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Abstract—This paper investigates how to support multi-
casting in wireless ad hoc networks without throttling the
dominant unicast flows. Unicast flows are usually congestion-
controlled with protocols like TCP. However, there are no
such protocols for multicast flows in wireless ad hoc net-
works and multicast flows can therefore cause severe conges-
tion and throttle TCP-like flows in these environments. Based
on a cross-layer approach, this paper proposes a completely-
localized scheme to prevent multicast flows from causing
severe congestion and the associated deleterious effects on
other flows in wireless ad hoc networks. The proposed
scheme combines the layered multicast concept with the
routing-based congestion avoidance idea to reduce the ag-
gregated rate of multicast flows when they use excessive
bandwidth on a wireless link. Our analysis and extensive
simulations show that the fully-localized scheme proposed in
this paper is effective in ensuring the fairness of bandwidth
sharing between multicast and unicast flows in wireless ad
hoc networks.
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I. INTRODUCTION

Wireless ad hoc networks such as mobile ad hoc
networks and wireless mesh networks are self-organized
and usually without centralized control. Protocols in
such networks are also required to be distributed for
robustness and scalability. If a distributed protocol only
relies on local information and local actions for fulfilling
its functionality, then the protocol is also localized. In the
sense of using only local resources, a localized protocol
is usually efficient and scalable, which are the basic
characteristics required for protocols in wireless ad hoc
networks. This paper investigates localized mechanisms
to support multicasting in wireless ad hoc networks
without throttling unicast flows.

One of the basic elements required for multicasting in
wireless ad hoc networks is multicast routing. Similar
to a unicast packet, a multicast packet relies on the
underlying routing protocol to reach its destinations.
Existing routing protocols for multicasting in wireless ad
hoc networks such as MAODV [1] and ODMRP[2], like
unicast routing protocols, only set up routing informa-
tion in nodes but do not have other controls over flows,
such as congestion control. Although there have been
many efforts at creating multicast transport protocols,
no mature protocols have emerged yet, even for wireline
networks, due to the difficulties posed by the multiple-
receiver characteristic of multicasting. Existing multicast

congestion control schemes largely fall into two cate-
gories: single-rate and multi-rate. Single-rate schemes
such as [3], [4], [5], [6], [7] have poor performance in
intra-session fairness (i.e., the fairness between receivers
in the same session) as compared to multi-rate schemes.
This is because in single-rate schemes, the transmission
rate of a multicast session is usually decided by the
receiver with the lowest path rate. Multi-rate schemes
such as [8], [9], [10], [11], [12], [13], [14], [15] can achieve
much better intra-session fairness because with these
schemes, each receiver has some freedom to choose a
rate appropriate for itself.
Existing multi-rate protocols, such as Receiver-driven

Layered Multicast (RLM), cannot ensure fairness with
TCP [16], [17], even in wireline networks. To address the
unfairness issue of RLM [16], RLC [9] adopts two strate-
gies, namely synchronization points and probe bursts,
to coordinate receivers in obtaining knowledge on path
conditions. It has been shown, however, that both RLM
and RLC have inherent limits in achieving fairness with
TCP flows [17]. Another interesting protocol in this
category is the Wave and Equation Based Rate Control
(WEBRC) protocol [13]. WEBRC relies on round trip
times and waves to approach fairness with TCP. It needs
further investigation on how impreciseness of round trip
times would impact the performance of the protocol.
In addition, WEBRC introduces considerable (but lower
than RLM and RLC) control traffic overhead in adjusting
receivers’ layers, which is a significant disadvantage
in wireless ad hoc networks. There are also overlay-
network multicast schemes such as [18] in the literature,
whose impact on the network fairness needs further
investigation.
In wireless ad hoc networks, the unfairness situation

becomes more severe with existing multicast congestion
control protocols. First, the wireless links of wireless ad
hoc networks are prone to errors. High link-error rates
usually interfere with congestion control. Second, wire-
less links can have much longer link delays than wireline
links due to the difficulties of medium access control in
wireless environments. Long link delays adversely im-
pact multicast congestion control due to increased delays
for control messages. Third, wireless links usually have
low effective link bandwidth. Therefore, competition for
bandwidth is more severe. For these reasons, it will be
extremely difficult, if not impossible, to create an end-to-
end congestion control scheme that is effective and TCP-
friendly for multicasting in wireless ad hoc networks.
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Instead of relying on end-to-end congestion control
schemes, this paper proposes a fully localized scheme
in the network layer to support multicasting in wire-
less ad hoc networks while maintaining fairness with
unicast flows. The proposed scheme integrates layered
multicast with routing-based congestion avoidance to
achieve its rate control over multicast flows. The pro-
posed scheme is fully localized. Each node acts based
on locally-collected information and no additional in-
teraction between nodes is required for the rate-control
operations over multicast flows, except those required
for standard multicasting service. With the proposed
scheme, a multicast source encodes its signal into several
layers of various priorities [8]. The source then sends
each layer to a separate multicast group. Receivers of
the multicast source subscribe to these multicast groups,
and packets for all or some of these groups flow into the
receivers. At the same time, each intermediate node in
the wireless ad hoc network monitors its wireless link.
When the link starts becoming congested, the node cuts
the aggregated rate of multicast flows if the multicast
flows are using excessive bandwidth on the link. The
local rate-cut on multicast flows is possible because each
multicast flow has multiple layers and layer-priority
information is embedded in the multicast addresses of
these layers. Our analysis and detailed simulation results
show that the proposed scheme enables multicasting in
wireless ad hoc networks and provides unicast flows
their fair share of bandwidth.
The rest of the paper is organized as follows. Section II

presents the proposed scheme in detail, and then Section
III analyzes the proposed scheme for fairness between
unicast flows and multicast flows. The results of scheme
evaluation based on extensive simulations are shown
in Section IV. Related work and discussion appear in
Section V. Finally, Section VI concludes the paper.

