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Scaling of Spatial Reuse and Saturation Throughput
in a Class of MAC Protocols
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Abstract—In this paper, we investigate the spatial reuse and
saturation throughput of static ad-hoc networks with unbiased
Medium Access Control (MAC) protocols. Under the stochastic
assumptions of our model, we obtain the upper bound on the
equivalent saturation throughput of such MAC protocols as a
function of node density. We also obtain the scaling properties
of the spatial reuse and saturation throughput.

Index Terms—Medium access control, spatial reuse, perfor-
mance evaluation, ad-hoc networks

I. I NTRODUCTION

In many real world ad-hoc network scenarios where the
node density is reasonably high, the interference between
the nodes becomes the dominant factor affecting the overall
network performance. This interference determines the MAC
protocol’s spatial reuse characteristics, i.e., the simultaneous
use of the same spectrum in geographically separated loca-
tions. In this paper, we propose an analytical framework to
evaluate the spatial reuse of a class of MAC protocols in
wireless networks and its scaling properties.

Recent research efforts on the performance evaluation of
ad-hoc networks usually focus on the problem of the capacity
and study its relationship with mobility, connectivity and
latency [1], [3]. The classic problem of network capacity
in random networks was formulated by Gupta and Kumar
in [3] as to find the maximum throughput in both random
and arbitrary networks. In this paper, we try to approach
the throughput bound from a probabilistic perspective with
practical assumptions on the architecture in the MAC layer
and develop an analytical framework to derive expressions for
the MAC layer saturation throughput. Note that comparison of
our results with those of [3] is beyond the scope of this paper
since we consider a different underlying model (e.g. single
hop MAC layer throughput in this paper versus the end to end
throughput of [3], removal of the singularity at the origin etc.).

This paper considers an ad-hoc network with uniform, ran-
dom node distribution, and a scheduler which works towards
maximizing the spatial reuse, provided that the Signal to Inter-
ference and Noise Ratio (SINR) constraint is fulfilled at each
receiver. The spatial reuse of the network and its scaling are
then evaluated using a stochastic model which characterizes
the variability and rate of successful transmissions of theMAC
traffic at each node. Our results show that in a random access
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network, with the network getting denser, the aggregate single
hop throughput increases at a rate not faster than linear.

The rest of the paper is organized as follows. In Section
II we introduce the preliminaries of our model while Section
III evaluates the spatial reuse using saturation throughput as
the metric. The scaling properties of our model are studied in
Section IV and Section V presents the numerical evaluation of
our analytical results. Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section we describe our assumptions and introduce
our metric to evaluate the spatial reuse. We assume that
all nodes have identical physical layer characteristics, same
antenna gains and that there is no statistical dependence
between the traffic originating at different nodes.
A. The SINR Model: We use the Physical Model as specified
in [3] to characterize the SINR constraint. LetΩ be the set of
all nodes onR2 forming an ad-hoc network. At any given time
instant, a number of source-receiver,S-R pairs are selected by
the MAC scheduler to transmit simultaneously. Suppose the
transmitting nodes areΩS = {Si; i ∈ Υ}, and the receiving
nodes areΩR = {Ri; i ∈ Υ}, with Si andRi coupled in the
ith S-R pair, for eachi ∈ Υ, the set of S-R pairs. LetPk be the
power level chosen by senderSk. Then the SINR constraint
at receiverRi for a successful reception of the transmission
from senderSi is given by

Pi

‖Si−Ri‖α

∑

k∈Υ

k 6=i

Pk

‖Sk−Ri‖α + Ni

> β (1)

Here α (α > 2) is the path loss exponent, β is the SINR
threshold, ‖Sk − Ri‖ is the distance between senderSk and
receiver Ri and Ni denotes theambient noise around Ri.
Assuming all senders use the same transmission powerP , we
can rewrite Eqn. (1) as

1
rα

i

τi + δi

>
β

β + 1
(2)

Here δi = Ni

P
denotes the normalized ambient noise, and

ri = ‖Si − Ri‖ is the one-hop distance for theith S-R pair.
τi is defined as theAggregate Received Power (ARP), which
includes both interference power as well as the signal power
from its intended sender:

τi ,
∑

k∈Υ

1

‖Sk − Ri‖α
(3)

B. A Stochastic Geometric Model for Random Access
MAC: We consider a network composed of identical nodes
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randomly and uniformly dispersed on the infinite planeR
2.

