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Scaling of Spatial Reuse and Saturation Throughput
In a Class of MAC Protocols

Fengji Ye, Su Yi, and Biplab SikdaMember, |IEEE

Abstract—In this paper, we investigate the spatial reuse and network, with the network getting denser, the aggregatglsin
saturation throughput of static ad-hoc networks with unbiased hop throughput increases at a rate not faster than linear.
Medium Access Control (MAC) protocols. Under the stochastic The rest of the paper is organized as follows. In Section

assumptions of our model, we obtain the upper bound on the I introd th liminari f del while Secti
equivalent saturation throughput of such MAC protocols as a We Introduce the preliminaries or our modef while section

function of node density. We also obtain the scaling properties !l evaluates the spatial reuse using saturation throughpu

of the spatial reuse and saturation throughput. the metric. The scaling properties of our model are studied i
Index Terms—Medium access control, spatial reuse, perfor- Section IV and Section V presents the numerical evaluation o
mance evaluation, ad-hoc networks our analytical results. Finally, Section VI concludes tlzger.

I. INTRODUCTION Il. PRELIMINARIES

In many real world ad-hoc network scenarios where the In this section we describe our assumptions and introduce
node density is reasonably high, the interference betwe@d Mmetric to evaluate the spatial reuse. We assume that
the nodes becomes the dominant factor affecting the overdlil hodes have identical physical layer characteristiesnes
network performance. This interference determines the MARRtenna gains and that there is no statistical dependence
protocol’s spatial reuse characteristics, i.e., the simultaneou$€tween the traffic originating at different nodes.
use of the same Spectrum in geographica”y Separated |06a_The SINR Model: We use the PhySical Model as SpeCifiEd
tions. In this paper, we propose an analytical framework tB [3] to characterize the SINR constraint. Letbe the set of
evaluate the spatial reuse of a class of MAC protocols #l nodes orR? forming an ad-hoc network. At any given time
wireless networks and its scaling properties. instant, a number of source-receivBiR pairs are selected by

Recent research efforts on the performance evaluationtB® MAC scheduler to transmit simultaneously. Suppose the
ad-hoc networks usually focus on the problem of the capacffnsmitting nodes ar@s = {.5;;¢ € T}, and the receiving
and study its relationship with mobility, connectivity andWﬂdes arélp = {R;;i € T}, with 5; and R; coupled in the
latency [1], [3]. The classic problem of network capacity S-R pair, for eacli € Y, the set of S-R pairs. Le®; be the
in random networks was formulated by Gupta and Kuma&ower level chosen by sendey.. Then the SINR constraint
in [3] as to find the maximum throughput in both randondt receiverr; for a successful reception of the transmission
and arbitrary networks. In this paper, we try to approadRom senderS; is given by
the throughput bound from a probabilistic perspective with
practical assumptions on the architecture in the MAC layer = >0 1)
and develop an analytical framework to derive expressions f Zzg TS rye T Ni
the MAC layer saturation throughput. Note that comparisbn . )
our results )\/Nith those of [3] is gesond the scope of Itahis pap rea (a > 2) is the path loss exonent, § is the SNR

since we consider a different underlying model (e.g. sin F reshold, 1Sk — R is the distance_betwe_en sendsy and
! w ! ! . ying (e.9. sing %cewerRi and N; denotes theambient noise around R;.

hop MAC layer throughput in this paper versus the end to erf& : I d h .
throughput of [3], removal of the singularity at the origitt.¢. ssuming afl senders use the same transmission poyere
gan rewrite Eqn. (1) as

This paper considers an ad-hoc network with uniform, ra
dom node distribution, and a scheduler which works towards L 8
maximizing the spatial reuse, provided that the Signal terin
ference and Noise Ratio (SINR) constraint is fulfilled atheac
receiver. The spatial reuse of the network and its scalieg diere §; = i denotes the normalized ambient noise, and
then evaluated using a stochastic model which characterize = ||S; — R;|| is the one-hop distance for th# S-R pair.
the variability and rate of successful transmissions o 7, is defined as thé\ggregate Received Power (ARP), which
traffic at each node. Our results show that in a random accésdudes both interference power as well as the signal power

from its intended sender:
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IIS:— Rl