II. THE PROPOSED SCHEME

A. Scheme Assumptions and Basic Approach

The proposed scheme imposes no direct control over
any unicast flows and assumes that each unicast flow
is controlled by TCP or a similar protocol without the
assistance of active queue management. A multicast
source encodes its signal into multiple layers and then
sends each layer to a separate multicast group1. After
a source chooses its layer size, it does not change the
size for the rest of the multicast session. The intended
receivers of the multicast source try to subscribe to all
these groups. Packets for all or some of these groups
then flow into each individual receiver.
All the multicast packets traversing a link and origi-

nating from the same multicast source are called a “mul-
ticast flow” on the link in this paper. When multicast
flows traverse the wireless link of a node, the node
observes the output queue of its link at regular intervals

1Multicast groups are not the only means to distinguish layers,
although they are used in the proposed scheme.

ICheckQu (congestion events are always immediately re-
ported irrespective of the observation intervals). When
the number of packets in the queue, NQuPkt, exceeds
a threshold, QuThresh2, some layers of multicast flows
will be blocked from entering the link. However, when
NQuPkt is below another threshold, QuThresh1, for a
specified amount of time, some blocked layers of multi-
cast flows will be released and allowed to traverse the
link. In other cases, there are usually no layer adjust-
ments over multicast flows. This is the basic approach
of the proposed scheme and the rest of this section
discusses in details the various aspects of the scheme.
Before introducing the scheme details, we first explain

what happens when the data in a layer is blocked. If the
multicast application, such as video multicasting, can
tolerate losses, the data in a blocked layer is usually
not recovered and receivers thus obtain information at
a lower resolution, such as lower quality of received
video. On the other hand, if the multicast application
requires total reliability in data delivery, the source needs
to use a technique such as the digital fountain technique
introduced in [10]. In such a case, a receiver needs to
receive enough packets before it can decode and obtain
all the data from the source. A blocked layer therefore
introduces latency in data delivery in this case.
Finally, we need to clarify that the proposed scheme

is mainly designed to effectively relieve congestion at
bottlenecks with multicast traffic. In addition, it is de-
signed to maintain general fairness in bandwidth sharing
among the competing flows at a bottleneck. In particular,
when a given bottleneck limits the rates of all flows
that pass through it, all flows receive similar bandwidth
shares at the bottleneck. However, in scenarios where
the rates of some flows may be restricted by other
bottlenecks, these flows may receive a lower share of
the bandwidth at the given bottleneck. Finally, since the
proposed scheme is not centralized, we do not expect it
to meet the requirements of fairness criteria other than
the one we consider.

B. Retrieving Flow Information

With the proposed scheme, a node collects flow in-
formation about the traffic traversing its link to assist
its congestion-control operation. Specifically, the number
of TCP flows (NTcpF low), number of multicast flows
(NMctFlow), number of layers of each multicast flow
(N i

LiveLayer, 0 < i ≤ NMctFlow), average per-flow rate
of TCP flows (RTcpAvg) and the average per-flow rate of
multicast flows (RMctAvg) are the information retrieved.
The source and destination addresses and port numbers
are used to identify the TCP flow or the layer of a
specific multicast flow to which a packet belongs. The
number of layers (N i

LiveLayer) that the ith multicast flow
has on a link is obtained by observing the number of
different multicast addresses used by the packets of the
flow traversing the link. For the average per-flow rates,
the proposed scheme does not need the absolute values.



3

Instead, the average per-flow rates of TCP flows and
of multicast flows are measured in the following way.
The total number of TCP packets (NTcpPkt) and the
total number of multicast packets (NMctPkt) traversing
the link in specified intervals (Tcount) are counted

2,
and then divided, respectively, by the number of TCP
flows and the number of multicast flows traversing the
link. The results are the measured average per-flow
rates of TCP flows and multicast flows: RTcpAvg =
NTcpPkt/NTcpF low; RMctAvg = NMctPkt/NMctFlow.
The flow information retrieved from the traffic travers-

ing a link is the basis for the operation of the proposed
scheme on the link. The proposed scheme assumes that
the number of layers that a multicast flow possesses on a
link can reflect its relative data rate among the multicast
flows traversing the same link. Particularly, a multicast
flow with more layers has a higher data rate than a
multicast flow with less layers on the same link3.

C. Embedding Layer Priority Information

In some applications such as streaming media, differ-
ent layers of a multicast flow have different priorities. In
general, a lower layer has higher priority and the packets
of such a layer are more useful for a receiver to get its
wanted information. For example, when a piece of video
is encoded into L layers, usually the packets of the mth

layer can be useful in decoding only if the packets from
all lower layers (1, 2, 3, ...,m − 1) are available. In such
a case, when a layer of a flow needs to be blocked on a
link, the layer with the lowest priority should be blocked.
In the proposed scheme, the layer priority information in
a multicast flow is embedded in the multicast addresses
used by the multicast flow.
With the proposed scheme, when a multicast source

applies for multicast addresses, it is assigned a block
of addresses. The multicast source allocates lower ad-
dresses to its higher-priority layers and higher addresses
to its lower-priority layers. Therefore, a node in the net-
work can determine the priority of a layer in a multicast
flow traversing its link by comparing the address of the
layer with the addresses of other layers in the same
multicast flow.
This implicitly embedded priority information is im-

portant for the proposed scheme because it eliminates
the need for defining new fields in the packet header
for carrying packet priority information. If new fields
had to be added to packet headers, the information in
these fields would have to be retrieved separately upon
the arrival of a packet. In such a case, extra cost would
be introduced.

D. Flow Initialization and Receiver’s Roles

At the beginning of a multicast session, each receiver
adds layers gradually by subscribing to those multicast

2In addition, the counting process is reset and restarted whenever
congestion occurs at the bottleneck.
3Note that this assumption may not be satisfied in reality, which

may then lower the fairness obtained by the proposed scheme.

groups that are employed by the multicast source for
delivering its layered signal. After adding a layer, a re-
ceiver waits for a specified period of time before adding
another layer. If the added layer is not blocked in the
network and its packets are flowing into the receiver, the
receiver adds another layer. This process continues until
an empty layer is obtained by the receiver. An empty
layer is a layer whose packets are not flowing into the
receiver because of being blocked in the network.
Apart from the initialization process, receivers also

play a small role at other times for layer adjustment
in the proposed scheme. Particularly, each receiver is
responsible for maintaining a single empty layer. If a
receiver has more than one empty layer, it drops all
but the lowest one. On the other hand, if the packets
of the maintained empty layer of a receiver start to
flow into the receiver, the receiver adds another layer
after a specified period of time. There are two purposes
for a receiver to maintain a single empty layer. One
is to prevent multiple unused layers from flowing into
the network or a section of the network. The other is
to maintain quick response to link state changes, since
an empty layer may be released quickly when free
bandwidth becomes available at a bottleneck.