To characterize the homogeneous distribution pattern of node
locations, we use aPoisson point process, Ψ(λ0), with λ0 as
node density or the expected number of nodes in any region
with unit area. LetΦ denote the random distribution of node
locations onR2. ThusΦ ∼ Ψ(λ0), i.e., node locations follow
a Poisson point process with densityλ0. The task of a MAC
scheduler is to select S-R pairs from the entire node set that
satisfy the SINR constraint of Eqn. (2) at each receiver. A
MAC schedulerΓ(k), representing thekth scheduler in the
family of schedulersΘ, can be expressed as a mapping oper-
ator: Γ(k) : Φ 7→ {Φ(k)

S ,Φ
(k)
R }, ∀k ∈ Θ. In this paper we are

particularly interested anunbiased MAC schedulers. We define
a MAC scheduler to beunbiased when the following statement
holds true: if node distributionΦ is a Poisson point process,
thenΦS andΦR, both determined by the MAC scheduler, are
also Poisson point processes. The focus on unbiased MACs is
motivated by the fact that important and popular protocols such
as Aloha, Slotted Aloha and IEEE 802.11 fall in this category.
Since the process resulting from sampling a Poisson process
is also a Poisson process, any MAC protocol, such as those
mentioned above, where nodes scheduled for transmission
are chosen randomly, will satisfy the requirements for unbi-
asedness. The unbiased property basically assumes the traffic
generated by a scheduler is homogeneous after averaging over
all possible configurations of the node placement generated
by the Poisson model, intuitively representing a reasonable
behavior for many random schedulers.
C. Spatial Reuse Metric For an unbiased MAC scheduler
Γ(k), suppose thatΦ(k)

S ∼ Ψ(λ(k)) and Φ
(k)
R ∼ Ψ(λ(k)),

i.e., the random distributions for sender and receiver are
both Poisson with the same densityλ(k), given that node
distributionΦ is Poisson with densityλ0. We define thespatial
reuse factor for MAC schedulerΓ(k) as the proportion of
nodes that are selected byΓ(k) to be a sender/receiver:

ηk ,
λ(k)

λ0
, ∀k ∈ Θ (4)

Given node distributionΨ(λ0), thespatial reuse factor for the
network is the maximum of spatial reuse factor among all the
MAC schedulers:

η̂ = sup
k∈Θ

ηk (5)

Since η̂λ0 represents the sender/receiver density associated
with the best spatial reuse MAC scheduler, we define the
Equivalent Saturation Throughput, λ̂, the achievable number
of simultaneous S-R pairs that can be contained in a unit area,
as: λ̂ = η̂λ0.

III. A NALYTICAL FRAMEWORK FOREVALUATING THE

SPATIAL REUSE

We start our discussion with the characterization of the
Aggregate Received Power,τi at a node as defined in Eqn. (3).
We use a Poisson cloud model wherein nodes are randomly
distributed according to a Poisson point process with density
λ0 to characterize the spatial distribution of the nodes. Withan
unbiased scheduler, senders and receivers also form Poisson

clouds with densityλ, dropping the superscriptk from Eqn.
(4). Under the homogeneous assumptions of the Poisson
cloud, each node is statistically identical and we can drop the
subscripti. In [5] we have shown that the probability density
function PDF for τ , denoted byfT (τ ;λ) is given by:

fT (τ ;λ) =
1

2π

∫ ∞

−∞
exp

[

−2πλ

∫ ∞

ε

ρ
(

1 − e
jω
ρα

)

dρ − jωτ

]

dω

(6)
whereλ is the sender density andε is a small positive number
to avoid the singularity at the origin of the power attenuation
function.

A. Upper Bound for Equivalent Saturation Throughput

For each S-R pair selected by some given MAC scheduler,
we consider the distance between them,r, (which is also
the one-hop distance since this paper only considers one-
hop transmissions controlled by the MAC protocol) to be a
random variable. LetfR(r;λ) denote the PDF ofr, for a given
scheduler with sender densityλ. From [4], in a Poisson node
cloud with densityλ0, the distance from any node to its nearest
neighbor, denoted byr0, follows the Rayleigh distribution
with mean 1/2

√
λ0: fR0

(r0;λ0) = 2πλ0r0e
−πλ0r2

0 . Using
this result, it can then easily be shown that the cumulative
distribution functionCDF for the one-hop distancer satisfies:

FR(r;λ) 6 1 − e−πλr2

. (7)

To characterizeλ, we first obtain the posterior probability that
an arbitrary non-sender node picked from the node cloud, after
the scheduling is done, is aneligible receiver. For a non-sender
to be an eligible receiver, it has to satisfy the SINR constraint
in Eqn. (2) with respect to its sender. We useθ(λ, δ) to denote
the probability characterizing thisSINR Eligibility at each non-
sender. Here we assume that the ambient noise in Eqn. (2)
takes a constant valueδ at each node and that there is no
statistical dependence between traffic originating at different
nodes.