)

F. Ye is with Cisco Systems, San Jose, CA 95134 USA.

S. Yi is with Turin Networks, Petaluma, CA 94954 USA. N 1 3

B. Sikdar is with the Department of Electrical, Computer andt&yns Ti = Z ||Sk _ R*Ha ( )
Engineering, Rensselaer Polytechnic Insitute, Troy, NY8RUSA. keY ¢

This work was done when all authors were at Rensselaer Rblyi . .
Insitute. " B. A Stochastic Geometric Model for Random Access

Manuscript received April 12, 2006; revised December 7, 2006 MAC: We consider a network composed of identical nodes



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, JANARY 2008 2

randomly and uniformly dispersed on the infinite plaRé. clouds with density\, dropping the superscrigt from Eqn.
To characterize the homogeneous distribution pattern déno4). Under the homogeneous assumptions of the Poisson
locations, we use &oisson point process, ¥()\g), with \y as cloud, each node is statistically identical and we can dhep t
node density or the expected number of nodes in any regiosubscripti. In [5] we have shown that the probability density
with unit area. Letd denote the random distribution of node€function PDF for 7, denoted byfr(7; A) is given by:
locations onR?2. Thus® ~ W¥()\y), i.e., node locations follow 1 [ 0o -
a Poisson point process with density. The task of a MAC fr(r;\) = —/ exp [—270\/ p (1 - efTa) dp — jwr| dw

g

scheduler is to select S-R pairs from the entire node set that 27 J—o0 6)

satisfy the SINR constraint of Eqn. (2?] at each receiver. Mhere is the sender density ards a small positive number

k i t i
MAC.: scheduler™), representing the&:™ scheduler in the 15 avoid the singularity at the origin of the power attenoati
family of scheduler®, can be expressed as a mapping opefi;ction.

ator: T . ¢ — {(IJ(S"'), M1 vk € ©. In this paper we are

particularly interested amnbiased MAC schedulers. We define

a MAC scheduler to banbiased when the following statement

holds true: if node distributior is a Poisson point process,a  Upper Bound for Equivalent Saturation Throughput

then®g and® , both determined by the MAC scheduler, are

also Poisson point processes. The focus on unbiased MACs igor each S-R pair selected by some given MAC scheduler,
motivated by the fact that important and popular protocoths we consider the distance between them,(which is also

as Aloha, Slotted Aloha and IEEE 802.11 fall in this categonhe One_hop distance since this paper On|y considers one-
Since the process resulting from sampling a Poisson proc@gp transmissions controlled by the MAC protocol) to be a
is also a Poisson process, any MAC protocol, such as thegdom variable. Lefz(r; \) denote the PDF of, for a given
mentioned above, where nodes scheduled for transmissmedmer with sender densiAy From [4], in a Poisson node
are chosen randomly, will satisfy the requirements for unhloud with density\,, the distance from any node to its nearest
asedness. The unbiased property basically assumes tfie trakighbor, denoted by, follows the Rayleigh distribution
generated by a scheduler is homogeneous after averaging Qygh mean 1/2v/X0: fro(ro; No) = QWAOTOG*TFAOT?)_ Using

all possible configurations of the node placement generalggs result, it can then easily be shown that the cumulative

by the Poisson model, intuitively representing a reas@alistribution functionCDF for the one-hop distance satisfies:
behavior for many random schedulers.

