Detection of Cyber

Attacks on Railway

Autotransformer Traction Power Systems

Shantanu Chakrabarty
Department of Electrical and Computer Engineering
National University of Singapore
Singapore
shantanu @nus.edu.sg

Abstract—The safe and reliable operation of traction power
systems that power railways are crucial to the uninterrupted
functioning of this critical public infrastructure. In modern
times, traction power systems and railways, in general, are
seeing increasing penetration of information and communica-
tion technologies (ICT). Traction power systems, like smart
grids, have reactive power compensation mechanisms which
are controlled remotely through ICT channels. ICT channels
are inherently vulnerable to cyber attacks, rendering reactive
power compensation mechanisms vulnerable. Malicious reactive
power settings through a cyber attack can either hamper the
voltage profiles of the traction power system or disrupt the
efficient operation, resulting in losses and unsafe operation. In
this paper, such attack scenarios are investigated in detail and a
methodology is developed to detect such attacks. The proposed
methodology is based on detection metrics that are a function
of electrical quantities in both train and traction power systems.
The effectiveness of these metrics to classify attacks from normal
scenarios is justified along with implementation details. The
proposed detection method is computationally inexpensive, easy
to implement, and reliable when tested using simulations on an
Autotransformer Traction Power System model.

Index Terms—Autotransformer traction power system, cyber-
security.

I. INTRODUCTION

Like any other critical infrastructure, railways need to
function safely and reliably. Modern railway systems are
complex cyber-physical systems [1]. Several operations like
train control and traction power system control, which were
traditionally done manually, are increasingly being delegated
to computers. Thus, a very important part of modern railways
is the information and communication technology (ICT). This
modernization of railways enables convenience and expansion.
However, ICTs are inherently vulnerable to cyber-attacks. Any
adversary with sufficient motivation and know-how can breach
these systems to cause human harm and financial losses.
Attacks on critical infrastructures [2], [3] are examples of
exploitation of inherent vulnerabilities in ICT. Thus, effective
protection strategies must be developed to prevent and detect
attacks that exploit vulnerabilities of ICT embedded in critical
infrastructure, especially railways.

Modern railways have several components that enable its
smooth functioning. One of the most important components
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is the Traction Power System (TPS). This paper is centered
around cyber-security of TPS. A major concern for the safe
and reliable operation of an AC grid (even smart grids) is
the control of reactive power, or equivalently, voltage [4], [5].
In AC TPS, voltage and reactive power control is crucial for
safe operation of the grid, as voltages outside the safe range
cannot be permitted [6]. Voltage control can also be seen in DC
power grids, where schemes have been developed to regulate
the power drawn by the train when the voltage dips or swells
beyond safe values [1], [7].

The Autotransformer (AT) Traction Power Systems (TPS)
is widely used to power modern railways [8]. In AT TPS, a
reactive power compensation system is implemented [9] where
the objective can be either voltage control or loss minimiza-
tion. This compensation system is operated by the operator by
sending signals remotely [9], i.e., through the ICT systems.
These systems are inherently vulnerable to cyber attacks [2],
[3]. It is well-known that in AC supply systems, voltages are
strongly coupled to reactive power [10]. Thus, a misuse of this
compensation system can push the voltages outside the safe
range of operation, potentially destabilizing the TPS. Thus,
protection of this system against cyber-attacks is extremely
important. This paper is focused on the development of a
mechanism that is capable of detecting attacks against reactive
power compensation in AC TPS.

The literature on cyber security of traction power systems
is sparse [1], [11], [12]. The works in [1] and [12] are
centered around False Data Injection (FDI) attacks in the
context of DC TPS. FDI attacks are well-investigated under the
purview of smart grid security [13]-[16]. In smart grids, the
malicious changes caused by cyber-attacks must pass through
Bad Data Detection (BDD) [13], [14]. However, BDD is not
inherently present in railway systems [12], especially AC TPS.
In [1], FDI attack strategies against overcurrent and squeeze
controls (used to control voltages) are studied and detection
and prevention schemes are proposed to protect DC TPS
against FDI attacks. In [11], the impact of signal delay attack
(where the timing information of voltage measurements is
maliciously corrupted) on voltage control is studied. However,
attacks where the adversary takes over the command channels
are not investigated. An adversary with access to supervisory
control can have a severe impact [17].