Proposition 1: The probability associated with the SINR
Eligibility any non-sender satisfies:

θ(λ, δ) 6

∫ ∞

0

fT (τ ;λ)

(

1−exp

[

−πλ

(

β+1

β

1

τ +δ

)
2

α

])

dτ

(8)

Proof: Given the Aggregate Received Powerτ , the SINR

constraint in Eqn. (2) can be rewritten asr 6
(

β+1
β

1
τ+δ

)
1

α

.
Sinceτ solely depends on the density of the sender cloud, it
is independent ofr. Hence the SINR Eligibility at each non-
sender can be represented as the total probability in terms of
the sum of conditional probabilities with regard toτ . Then

θ(λ, δ) =

∫ ∞

0

P

{

R 6

(

β + 1

β

1

τ + δ

)
1

α

| τ

}

fT (τ ;λ) dτ

(9)
whereR denotes a random variable representing the one-hop
distance. The cumulative probabilityP{·} can be replaced by
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the CDF of one-hop distancer. Therefore, Eqn. (9) becomes

θ(λ, δ) =

∫ ∞

0

FR

(

(

β + 1

β

1

τ + δ

)
1

α

; λ

)

fT (τ ;λ) dτ

6

∫ ∞

0

(

1−exp

[

−πλ

(

β + 1

β(τ + δ)

)
2

α

])

fT (τ ;λ) dτ

which follows Eqn. (7) and concludes the proof.
To simplify the notation, we define

θ̂(λ, δ) ,

∫ ∞

0

fT (τ ;λ)

(

1 − exp

[

−πλ

(

β + 1

β(τ + δ)

)
2

α

])

dτ

(10)
Proposition 1 provides the upper bound forθ(λ, δ). We also
have the following proposition to give its lower bound.

Proposition 2: In a Poisson cloud, given node densityλ0

and sender densityλ, the probability associated with the SINR
Eligibility at each non-sender satisfies:

θ(λ, δ) >
λ

λ0 − λ
(11)

Proof: In any region, the expected number of non-
senders that meet their SINR Eligibility should be no less than
the expected number of receivers selected by the scheduler.
Because the distributions of all nodes and senders follow the
Poisson law, the non-senders also form a Poisson cloud with
densityλ0−λ, according to the properties of Poisson process.
For each non-sender immersed in the sender cloud, its SINR
Eligibility is evaluated independently. From the properties of
the Poisson distribution, we therefore have:

E [SINR-eligible non-senders in unit area] = θ(λ, δ)(λ0 − λ)

> λ (12)

where λ is the expected number of receivers in unit area,
according to the MAC scheduler. The result follows.

By combining Proposition 1 and 2, we can establish the fol-
lowing results for the upper bound on the equivalent saturation
throughputλ̂ and spatial reuse factor̂η:

Proposition 3: Given node densityλ0, the upper bound for
Equivalent Saturation Throughputλ̂ can be obtained from

λ̂ 6
λ0θ̂(λ̂, δ)

1 + θ̂(λ̂, δ)
(13)

Corollary 1: Given node densityλ0, the upper bound for
the spatial reuse factor̂η can be obtained from

η̂ 6
θ̂(η̂λ0, δ)

1 + θ̂(η̂λ0, δ)
(14)

IV. SCALING PROPERTIES

In this section we study the scaling properties of our
performance metrics starting with the following well-known
result for the distance dilation in a Poisson point process.

Lemma 1: In a Poisson cloud with densityλ, for any scalar
k ∈ R

+, the PDF for the distance between nearest neighbors
has the following scaling property:

fR0
(r; kλ) =

√
kfR0

(
√

kr;λ) (15)

In Eqn. (15), substituting 1 forλ and thenλ for k in Eqn.
(15) yields the following corollary:

Corollary 2: In a Poisson cloud with densityλ, the PDF
for the distance between nearest neighbors satisfies:

fR0
(r;λ) =

√
λfR0

(
√

λr; 1) (16)

Corollary 2 shows that PDF’s with differentλ can be
normalized, which removes a free variable from the PDF,
turning it into a single-variable function. It also suggests a way
to compare various measures among Poisson point processes
with different densities.