—7Ar?
C. Spatial Reuse Metric For an unbiased MAC scheduler Fr(r;\) <1—e ™", (7)

'™, suppose tha@.g’“)' ~ ¥(A™M) and o) ~ U(A™), 1o characterize,, we first obtain the posterior probability that
.e., the random distributions for sender and receiver ag@ arbitrary non-sender node picked from the node clouel aft
both Poisson with the same densily*), given that node the scheduling is done, is @figible receiver. For a non-sender
distribution® is Poisson with densit),. We define thepatial 5 pe an eligible receiver, it has to satisfy the SINR coriistra
reuse factor for MAC schedulerT'® as the proportion of i, Eqn. (2) with respect to its sender. We #§a, §) to denote

nodes that are selected by*) to be a sender/receiver: the probability characterizing th&NR Eligibility at each non-
A B sender. Here we assume that the ambient noise in Eqgn. (2)
Nk = BV Vk € © (4) takes a constant valué at each node and that there is no

. o . statistical dependence between traffic originating atedzffit
Given node distribution (\y), the spatial reuse factor for the

network is the maximum of spatial reuse factor among all the

MAC schedulers: Proposition 1: The probability associated with the SINR

. Eligibility any non-sender satisfies:
7) = sup g ) gty any

ke® o 2
Since 7)o represents the sender/receiver density associafte d) </ fr(T; ) (1—GXP [—W\ (6;17_1%> >d7
with the best spatial reuse MAC scheduler, we define the 0 ®)
Equivalent Saturation Throughput, A, the achievable number . .

of simultaneous S-R pairs that can be contained in a unit area Proof: Given the Aggregate Received Powerthe S"\iR
as:\ = ). constraint in Eqn. (2) can be rewritten as< %T—}M °
Sincer solely depends on the density of the sender cloud, it
is independent of. Hence the SINR Eligibility at each non-
sender can be represented as the total probability in tefms o
the sum of conditional probabilities with regard to Then

We start our discussion with the characterization of the

Aggregate Received Powet, at a node as defined in Eqgn. (3). 00\, 6) = /OOIP {R . (ﬁ +1 1 >a | T} Fr(ri N dr
0 = T+6 '

Il. ANALYTICAL FRAMEWORK FOREVALUATING THE
SPATIAL REUSE

We use a Poisson cloud model wherein nodes are randomly ’ I6]

distributed according to a Poisson point process with dgnsi 9)

Ao to characterize the spatial distribution of the nodes. \With where R denotes a random variable representing the one-hop
unbiased scheduler, senders and receivers also form Roisdistance. The cumulative probabiliB{-} can be replaced by
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the CDF of one-hop distance Therefore, Egn. (9) becomesin Eqn. (15), substituting 1 foA and then\ for & in Eqgn.
(15) yields the following corollary:

O(\,0) = /OOFR (5“1> : SN fr(m N dr Corollary 2: In a Poisson cloud with density, the PDF
0 g T+ for the distance between nearest neighbors satisfies:
< (1_exp - (5(6 - 15)) D fr(riN) dr Fra(r:A) = VAfro (V273 1) (16)
0 Corollary 2 shows that PDF's with differenk can be
which follows Egn. (7) and concludes the proof. m normalized, which removes a free variable from the PDF,
To simplify the notation, we define turning it into a single-variable function. It also suggeatway

o 841 2 to compare various measures among Poisson point processes
O(\, 8 é/ ) [1- — A <> dr Wwith different densities.
(A, 6) | fr(T; M) ( exp l i T T
(10)

Proposition 1 provides the upper bound ¢\, §). We also A. Scaling Properties of Aggregate Received Power

have the following proposition to give its lower bound. Lemma 2: In a Poisson cloud with sender densltyfor any

Proposition 2: In a Poisson cloud, given node density scalark € R*, the PDF of the Aggregate Received Power
and sender density, the probability associated with the SINRhas the following scaling property:

Eligibility at each non-sender satisfies:

A
Proof: Consider the concentric ring model of Figure 1,

Ao— A
Proof: In any region, the expected number of non\_/vhich was used in [5] to derive the PDF ef According

senders that meet their SINR Eligibility should be no legsith ©© the dilation properties, when we increase the node densit

the expected number of receivers selected by the sched¥r.2 factor ofk, it amounts to shrinking all the distances
Because the distributions of all nodes and senders follaw thY V- This is equivalent to elevating the contribution to the