E. Layer Block and Layer Release

Layer-block is the modification of the multicast rout-
ing table to stop a layer from entering a congested link
(packets are actually dropped before entering the queue).
On the contrary, layer-release is the modification of the
routing table to allow a blocked layer to traverse a link.
When a layer-block is necessary on a link, the multicast
flow with the maximum number of layers on the link
is selected to be blocked a layer (if there are ties, one of
them is selected randomly). Within this selected flow, the
layer with the lowest priority is blocked. This selection
process is expressed formally below.

If Nm
LiveLayer ≥ Nn

LiveLayer for ∀n ∈
(0, NMctFlow], choose the mth flow.

Then, if PLm
i
≤ PLm

j
for ∀j ∈

(0, Nm
LiveLayer], block the ith layer.

where PLm
i
denotes the priority of the ith layer of the

mth session. On the other hand, when a layer-release is
needed, the multicast flow with the minimum number
of layers is selected to release a layer4. Within this
selected flow, the layer with the highest priority among
the blocked layers is released. This process of selecting
a layer to release is expressed formally below.

If Nm
LiveLayer ≤ Nn

LiveLayer for ∀n ∈
(0, NMctFlow], choose the mth flow.

Then, if PLm
i
≥ PLm

j
for ∀j ∈

(Nm
LiveLayer, N

m
layer], release the ith layer.

4If this flow has no empty layer to release, then the flow with the next
minimum number of layers is selected. This selection process continues
until a flow is selected or there is no flow left.
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These layer selection procedures ensure that compet-
ing multicast flows share the bandwidth available to
them fairly. They also ensure that priorities among the
layers of the same multicast flow are taken care of. The
following subsections present how the proposed scheme
ensures that multicast flows as a whole do not consume
excessive bandwidth on a link.

F. Adjusting Multicast Layers

This subsection introduces the most important part of
the proposed scheme, which is the adjustment of the
number of multicast layers (Nlayer) traversing a link

that is congested, where Nlayer =
∑NMctF low

i=1
N i

LiveLayer.
A link becomes congested when the total rate of the
traversing traffic becomes greater than the effective
bandwidth of the link. The effective bandwidth of a
wireless link is determined by the physical bandwidth
of the link and the radio competitions from other nodes.
The effective bandwidth of a wireless link is smaller
when there are more competing nodes.
The proposed scheme blocks or releases multicast

layers on a link according to the state of the associated
node’s output queue. A queue is classified into three
phases in the proposed scheme, which are phase-1,
phase-2 and phase-3. The phase of a queue is determined
by the number of packets in the queue, NQuPkt, and
two specified thresholds, QuThresh1 and QuThresh2.
The thresholds depend on two scheme parameters,
FQuThresh1 and FQuThresh2: QuThresh1 = QuSize ×
FQuThresh1; QuThresh2 = QuSize × FQuThresh2, where
QuSize is the size of the queue. The phases of a queue
are classified as:

QuPhase =







1 if NQuPkt ≤ QuThresh1

2 if QuThresh1 < NQuPkt ≤ QuThresh2

3 if NQuPkt > QuThresh2

A phase-1 queue indicates that free bandwidth may be
available on the link while a phase-3 queue usually
implies existing or impending congestion on the link.
To fully utilize available bandwidth and effectively deal
with congestion, different actions are required in differ-
ent queue phases.
Phase-1 is designed for multicast flows to claim free

bandwidth on the link. However, when the queue is
in phase-1, a multicast layer is not necessarily released.
The reason is that a phase-1 queue does not necessarily
ensure that free bandwidth is available on the link.
TCP flows have their famous sawtooth-like rate fluctu-
ations due to their Additive Increase and Multiplicative
Decrease (AIMD) congestion control mechanism. Upon
congestion, a TCP flow cuts its rate multiplicatively to
relax the congested link, then it additively builds up
its rate to probe for free bandwidth on its path. There-
fore, a phase-1 queue may just indicate that the TCP
flows traversing the link cut their rates multiplicatively
a moment ago and are building up their rates now.
In such a case, no multicast layer should be released.

Otherwise, TCP flows may be deprived of their share
of bandwidth. However, if the queue stays in phase 1
for a relatively long time, then it is almost certain that
free bandwidth is available on the link. Therefore, in the
proposed scheme, a multicast layer is released on a link
only if the link output queue has stayed in phase-1 for
a specified amount of time (TPhase1Thresh).
When the link output queue is in phase-2, usually no

action is taken for multicast flows. A kind of balance
is achieved when the queue stays in phase-2 most of
the time. However, this does not necessarily mean that
good fairness is also achieved between TCP flows and
multicast flows. For example, if a multicast flow leaves,
TCP flows may increase their rates and keep the queue in
phase-2 most of the time (i.e., to multicast flows, there is
no free bandwidth on the link). In such a case, the multi-
cast flows left behind by the departing multicast flow can
not get a share of the bandwidth released by the depart-
ing multicast flow. This is because without additional
precautions, no multicast layer will be released unless
the queue stays in phase-1 for a duration longer than
TPhase1Thresh. To avoid this kind of unfairness situation,
the average per-flow rate of TCP flows (RTcpAvg) and
the average per-flow rate of multicast flows (RMctAvg)
are checked in phase-2. If RMctAvg is less than RTcpAvg, a
multicast layer is released. Otherwise, no action is taken.
The purpose of phase-3 is to detect congestion on the

link. When the link output queue is in phase-3, a multi-
cast layer may be blocked instantly. This is because if the
queue stays in phase-3 for a significant amount of time,
then TCP flows may be throttled from frequent packet
losses. However, there is a special situation to consider
if a multicast layer is blocked instantly each time when
the queue enters phase-3. The rate fluctuations of TCP
flows may cause the queue to visit phase-3 from time
to time. In such a case, multicast layers may frequently
be blocked in phase-3 and then be released in phase-
2 after the TCP flows back off due to congestion. The
number of layers of multicast flows traversing the link
thus fluctuates in such a case. To avoid this problem,
the average per-flow rate of TCP flows (RTcpAvg) and
the average per-flow rate of multicast flows (RMctAvg)
are also checked in phase-3. Only if RMctAvg is higher
than RTcpAvg, a multicast layer is blocked in phase-3.
This procedure stabilizes multicast traffic and ensures
fairness among competing flows.