A. Scaling Properties of Aggregate Received Power

Lemma 2: In a Poisson cloud with sender densityλ, for any
scalark ∈ R

+, the PDF of the Aggregate Received Powerτ
has the following scaling property:

fT (τ ; kλ) = k−α
2 fT (k−α

2 τ ;λ) (17)

Proof: Consider the concentric ring model of Figure 1,
which was used in [5] to derive the PDF ofτ . According
to the dilation properties, when we increase the node density
by a factor of k, it amounts to shrinking all the distances
by

√
k. This is equivalent to elevating the contribution to the

Aggregate Received Power from each ring to

ζρ =
1

(

ρ√
k

)α =
k

α
2

ρα
(18)

as compared to the original contribution1
ρα . Since the Aggre-

gate Received Powerτ is the summation of this contribution
over all the rings, we can expect that with a scaled densitykλ
the Aggregate Received Powerτ is multiplied by a factor of
k

α
2 . Therefore, if we define a new random variableT̃ = k

α
2 T

representing the scaled Aggregate Received Power when den-
sity is λ, it should have the same probability distribution as
the normalT with a scaled densitykλ: fT̃ (τ ;λ) = fT (τ ; kλ).
Thus its CDF has the form

FT̃ (τ ;λ) = P{T̃ 6 τ} = P{T 6 k−α
2 τ} = FT (k−α

2 τ ;λ)
(19)

Thus we have

fT (τ ; kλ) =
dFT̃ (τ ;λ)

dτ
= k−α

2 fT (k−α
2 τ ;λ) (20)

which concludes the proof.
Again, in Eqn. (17), substituting 1 forλ and thenλ for k

leads to the following corollary, which removes a free variable
from the PDF through the normalization ofλ.

Corollary 3: In a Poisson cloud with densityλ, the PDF of
the Aggregate Received Powerτ satisfies:

fT (τ ;λ) = λ−α
2 fT (λ−α

2 τ ; 1) (21)

B. Scaling Properties of Spatial Reuse Factor

To obtain the scaling properties of the spatial reuse factor
η̂, we first discuss the properties for the upper bound on the
probability of SINR Eligibility, θ̂(λ, δ), defined in Eqn. (10).
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Fig. 1. The concentric ring model. The space is divided into infinite non-
overlapping concentric rings centered atRi, and the superposition of all the
rings gives us the entire unbounded regionR

2. Each ring has a radius ofρ
and an infinitesimal width of∆ρ, with ρ varying continuously from 0 to∞.
Since∆ρ → 0, each ring can hold at most one sender, as per the properties
of Poisson processes. The Aggregate Received Power atRi is the summation
of the normalized power level received from the sender insideeach ring, if
any. In the case that there is a sender inside the ring, this contribution is 1

ρα

per Eqn. (3) and the contribution is 0 in the absence of a sender. Denoting
by ζρ the random variable representing the contribution of the ring to the
Aggregate Received Powerτ at the central nodeRi, we have a Bernoulli
distribution for ζρ: P {ζρ = 1

ρα } = 2πλρ∆ρ + o(∆ρ) andP {ζρ = 0} =

1 − 2πλρ∆ρ + o(∆ρ).

Proposition 4: When ambient noiseδ is negligible,θ̂(λ, δ)
does not vary withλ. That is,

∂θ̂(λ, 0)

∂λ
= 0 (22)

Proof: According to Corollary 3, we have

θ̂(λ, δ) =

∫ ∞

0

fT (τ ;λ)

(

1−exp

[

−πλ

(

β+1

β

1

τ +δ

)
2

α

])

dτ

=

∫ ∞

0

λ−α
2 fT (λ−α

2 τ ; 1)

(

1−exp

[

−πλ(β + 1)
2

α

(β(τ + δ))
2

α

])

dτ

(23)

We define a new variablẽτ , λ−α
2 τ and substituteλ

α
2 τ̃ for

τ in Eqn. (23). Then it becomes

θ̂(λ, δ) =

∫ ∞

0

fT (τ̃ ; 1)

(

1 − exp

[

−πλ(β + 1)
2

α

(β(λ
α
2 τ̃ + δ))

2

α

])

dτ̃

(24)
When ambient noiseδ = 0, the λ’s on the right hand side of
Eqn. (24) cancel out. Therefore,̂θ(λ, δ) is not a function of
λ. This concludes the proof.

Proposition 4 shows that when ambient noise is negligible,
θ̂(λ, δ) is a constant regardless of the value ofλ. We define
this constant as:

θ̂C , θ̂(λ, 0) =

∫ ∞

0

fT (τ ; 1)

(

1 − exp

[

−π

(

β+1

βτ

)
2

α

])

dτ

(25)

As a direct result from Corollary 1, we can obtain the
following proposition.