Poisson law, the non-senders also form a Poisson cloud witA9regate Received Power from each ring to

fr(T kX)) = k™2 fr(k~ 271 \) (17)
0(A,0) >

(11)

density\g — A, according to the properties of Poisson process. 1 ko
For each non-sender immersed in the sender cloud, its SINR Cp = b\ = pT (18)
Eligibility is evaluated independently. From the propestiof (W)

the Poisson distribution, we therefore have: as compared to the original contributioh. Since the Aggre-

E [SINR-eligible non-senders in unit atea: 6(\,8)(A\o — A) date Receivgd Power is the summatiopr? of this contribut?on
S )\ (12) over all the rings, we can expect that with a scaled derisity
- the Aggregate Received Poweris multiplied by a factor of
where ) is the expected number of receivers in unit are&,. Therefore, if we define a new random variafile= k2T
according to the MAC scheduler. The result follows. B representing the scaled Aggregate Received Power when den-
By combining Proposition 1 and 2, we can establish the fabity is A, it should have the same probability distribution as
lowing results for the upper bound on the equivalent satmat the normall” with a scaled densit¢\: f+(7; A) = fr(7; kA).
throughput) and spatial reuse factay. Thus its CDF has the form
Proposition 3: Given node density\g, the upper bound for ~ _a _a
Equivalent Saturation Throughpiitcan be obtained from Frp(riA) =PI <7} =P{T' < k™27}=Fr(k™2 7))

R (19)
S < Aoeg)\/{ég (13) Thus we have o
L+6(2.9) fr(mik\) = dEp(miA) _ k"2 fr(k727;0)  (20)
Corollary 1: Given node density\,, the upper bound for dr
the spatial reuse factay can be obtained from which concludes the proof. ]
A\ Again, in Eqgn. (17), substituting 1 fok and then\ for &
M < M (14) leads to the following corollary, which removes a free vialea
L+ 6(1j Ao, 9) from the PDF through the normalization &f
Corollary 3: In a Poisson cloud with density, the PDF of
IV. SCALING PROPERTIES the Aggregate Received Powersatisfies:
In this section we study the scaling properties of our o o
y g prop Fr(msA) = A% fr(A¥131) (1)

performance metrics starting with the following well-know
result for the distance dilation in a Poisson point process.

Lemma 1: In a Poisson cloud with density, for any scalar B. Scaling Properties of Spatial Reuse Factor
k € R*, the PDF for the distance between nearest neighbor

has the following scaling property: STo obtain the scaling properties of the spatial reuse factor

i), we first discuss the properties for the upper bound on the
Fry (7 kX)) = VEfr,(VEr; ) (15) probability of SINR Eligibility, 6(), §), defined in Eqn. (10).
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Fig. 1. The concentric ring model. The space is divided infmite non- o5y \

overlapping concentric rings centeredfaf, and the superposition of all the
rings gives us the entire unbounded regi®h. Each ring has a radius gf o 1 2 s 7 s s 7 s
and an infinitesimal width of\p, with p varying continuously from 0 tao. Aggregate Received Powert

Since Ap — 0, each ring can hold at most one sender, as per the properties

of Poisson processes. The Aggregate Received Powgy &t the summation Fig. 2. Probability density function of the Aggregate Reeei Powerr

of the normalized power level received from the sender insiaeh ring, if for different sender densities. The x-axis represents the value of random
any. In the case that there is a sender inside the ring, thisibation is L. variabler, and the y-axis represents its probability dengfy(; ).

per Eqn. (3) and the contribution is 0 in the absence of a seBdmoting

by ¢, the random variable representing the contribution of timg tio the

Aggregate Received Power at the central nodd?;, we have a Bernoulli .

distribution for C,: P {C, = p%} = 2mApAp + o(Ap) andP{¢, = 0} = reuse factor; has a constant upper bound of

1 —27ApAp + o(Ap).