G. Scheme Adaptation

This subsection introduces several scheme adaptation
procedures for stabilizing multicast traffic on a link. The
main cause of instability of multicast traffic on a link
is that the rate adjustment units for multicast flows are
layers and a multicast layer usually has a significant size.
It is possible that a layer adjustment on a link may

cause queue phase and layer fluctuation due to the
significant size (or equivalently, rate) of a multicast layer.
For example, a layer release in phase 2 may force the
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queue to go to phase-3 because of the significantly in-
creased traffic on the link. However, in phase-3, the layer
may be blocked instantly, which may cause the queue
to fall back to phase-2. In phase-2, the layer may be
released again. These queue movements therefore cause
phase and layer fluctuation. In general, the number of
multicast layers on a link should be kept as stable as
possible for good bandwidth utilization. The proposed
scheme adopts several procedures to alleviate layer and
queue phase fluctuation.
First, when multicast traffic needs to be increased

continuously on a link, the rate of increase is decreased
each time after a layer is released. Particularly, the obser-
vation time (TObserve) (i.e., the time of observation before
a layer adjustment is made) for the next layer release
is increased by a factor FSlowDown (FSlowDown > 1):
TObserve ←− TObserve×FSlowDown. Second, when a layer
is blocked right after a layer is released, the observation
time (TObserve) for the next layer release is increased by
another factor FBackOff (FBackOff > 1): TObserve ←−

TObserve × FBackOff . TObserve is reset to its initial value
after the queue has been in phase-1 for a specified period
of time. Third, a layer is blocked in phase 3 only if
the average per-flow rate of multicast flows is greater
than the average per-flow rate of TCP flows by a ratio
threshold (RTBlock): (RMctAvg − RTcpAvg)/RTcpAvg >
RTBlock. The last procedure specifically reduces phase
alternations between phase 2 and phase 3.

H. Scheme Parameter Settings

Our experiments show that the scheme is not sensitive
to its parameter settings if some basic rules are followed
in assigning the values. For the queue threshold factors,
the higher one, FQuThresh2, should be near to 1.0, while
the lower one, FQuThresh1, should be close to 0.0. This
is because phase 3 is to detect potential congestion
conditions while phase 1 is to detect free bandwidth on
the link. For the two back-off parameters, FSlowDown and
FBackOff , the latter should be larger than the former,
since a layer block right after a layer release indicates
a high probability of another layer block if a layer is
released again in a short time. The choice of RTBlock

should be one to a couple of tens percent for avoiding
layer alternation between phase 2 and phase 3. ICheckQu

determines how frequently the queue is checked for its
status. Too long intervals mean slow response, while
too short intervals introduce excessive cost. In general,
higher link speed requires shorter check intervals be-
cause higher-rate traffic change the queue status quickly.
TObserve is for stabilizing layer adjustment. Since this
parameter is adjusted dynamically by the scheme, the
initial value should be set to a small value. TPhase1Thresh

is the time threshold in phase 1 for releasing a layer.
It should be set to a relatively high value for ensuring
that free bandwidth is indeed available when a layer
is released. Finally, Tcount, the interval to measure the
average per-flow rates of TCP flows and multicast flows,

should be set to a relatively large value as compared
to the expected RTTs of the flows in the network. We
implemented the protocol in our simulations with a set
of parameter values that follow these above rules. Our
results show that these same parameter setting works
well in all our simulation scenarios.

III. CONVERGENCE TO FAIRNESS

In this section we analytically prove that the proposed
scheme shares bandwidth fairly with an arbitrary num-
ber of competing TCP flows. We use Jain’s fairness index
[19] to quantify a notion of fairness. Consider a set of n
flows where the window (or equivalently the rate) of the
i-th flow is given by xi(t). The Jain’s fairness index F (t)
at time t is then given by

F (t) =
(
∑n

i=1
xi(t))

2

n
∑n

i=1
xi(t)2

(1)

which attains the value of 1 when the allocation is totally
fair (x1(t) = x2(t) = · · · = xn(t)).
We consider a scenario where a multicast flow shares

a bottleneck with an arbitrary number, denoted by n, of
TCP flows. For ease of analysis, we assume that all the
TCP flows have the same RTT. The service capacity of the
bottleneck is C bits per second. The size of a multicast
layer is denoted by g and we assume that g ≫ 1 since
the size of a multicast layer is expected to be quite large.
Note that g ≥ 2 suffices for our proof. The action of
the two protocols involved can be described in terms of
their response to congestion or the absence thereof, as
dictated by their increase (I) and decrease (D) policies.
Let each application of the increase or decrease policy be
separated by R time units (we assume that these are the
same for both TCP and the multicast session for ease of
analysis). The behavior of the multicast flow with rate

xm(t) at time t, with the corresponding rate of the ith

TCP flow being xi(t), 1 ≤ i ≤ n, is then given by

I : xm(t + R)←−

{

xm(t) + g if xm(t) < xtcp(t)
xm(t) otherwise

(2)

D : xm(t + R)←−

{

xm(t) if xm(t) < xtcp(t)
xm(t)− g otherwise

(3)
where xtcp(t) =

∑n
i=1

xi(t)/n is the average rate of TCP
flows. Similarly, the behavior of the TCP flows can be
modeled as

I : xi(t + R)←− xi(t) + α (4)

D : xi(t + R)←− xi(t)− βxi(t) (5)

with standard values of α and β being 1 and 1/2
respectively.
For the purposes of this proof, we consider the oper-

ation of the network in terms of “rounds”. The length
of a round is not fixed. At the beginning of each round,
the rates of the TCP flows and the multicast flow are
increased as specified by Equations (2) and (4) above. If
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the queue at the bottleneck does not overflow as a result
of this increase, the current round ends and the next
round begins with another application of the increase
policies. On the other hand, if the application of the
increase policy overflows the queue, then the decrease
policies as specified in Equations (3) and (5) are applied
to the flows. If this does not alleviate the overflow in
the queue, multiple applications of the decrease policy
may follow. The round ends when the overflow at the
bottleneck is alleviated. The next round again begins
with the application of the increase policies since each
round begins with a stable system.

