swarm agent will be re-advertised by nodevk
j whenT k

j

expires. Thus, finally nodev will receive from pathpj a swarm
agent with attached agent timer of value:

Tj = max
1≤k≤hj

M(ek
j )

wherehj is the total hop count along pathpj . Now consider
that nodev receives swarm agents fromn different paths. It is
easy to see that an agent with a shorter “agent timer” always
arrives earlier. From the monotonous decreasing nature of the
mapping function (2), agent timer of the first arriving swarm
agent isTx where:

x = arg min
1≤j≤n

Tj = arg max
1≤j≤n

min
1≤k≤hj

ek
j (3)

The equation above is exactly the same as Eqn. (1) which
defines the shortest path thereby proving the theorem.



B. Swarm Agent Frequency

In this section, we determine the update frequency required
to ensure that the probability that the sink loses contact with
any of the sensors currently in its range aftert units of time is
less than an arbitrary constantβ, 0 < β < 1.

For our analysis, we assume that the sink’s mobility is
governed by a two dimensional random walk. After everyτ
units of time, the sink randomly chooses an angleθ, distributed
uniformly over (0, 2π) and moves a distanced along that
direction. After a random amount of timet (which for ease
of derivations is assumed to be an integral multiple ofτ ), the
sink moves a distanceR(t). We first establish the distribution
of R(t).

Claim 1: If t/τ ≥ 3

√
3r4

16εd4 then Prob{R(t) ≤ r} follows a
Rayleigh distribution with parameternd2/2.

Proof: In an interval t, the sink changes its direction
n = t/τ times and its final position is the sum ofn random
phasors of magnituded. The x and y coordinates of this position
are given by:Xn =

∑n
i=1 d cos θi andYn =

∑n
i=1 d sin θi. As

n becomes large, the use of central limit theorem implies that
the distribution ofXn and Yn become Gaussian with mean 0
and variancend2/2. Transforming the joint distribution ofXn

andYn to polar coordinates then gives the pdf ofR(t). In the
case wheren may not be large enough to satisfy the central
limit theorem, in [12] it is shown that the pdf ofR(t) is given
by

p(r) =
2re

−r2

α

α

[
1+

3
8n

(
E[d4]
E[d2]2

−2
)(

r4

2α2
− 2r2

α
+1

)]
(4)

whereα = nE[d2]. Note that the term outside the square braces
is the Rayleigh distribution and thus forp(r) to be withinε of
this distribution

∣∣∣∣
3
8n

(
E[d4]
E[d2]2

− 2
)(

r4

2α2
− 2r2

α
+ 1

)∣∣∣∣ ≤ ε (5)

For our random walk model where the step size is fixed,
E[d4] = d4 andE[d2] = d2. Using these in Eqn. (5):

3
8n

(
r4

2n2d4
− 2r2

nd2
+ 1

)
≤ ε (6)

which can be simplified to

3r4 ≤ 16εn3d4 − 6n2d4 + 12nr2d2. (7)

When n is large, we haven3 À n2 À n and we can
approximate the equation above be neglecting the lower order
terms. Then we have

n ≥ 3

√
3r4

16εd4
. (8)

Thus for large enoughn the PDF of the distance traveled by
the sink is Rayleigh and is given by

Prob{R(t) ≤ r} = 1− e−
τr2

td2 , 0 ≤ r ≤ ∞ (9)

Now consider an arbitrary sensor with transmission radiusRt

in range of the sink with the location of the sink being equally
likely anywhere within the circle describing the sensor’s trans-
mission region. Then from the results in [13], the probability
β that the sink is still within the range of the sensor after time
t is given by

β =
∞∑

k=1

(a)kzk

(b)kk!
(10)

wherea = 1/2, b = 2, z = −4τR2
t /(td2) and (a)k and (b)k

are Pochhammer symbols:(a)k = a(a+1)(a+2) · · · (a+k−1)
and(a)k = b(b+1)(b+2) · · · (b+ k− 1). For the desired sink
miss rateβ after the end oft units of time, Eqn. (10) can then
be solved to obtain the required update frequency1/t.