Proposition 5: If we ignore the ambient noise, the spatial
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Fig. 2. Probability density function of the Aggregate Received Powerτ
for different sender densitiesλ. The x-axis represents the value of random
variableτ , and the y-axis represents its probability densityfT (τ ; λ).

reuse factor̂η has a constant upper bound of

η̂ 6
θ̂C

1 + θ̂C

(26)

Proposition 5 reveals that the upper bound for the spatial
reuse factor̂η is scaling invariant.

V. NUMERICAL RESULTS

In this section, we present a numerical evaluation to visu-
alize the results of our analytical model. We assume that the
transmission power level is the same for all nodes, and the
path loss exponentα is set to 4 throughout the evaluation.
Figure 2 shows the PDF of the Aggregate Received Power
τ with different sender densitiesλ, obtained by numerically
evaluating Eqn. (6). We observe that with an increase inλ,
the expectation of the Aggregate Received Power grows large
while the PDF becomes flat and decays more slowly. This
matches our intuition that as the traffic gets more crowded,
the interference among S-R pairs would go up.

Figure 3 shows how the upper bound for Equivalent Sat-
uration Throughput̂λ, our spatial reuse metric, evolves as a
function of node densityλ0 for different ambient noise power
δ. The curves are obtained by evaluating Eqn. (13) and (24)
assuming a SINR thresholdβ = 10dB. We see that the bound
for δ = 0 is a straight line from the origin. This results from
Proposition 5 in that̂λ is bounded by θ̂C

(1+θ̂C)
λ0 when ambient

noise becomes negligible. The slope of the line, which is
0.34 in this figure, is the constant bound for the spatial reuse
factor η̂. Note that this constant bound depends on the SINR
thresholdβ.

From Figure 3 we also observe that whenδ > 0 the bound
has a non-linear convex shape, which sits under the noise-free
linear bound and shifts away as ambient noiseδ is aggra-
vated. This can be explained by the fact that ambient noise
deteriorates the channel condition and reduces the effective
throughput. The convex shape indicates that as nodes become
denser, the slopêη slightly decreases, thereby reducing the
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Fig. 3. Upper bound for Equivalent Saturation Throughputλ̂ as a function
of node densityλ0. The curves are shown with different ambient noise power
δ. All curves have the same SINR thresholdβ = 10dB.
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Fig. 4. Upper bound for Equivalent Saturation Throughputλ̂ as a function
of node densityλ0 with different SINR thresholdsβ, measured in dB. The
ambient noise powerδ is assumed to be 50.

chance for a node to transmit. It is also seen that these non-
linear bounds starts off from a positive offset atλ̂ = 0, which
implies that a static ambient noise must be overcome by the
transmitter before generating any effective throughput.

Figure 4 demonstrates the upper bounds forλ̂ with different
SINR thresholdsβ, assuming ambient noiseδ = 50. It is seen
that the upper bounds slightly drop asβ grows, while the
shape of the bound is maintained. This suggests that a small
SINR threshold in the network can tolerate more interference
and thus enhances the spatial reuse. However, a lower SINR
threshold would result in greater demands on the hardware.

In Figure 5 we compare the equivalent saturation throughput
of IEEE 802.11, obtained through simulations inns-2, with
the bound developed in this paper. Since 802.11 stifles all
nodes within the transmission radius of nodes of an ongoing
transmission, irrespective of the SINR levels, its spatialreuse
is much lower than the bound. To show the tightness of our
bound, Figure 5 also shows the results for a MAC protocol
where each node first selects its nearest neighbor as its pair
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Fig. 5. Equivalent Saturation Throughputλ̂ for different protocols and its
comparison with the theoretical bound as a function of node density λ0. The
SINR thresholdsβ = 10dB and the ambient noise powerδ is assumed to be
0.

and pairs are then randomly selected for transmission. The
difference from the bound for this MAC is about 33%. The
performance of an optimal MAC protocol which schedules
node pairs with respect to the SINR levels at all nodes will
be much closer to the bound, though such a protocol may not
be practical.

VI. CONCLUSIONS

In this paper, we approach the problem of MAC layer
throughput bound from a probabilistic perspective and evaluate
it in terms of the spatial reuse. Our results show that in a
random access network, with the network getting denser, the
one-hop throughput capacity increases at a rate not faster than
linear. We also study the scaling properties of our model and
the bound on the MAC layer throughput when ambient noise
is present, which is shown to have a convex shape.
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