In the rest of this section we drop the time index t
from the notation and use: xm, xtcp and xi to denote
the rates of the multicast flow, the average rate of the
TCP flows and the rate of the i-th TCP flow, 1 ≤ i ≤ n,
respectively, at the beginning of the current round. Note

that xtcp =

∑

n

i=1
xi

n
. We use x′

m, x′

tcp and x′

i to denote
these rates after the increase policy has been applied
once the round begins. Also, since each round begins
with a stable system, we have xm+

∑

xi ≤ C. Finally, for
ease of notation, we drop the limits from the summations
and all sums are from i = 1, · · · , n unless specifically
mentioned.

To prove that the system of flows converges to fair-
ness, we use the following result, which is Theorem 4,
page 334, of [20] and is reproduced below for conve-
nience:

Result 1: (Theorem 4, page 334, [20]): m flows with
windows (or rates) y1, y2, · · · , ym converge to fairness if
the following condition is satisfied over any small period
of time

m
∑

i=1

y2

i

m
∑

i=1

∆yi ≥

m
∑

i=1

yi

m
∑

i=1

yi∆yi (6)

where ∆yi represents the change in the window (or rate)
of the i-th flow over the period of time and at least one
of the I or D policies results in a strict inequality.

In addition to Result 1 we have the following results
which will be used in the proof of our claim of conver-
gence to fairness.

Result 2: If xtcp ≤ xm + g then
xtcp

2
≤ xm.

Proof: The rate of the multicast flow, xm is an
integral multiple of g. Say xm = rg, for some r ≥ 1.
Thus xtcp ≤ xm + g = (r + 1)g implies

xtcp

2
≤

r + 1

2
g ≤ rg = xm

for r ≥ 1. Note that if xtcp is strictly less than xm + g,
i.e., xtcp < xm + g, then

xtcp

2
< xm.

Result 3: If xm < xtcp then x2

m +
∑

x2

i > xm +
∑

xi.

Proof: We first note that since xm ≥ g ≫ 1 (or xm ≥

2), x2

m > xm. Also, since xtcp > xm we have

∑

xi

n
>

xm ≥ g ≫ 1 and thus
∑

xi ≫ n. Let
∑

xi = α. Then

∑

xi = α≫ n ⇒ (
∑

xi)
2 = α2 ≫ n2

⇒ n
∑

x2

i ≥ (
∑

xi)
2 = α2 ≫ n2(7)

⇒
∑

x2

i ≥
α2

n
> α =

∑

xi

where in Equation (7) we have used Cauchy’s inequality
(n

∑

x2

i ≥ (
∑

xi)
2). Thus we have x2

m +
∑

x2

i > xm +
∑

xi.

We now formally state the claim of convergence to
fairness for our scheme and prove it.

Claim 1: A system comprising of a multicast flow
sharing a bottleneck with an arbitrary number of TCP
flows converges to fairness.

Proof: We break the proof in two parts by consider-
ing the two possibilities: (1) xm < xtcp and (2) xm ≥ xtcp,
each of which has four sub-cases. We show that for
the cases that involve only applications of the increase
policy, Eqn. (6) is satisfied with a strict inequality.

Case 1: xm < xtcp: In this case, since the rate of the
multicast flow is lower than that of the TCP flows and
the queue is not overfull when the round begins, both
the multicast and TCP flows increase their rates, as per
Equations (2) and (4). Thus we have x′

m = xm +g, x′

tcp =
xtcp + 1 and x′

i = xi + 1. Based on this, we have four
subcases:

subcase 1.a x′

m ≤ x′

tcp: no overflow (xm +g+
∑

xi +
n ≤ C)
subcase 1.b x′

m ≤ x′

tcp: overflow (xm+g+
∑

xi+n >
C)
subcase 1.c x′

m > x′

tcp: no overflow ((n+1)(xm+g) ≤
C)
subcase 1.d x′

m > x′

tcp: overflow ((n + 1)(xm + g) >
C)

Here we prove subcase 1.a. The other cases can be
proved in a similar way.

subcase 1.a (x′

m ≤ x′

tcp and xm + g +
∑

xi + n ≤ C):
Since we have x′

m = xm+g, x′

tcp = xtcp+1 and x′

i = xi+1,
the total rate of traffic flow into the bottleneck queue is
xm + g +

∑

xi + n. Since this not more than the queue’s
service capacity C, the queue does not overflow. Also,
∆xm = (xm + g) − xm = g and ∆xi = (xi + 1) − xi = 1.
To show that Equation (6) holds in this case we need to
demonstrate

(x2

m +
∑

x2

i )(g +
∑

1) ≥ (xm +
∑

xi)

×(gxm +
∑

1 · xi)

s.i., g
∑

x2

i + nx2

m + n
∑

x2

i ≥

gxm

∑

xi + xm

∑

xi + (
∑

xi)
2

s.i., g
∑

x2

i + nx2

m ≥

gxm

∑

xi + xm

∑

xi (8)
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where s.i. represents “which is satisfied if”. To prove
the relation above, we note that for any xi, 1 ≤ i ≤ n

(xi − xm)2 ≥ 0 ⇒ x2

i + x2

m ≥ 2xmxi (9)

Adding over all i, i.e. over all the TCP flows and
multiplying by g, we have

g
∑

x2

i + ngx2

m ≥ 2gxm

∑

xi

⇒ g
∑

x2

i + nx2

m ≥ (g + 1)xm

∑

xi +
[

(g − 1)xm

∑

xi − n(g − 1)x2

m

]