7 < _be_
1+ 0¢c
A Proposition 5 reveals that the upper bound for the spatial
Proposition 4: When ambient noisé is negligible,d(\,d) reuse factor) is scaling invariant.
does not vary with\. That is,

d0(X,0)
)

(26)

-0 (22) V. NUMERICAL RESULTS

In this section, we present a numerical evaluation to visu-

Proof: According to Corollary 3, we have alize the results of our analytical model. We assume that the

) transmission power level is the same for all nodes, and the
dr

2

oLl o522

_ {3 “Ir —ex 7_70\(6—’—1)%
AR ’”(1 pl(ﬁma))i

path loss exponent is set to 4 throughout the evaluation.
Figure 2 shows the PDF of the Aggregate Received Power
) 7 with different sender densities, obtained by numerically

evaluating Eqn. (6). We observe that with an increasa,in
the expectation of the Aggregate Received Power grows large
(23) while the PDF becomes flat and decays more slowly. This
matches our intuition that as the traffic gets more crowded,
the interference among S-R pairs would go up.
Figure 3 shows how the upper bound for Equivalent Sat-
- RaR —mA(B + 1)% . uration Throughpuf\, our spatial reuse metric, evolves as a
0(A,9) = /0 fr(71) | 1~ exp (BOEF+0)% 4T function of node density, for different ambient noise power
(24) 6. The curves are obtained by evaluating Eqn. (13) and (24)
When ambient noisé = 0, the \'s on the right hand side of @ssuming a SINR threshojél= 10dB. We see that the bound
Eqn' (24) cancel out. Thereforé()\76) is not a function of ford=0is a Straight line from the 0[Ig|n This results from
. This concludes the proof. m Proposition 5 in thah is bounded byl_i—gcAo when ambient
L . e . . noise becomes negligible. The slope of the line, which is
. Proposition 4 shows that when ambient noise is negI|g|bI8:34 in this figure, is the constant bound for the spatialeeus

9(%" 0) is a con§tant regardiess of the valuelofwe define factor 7). Note that this constant bound depends on the SINR
this constant as:
thresholdz.

0 2 é()\ 0) = Dof (r;1) [ 1= exp | =7 B+1\ @ dr From Figure 3 we also observe that whep- 0 the bound
@ B o P Joks has a non-linear convex shape, which sits under the nagse-fr

(25) linear bound and shifts away as ambient nofsés aggra-
vated. This can be explained by the fact that ambient noise
Yeteriorates the channel condition and reduces the eféecti
throughput. The convex shape indicates that as nodes become
Proposition 5: If we ignore the ambient noise, the spatiatienser, the slopé slightly decreases, thereby reducing the

We define a new variablé £ A\~ 37 and substitute\= 7 for
7 in Egn. (23). Then it becomes

As a direct result from Corollary 1, we can obtain th
following proposition.
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Fig. 3. Upper bound for Equivalent Saturation Throughpuis a function
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of node density\o. The curves are shown with different ambient noise powé?ig' 5. Equivalent Saturation Throughpatfor different protocols and its

4. All curves have the same SINR threshgld= 10dB.
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Fig. 4. Upper bound for Equivalent Saturation Throughﬁnuis a function
of node density\og with different SINR threshold®, measured in dB. The
ambient noise powes is assumed to be 50.

comparison with the theoretical bound as a function of nodwsite\y. The
SINR thresholds3 = 10dB and the ambient noise powéris assumed to be
0.

and pairs are then randomly selected for transmission. The
difference from the bound for this MAC is about 33%. The
performance of an optimal MAC protocol which schedules
node pairs with respect to the SINR levels at all nodes will
be much closer to the bound, though such a protocol may not
be practical.

VI. CONCLUSIONS

In this paper, we approach the problem of MAC layer
throughput bound from a probabilistic perspective anduatal
it in terms of the spatial reuse. Our results show that in a
random access network, with the network getting denser, the
one-hop throughput capacity increases at a rate not fastar t
linear. We also study the scaling properties of our model and
the bound on the MAC layer throughput when ambient noise
is present, which is shown to have a convex shape.
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