C. SSP’s Adaptability to Topology Variations

Our scheme adapts to node insertions and deaths fairly easily.
When a new sensor joins the network, it can simply start to
forward any received swarm agent to let its neighbors be aware
of its existence. When a sensor leaves or dies, its upstream
neighbors will not receive any further swarm agent, which
naturally removes the node from their next hop candidate lists.

V. SIMULATION RESULTS

In this section we use simulations to evaluate the perfor-
mance of our protocol and also compare SSP with the TTDD
algorithm designed for mobile sink scenarios in [3]. SSP
outperforms TTDD even when all simulation settings are set to
benefit TTDD and a large percentage of the overhead is ignored.
We also evaluate the effect of various control and environment
factors on SSP’s performance.

A. Comparison with TTDD

In this section we compare SSP with TTDD and show
that a critical drawback of TTDD is its energy unawareness,
which degrades its performance even when we ignore its higher
protocol overhead. We consider a network of 100 nodes located
in a 100 × 100 region. The area is divided into10 × 10 grids
and all nodes are located at cross points of grids. With this
arrangement the overhead induced by each source to construct
and maintain the grid in TTDD is totally ignored.

The swarm agent is 1 byte and the average data length
is 10 bytes. The sink node’s movement is assumed to be a
2-dimensional random walk with speed 10m/s with steps of
duration 1s. Generation of data reports at each node obeys
a Poisson process with rateλ = 0.05 messages per second.
We use the 1st order radio model described in [8] to calculate
transmission and reception costs.

Figure 3 shows the lifetime of SSP compared with that of
near-ideal TTDD with different grid sizes. Aside from the
major drawback of energy unawareness that we mentioned
earlier, another issue in TTDD is that each source has to
repeatedly construct and maintain its own grid, which spans the
whole network and is a major obstacle for TTDD to perform
efficiently. It should be noted that the TTDD’s overhead actually
grows unboundedly with the increase of the number of source
nodes and decrease of the grid size, which makes it unscalable.
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B. Effect of Control and Environmental Factors
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1) Effect of Sink’s Speed and Length of the Swarm Agent:
Figure 4 shows the effect of the sink’s speed and the ratio of
data length and swarm agent length on the energy consumption
induced by the swarm agent. It can be seen that for different
length ratios, energy consumption induced by the swarm agent
slightly increases as the sink moves faster. When the swarm
agent is much smaller than the data, the energy consumption
induced by the swarm agent can be as low as 1%-5%. This
suggests that data aggregation at the source area could be
employed to decrease SSP’s overhead.

2) Effect of Node Failures:In Figure 5 we plot the data
acquisition’s failure rate as a function of the number of dead
nodes. The node density is 0.01 nodes perm2 and data
generation at each node is Poisson withλ = 0.05. To generate
the death events, nodes were picked randomly and at random
times. The simulation shows that SSP is very robust in that its
data acquisition failure rate stays below 5% even when more
than half of the nodes fail to function.

VI. CONCLUSIONS

This paper presents an energy aware surveillance protocol
using sensor networks with mobile sinks: SSP. It is designed
based on techniques of swarm intelligence and energy-wise
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Fig. 5. Effect of node failures on data acquisition.

path definition for dynamically updating the shortest paths.
The swarm intelligence approach maximizes individual node’s
lifetime since it greatly simplifies sensor’s operations, keeping
requirements in line with a typical sensor’s low computational
capabilities, restricted storage and limited energy. The proto-
col tries to maximize the network’s lifetime by dynamically
choosing the energy efficient paths and balancing the residual
energy at each node. We analytically verify the validity of
SSP. Extensive simulations are also reported to demonstrate
its robustness and superior performance as compared to the
existing protocol.
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