⇒ g
∑

x2

i + nx2

m > (g + 1)xm

∑

xi

since xm < xtcp ⇒ nxm <
∑

xi ⇒ n(g − 1)x2

m <
(g − 1)xm

∑

xi ⇒ 0 < [(g − 1)xm

∑

xi − n(g − 1)x2

m].
This shows that Eqn. (8) holds and consequently Eqn.
(6) holds for this subcase with a strict inequality.
Case 2: xm ≥ xtcp: In this case, since the rate of the
multicast flow is greater than that of the TCP flows and
the queue is not overfull when the round begins, only
the TCP flows increase their rates, as per Equations (2)
and (4). Thus we have x′

m = xm, x′

tcp = xtcp + 1 and
x′

i = xi + 1. Based on this, we have four subcases:

subcase 2.a x′

m ≥ x′

tcp: no overflow (xm+
∑

xi+n ≤
C)
subcase 2.b x′

m ≥ x′

tcp: overflow (xm+
∑

xi+n > C)
subcase 2.c x′

m < x′

tcp: no overflow (xm +g+
∑

xi +
ng ≤ C)
subcase 2.d x′

m < x′

tcp: overflow (xm + g +
∑

xi +
ng > C)

Here we prove subcase 2.a. The other cases can be
proved in a similar way.
subcase 2.a (x′

m ≥ x′

tcp and xm +
∑

xi +n ≤ C): At the
end of the round, the change in the rates of the flows is
∆xm = xm − xm = 0 and ∆xi = (xi + 1)− xi = 1. Also,
∆xm = 0, ∆xi = 1 and x′

m ≥ x′

tcp implies that xm > xtcp.
To show Equation (6) holds in this case, we then need
to show

(x2

m +
∑

x2

i )
(

0 +
∑

1
)

≥

(xm +
∑

xi)
(

0 · xm +
∑

xi · 1
)

s.i., nx2

m + n
∑

x2

i ≥ xm

∑

xi + (
∑

xi)
2 (10)

From Cauchy’s inequality, n
∑

x2

i ≥ (
∑

xi)
2. Also, xm >

xtcp ⇒ nxm >
∑

xi ⇒ nx2

m > xm

∑

xi. Thus Equation
(10) and consequently Equation (6) holds in this case
with a strict inequality.

This proves that irrespective of the current rate of the
flows and the current level of fairness in the system,
there exists a time interval after which the fairness of
the system becomes greater than the current level. While
the level of fairness may oscillate over a period of time,
the system converges towards fairness over time, even
though the oscillations persist.

IV. SCHEME EVALUATION

This section presents the evaluation results for the pro-
posed scheme. Our evaluation was done with extensive
simulations on Network Simulator 2 [21]. The values of
main scheme parameters used in our simulations are
given in Table I. Our simulation configurations focus
on generating a single typical bottleneck in a wireless
ad hoc network that bears both multicast and unicast
flows. The proposed scheme in this paper adopts a
fully localized strategy for controlling multicast flows.
With the proposed scheme, congestion in the network
is dealt with locally and cooperation between interme-
diate nodes is not required, except those demanded for
standard multicasting. It is therefore general enough to
investigate how the proposed scheme performs on a
single typical bottleneck in a wireless ad hoc network.
In the wireless ad hoc network configured in our

simulations, the propagation model is two-ray ground;
the MAC protocol is IEEE 802.11; the ad-hoc routing
protocol is DSR5; and the link queue size is 50 packets.
The wireless ad hoc network is in an area of 670m
by 670m and the transmission distance of each node is
100m. Two nodes at a distance of 100m form a shared
wireless bottleneck. The senders of the competing flows
are randomly placed within 100m around one node of
the shared bottleneck and the receivers of the competing
flows are randomly placed within 100m around the other
node of the shared bottleneck. It is ensured though that
all the senders must be more than 100m away from
all the receivers so that all competing flows traverse
the shared bottleneck, which has a radio bandwidth of
1Mbps. There are 5 competing flows in our simulations,
2 multicast flows and 3 TCP flows, and there is a
maximum of 14 nodes in the simulations. Each multicast
flow has 15 layers and the size of each layer is 10Kb/s6.
In addition, a multicast source in our simulations can

either be a Constant Bit Rate (CBR) source or Variable Bit
Rate (VBR) source. In general, CBR multicast sources are
easier to deal with than VBR multicast sources because
the latter introduce traffic fluctuation on links. VBR
multicast sources pose challenges for existing multicast
congestion control schemes [16], [17]. However, our
simulation results show that the proposed scheme can
tolerate significant fluctuation of multicast traffic.

A. CBR Multicast Sources

This subsection shows the simulation results for CBR
multicast sources. We used three scenarios to test the
proposed scheme. In the first scenario, there is no node
mobility; in the second scenario, one secession moves
away from the bottleneck; in the third scenario, all nodes
follow random waypoint movement.

5We did not simulate the details of an existing multicast routing
protocol because the performance of the proposed protocol at a given
bottleneck does not depend on the details of such a protocol.
6Existing CODECs may need redesign or modification to generate
equal-size layers in reality.
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TABLE I

MAIN SCHEME PARAMETER VALUES

FQuThresh1 FQuThresh2 FSlowDown FBackOff RTBlock ICheckQu TObserve TPhase1Thresh Tcount

0.0 0.8 1.5 4.0 0.2 0.02 0.1 1.0 0.02

1) Static Network Scenario: We first consider scenarios
in which nodes have no mobility. In this scenario, all
flows start at the 100th second of the simulation (for
leaving some establishment time for the wireless ad hoc
network) and stop at the 1500th second. The simulation
results are shown in Fig. 1 and Fig. 2. Fig. 1 shows the
number of layers and the throughput of each multicast
flow, while Fig. 2 presents the throughput of each indi-
vidual TCP flow and the average per-flow throughput
of TCP flows. As shown in these two figures, each
flow, multicast or unicast, gets a throughput close to
4 KBytes/s. Moreover, after the initial adjustment, the
number of layers of each multicast flow is fairly stable7.
For reference, in this section we show the simulation

results for RLM [8], which is one of the most well-known
multi-layer multicast congestion control schemes in the
literature. Due to limited space, we only show the results
for the least challenging case from RLM’s perspective, in
which the multicast traffic is CBR traffic and all nodes are
static. RLM usually uses exponentially increasing sizes
for layers, which is for multiplicatively reducing traffic
rate in case of congestion. In our simulations, RLM uses 5
layers and the size of each layer is 10, 20, 40, 80, and 160
kb/s, respectively, from layer 1 to layer 5. The simulation
results are shown in Fig. 3 and Fig. 4. By comparing
Fig. 3 and Fig. 4 with Fig. 1 and Fig. 2, respectively,
we can find that the proposed scheme achieves higher
stability in both numbers of layers for multicast sessions
and throughput for all sessions. This demonstrates that
the congestion on the bottleneck is better controlled with
the proposed scheme. In addition, these figures show
that the proposed scheme achieves better fairness as
compared to RLM; the Jain’s fairness index, on average,
is 0.89 and 0.73 for the proposed scheme and RLM,
respectively.
Another thing that we examined in this scenario is

what happens when the TCP flows do not have the same
RTT. In the examination, the sender of the first TCP flow
moves out of the 100m range of the shared bottleneck
so that the TCP flow has four instead of three hops on
its path. The simulation results are shown in Fig. 5 and
Fig. 6. As shown in Fig. 6, the first TCP flow obtains less
bandwidth at the bottleneck than the other TCP flows
due to its longer RTT. Howerver, the average TCP flow
rate is still similar to that shown in Fig. 2.
Effect of Interfering Flows: We now consider the pres-

ence of other nodes in the vicinity of the bottleneck
whose flows do not necessarily flow through the nodes

7There is a one-layer difference between the two multicast flows in
some cases. One-layer difference between multicast flows is possible
with layered multicast congestion control because the units of rate
adjustment for multicast flows are layers.

forming the bottleneck. However, their transmissions
cause interference and contend for the same channel as
the bottleneck thereby reducing the effective bandwidth
at the bottleneck and causing stochastic variations in
the channel availability. To observe the impact of such
flows on the performance of our proposed protocol, we
introduced an interfering flow with a constant rate of 40
kb/s (the rate of 4 multicast layers) in the neighborhood
of the bottleneck. This was achieved by adding two
more wireless nodes within the transmission radius of
the nodes forming the bottleneck link. The CBR flow
transfers packets between these nodes and in the process,
competes for the channel (or bandwidth) with the flows
traversing the bottleneck. The simulation results for this
case are shown in Figs. 7 and 8. As shown in these
figures, the bandwidth available to each competing flow
on average is reduced when the effective bandwidth of
the bottleneck is reduced. However, the fairness is still
maintained on the bottleneck.
2) One Session Moving-away Scenario: In this scenario

we show how the proposed scheme behaves when one
competing flow leaves the shared bottleneck. We first
show the simulation results for the case in which a TCP
source is moving away from the common bottleneck
link. The simulation results are shown in Fig. 9 and
Fig. 10. As shown in Fig. 10, when the source of TCP1
starts moving away at the 500th second of the simula-
tion, the throughput of TCP1 decreases and finally the
TCP flow disappears from the bottleneck link at about
the 700th second. As shown in Fig. 9 and Fig. 10, the
bandwidth released by the departing TCP flow is fairly
shared among the four flows that are left behind by the
departing TCP flow.
3) Random Node Movement Scenario: This scenario
shows the performance of the proposed scheme when
nodes follow random waypoint movement. As intro-
duced earlier, there is a single wireless link connect-
ing two parts of the wireless ad hoc network in our
simulations (the ad hoc network is 500 by 500 square
meters). Source nodes are located in one part, while
destination nodes are located in the other part. This
configuration provides the shared bottleneck as the ideal
observation point for scheme behaviors. Both source
nodes and destination nodes follow random waypoint
movement in their parts of the network. The maximum
node speed is five meters per second, while the average
pause time is five seconds. The simulation results for this
scenario are shown in Fig. 11 and Fig. 12.
As shown in Fig. 11, the two multicast flows do not

have a stable number of layers anymore as random
movement is introduced to nodes in the network. This
is because when nodes move, link quality and actual
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Fig. 1. Individual Multicast Throughput and Number of Layers
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Fig. 2. Individual TCP Throughput and Average Per-flow TCP
Throughput
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Fig. 3. Individual Multicast Throughput and Number of Layers
(RLM Case)
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Fig. 4. Individual TCP Throughput and Average Per-flow TCP
Throughput (RLM Case)

capacities change in the network. In addition, existing
paths may even disappear in the network. However, on
average, the two multicast flows have similar numbers
of layers when both of them have traffic on the shared
bottleneck (the second multicast flow loses traffic on the
bottleneck a couple of times due to node movement). The
behavior of the three TCP flows is shown in Fig. 12 and
we note that due to the random movement, they do not
have similar shares of the bandwidth on the bottleneck.
This is because the TCP flows here have different delays
and link quality on their paths. However, multicast
flows still show fairness with TCP flows in this random
movement scenario; TCP flows, on average, obtain a
fair share of bandwidth on the bottleneck, as shown in

Fig. 12.

B. VBR Multicast Sources

VBR multicast sources pose more serious challenges
for existing multicast congestion control schemes [16],
[17]. This subsection shows how the proposed scheme
behaves with VBR multicast sources. For generating the
VBR multicast sources, we used the exponential traffic
model in NS-2. The simulated VBR traffic has exponen-
tially distributed burst and idle times. We set the average
idle time to 100ms and varied the average burst time of
the multicast traffic to test the proposed scheme with
different traffic burstiness, while the average flow rate is
kept the same. Due to limited space, we only show the
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Fig. 5. Individual Multicast Throughput and Number of Layers
(Various TCP RTTs)
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Fig. 6. Individual TCP Throughput and Average Per-flow TCP
Throughput (Various TCP RTTs)

0 500 1000 1500
0

5

10

15

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT1_Throughput

0 500 1000 1500
0

5

10

15

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT2_Throughput

0 500 1000 1500
0

5

10

15

Time (seconds)

N
um

be
r 

of
 L

ay
er

s

MCT1_Layers

0 500 1000 1500
0

5

10

15

Time (seconds)

N
um

be
r 

of
 L

ay
er

s

MCT2_Layers

Fig. 7. Individual Multicast Throughput and Number of Layers
(Reduced Effective Bandwidth Case)
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Fig. 8. Individual TCP Throughput and Average Per-flow TCP
Throughput (Reduced Effective Bandwidth Case)

results for the static network case, with five competing
flows. The results for the cases with node mobility follow
the same trends as in the results for CBR sources.

The simulation results are shown in Fig. 13 and and
Fig. 14 for the case in which the average burst time of
the multicast traffic is 1000ms. As shown in these two
figures, both multicast flows still have a fairly stable
number of layers. In addition, fairness is still achieved
among the competing flows. However, as compared with
the simulation results shown in Fig. 1 and Fig. 2, the ac-
tual throughput on the common wireless link is reduced
after the introduction of the VBR multicast traffic. This is
because VBR traffic can cause more severe congestion on
the bottleneck link than CBR traffic of the same average
rate.

To increase the burstiness of the multicast traffic, we
decreased the average burst time to 500ms (the burst rate
is actually increased for keeping the average flow rate
unchanged). The simulation results are shown in Fig. 15
and Fig. 16. As shown in these two figures, both multi-
cast flows still maintain the stability of their number of
layers. In addition, fairness is also maintained among the
competing flows. To further increase the burstiness of the
multicast traffic, we decreased the average burst time to
200ms. The simulation results are shown in Fig. 17 and
Fig. 18. As shown in these two figures, both multicast
flows show significant variation in their numbers of
layers. However, the fairness among the competing flows
is still maintained in such a case.

The simulation results in this subsection show that
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Fig. 9. Individual Multicast Throughput and Number of Layers (A
TCP flow moves away from the common bottleneck link)
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Fig. 10. Individual TCP Throughput and Average Per-flow
TCP Throughput (A TCP flow moves away from the common
bottleneck link)
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Fig. 11. Individual Multicast Throughput and Number of Layers
(random waypoint movement)
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Fig. 12. Individual TCP Throughput and Average Per-flow TCP
Throughput (random waypoint movement)

the proposed scheme is able to tolerate significant fluc-
tuation of multicast traffic. With limited fluctuation in
multicast traffic, the scheme still maintains the stability
of the number of layers for each multicast flow while
fairness is also maintained among the competing flows.
As multicast traffic fluctuates severely, the multicast
flows may have an unstable number of layers. However,
the fairness between competing flows is still maintained.
The instability of multicast layers in such a case is prac-
tically unavoidable with any layered congestion control
schemes because the severely fluctuating multicast traffic
causes frequent flash congestion on the bottleneck link
and the congestion control scheme thus has to adjust

multicast layers correspondingly.

V. RELATEDWORK AND DISCUSSION

Besides the purely end-to-end multicast congestion
control schemes introduced in the first section of this
paper, there are also some network-assisted congestion
control schemes proposed for layered multicast in the
literature, such as [22] [23] [24]. Sarkar et al. propose a
new scheduling policy in [22] where flows are served in
a round robin manner in each link based on feedback
from immediate downstream links. When a flow is sam-
pled, it is served only if at least one of the immediate
downstream links is not congested and able to accept
packets from the flow. Bajaj et al. analyze and compare
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Fig. 13. Individual Multicast Throughput and Number of Layers
(VBR multicast traffic with average burst time of 1000ms)
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Fig. 14. Individual TCP Throughput and Average Per-flow TCP
Throughput (VBR multicast traffic with average burst time of
1000ms)
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Fig. 15. Individual Multicast Throughput and Number of Layers
(VBR multicast traffic with average burst time of 500ms)
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Fig. 16. Individual TCP Throughput and Average Per-flow TCP
Throughput (VBR multicast traffic with average burst time of
500ms)

in [23] two different dropping policies for layered video,
namely uniform dropping and priority dropping and
show that priority dropping performs better in general
than uniform dropping if implementation complexity
is not an issue. To reduce the complexity of priority
dropping, the layered multicast scheme proposed in
[24] considers only two levels of priority among layers.
Receivers map one layer as low priority and all other
layers as high priority. Routers then confine the losses
of the flow on the bottleneck to the low priority layer.
Therefore, the low priority layer serves as something like
a “buffer” to absorb losses.

None of these network-assisted schemes is fully lo-

calized and require additional interactions and cooper-
ations either between routers or between routers and
receivers, or both. For example, with the scheme in [22],
a router requires constant feedback from all immediate
downstream routers, while the priority dropping em-
ployed in [23] and [24] requires priority information
feedback to related routers. In contrast, the scheme
proposed in this paper is fully localized and does not
require explicit interactions between nodes specifically
for congestion control.
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Fig. 17. Individual Multicast Throughput and Number of Layers
(VBR multicast traffic with average burst time of 200ms)
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Fig. 18. Individual TCP Throughput and Average Per-flow TCP
Throughput (VBR multicast traffic with average burst time of
200ms)

VI. CONCLUSION

This paper presents a fully localized scheme to sup-
port multicasting in wireless ad hoc networks such as
mobile ad hoc networks and ensures unicast flows their
shares of bandwidth on a link. Existing multicast con-
gestion control schemes are usually designed for wire-
line networks. Meanwhile, they can not ensure fairness
with TCP. Wireless ad hoc networks pose more serious
challenges for those schemes because wireless ad hoc
networks have limited bandwidth, significant channel
access delays, and high link error rates. Instead of relying
on end-to-end schemes for supporting multicasting in
wireless ad hoc networks, this paper, based on a cross-
layer approach, proposes a fully localized scheme that
protects unicast flows from being throttled by multicast
flows in wireless and mobile ad hoc networks. The pro-
posed scheme combines layered multicast with routing-
based congestion control to achieve its goals in a fully
localized way. Our analysis and extensive simulations
show that the proposed scheme is effective in facilitating
multicasting in wireless ad hoc networks while prevent-
ing unicast flows from being throttled.
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