This paper is focused on the study of attacks where the ad-
versary takes over supervisory control (control of commands)
of the reactive power compensation system in AT TPS. As
discussed above, a misuse of reactive power compensation can
have adverse effects. Furthermore, an adversary with access
to supervisory control of reactive power compensation has
the entire range of control available to him/her. In this paper,
the threat model and attack scenarios are established. This is
followed by the development of an algorithm to detect such
attacks, even if they are carried out stealthily (such that the
operator does not detect them through existing mechanisms).
This is the first paper to address the problem of cyber attacks
on AT TPS.

The contributions of this paper are as follows:

1) An algorithm is developed that can detect attacks where
an adversary injects malicious commands to change the
settings of the reactive power compensation system in
AC TPS.

2) The developed algorithm

a) is computationally inexpensive, as there are no
iterative steps involved.

b) does not require historical data.

¢) is reliable when tested using simulations.

d) is simple to implement.

e) relies on electrical parameters information, so it is
independent of ICT systems used.

f) is first to consider such attacks and propose coun-
termeasures against such attacks.

The paper is organized as follows: The background infor-
mation relevant to this paper is presented in Section II. The
attack scenarios are discussed in Section III. The algorithm
to detect the attack scenarios, discussed in Section III, is
developed and proposed in Section IV. The details pertaining
to the simulation study are given in Section V. Finally, the
conclusions are drawn in Section VI.

II. BACKGROUND

In this section, the background concepts relevant to this
paper are discussed briefly.

A. Autotransformer Traction Power System

In this section, aspects of the model of AT TPS that are
relevant to this paper are presented. The AT TPS has four main
components [9], [18]: (i) Traction Substation (TSS), (ii) Auto-
transformers (ATs), (iii) Feeder system that transmits power,
and (iv) Electric Train. These components are shown in Figure
1, using their circuit analysis models [9], [18]. The traction
substation (TSS) transformer is represented as an ideal single
phase transformer with an AT, whose midpoint is connected
to rail at zero potential (ideally). ATs are represented as a
voltage sources in series with the leakage impedances. The
train can be viewed as a constant power or current load. The
important physical quantities relevant to the analysis of TPS
and the issues discussed in this paper are as follows:

e Vs - Supply voltage from the TSS (usually 25 kV [9]).

Fig. 1: Autotransformer Traction Power System (AT TPS).

e Zs - Leakage impedance of the substation transformer.

e Zar - Leakage impedance of the autotransformer.

e (P;+7Qq) - Apparent power demand of the train, based
on scheduled MW demand of the train and power factor
(pf) of the operation.

o m - index denoting m'" AT.

e Vi; - Voltage at the ith AT, and j is used to denote
whether the voltage is seen at catenary (c), rail (r) or
feeder (f). For example, V,,. denotes voltage at m*" AT
at the catenary.

e I;;; - Convention of notation for current, where ¢ and j
denote the indices of AT and k represents if the current is
on the catenary (c), rail (r) or feeder (f). As an example,
I, denotes current measured or observed between mt"
and n*" ATs in the rail.

e I;. - Current drawn by the train from the catenary.

o Zix - 3 x 3 impedance matrix of the feeder line, usually
represented in terms of quantities per unit distance.

e d,; - distance of the train from the m!" AT.

e ()4 - Reactive power generation coming from the com-
pensation system.

The system in Figure 1 can be analyzed as a distribution
system, using Backward-Forward Sweep (BFS) algorithm [9]
or Newton’s method [18].

B. Reactive power compensation in AC TPS

In case of AC traction, particularly AT TPS, the voltage
control is done by the variation of reactive power, similar
to the one seen in AC power transmission system. This is
mainly because voltages (magnitudes) are strongly coupled
with the reactive power. Here, compensators and Pulse Width
Modulated (PWM) converters are employed for variation of
reactive power or reactive power compensation [9]. These
devices are usually operated by means of control signals sent
remotely from the processing center. The objectives of reactive
power compensating devices can vary from voltage control to
minimization of power losses.

III. THREAT MODEL

In the operation of reactive power compensation of AT TPS,
illustrated using Figure 2, the real-time data regarding the
trains’ positions and power consumption profiles (i.e., V;. and
(Py+jQq)) are necessary for the control center to determine
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Fig. 2: An illustration of interaction of the control center with
train and TPS for reactive power compensation.

the compensation required. Once the control action (adequate
compensation) is determined, updated command is relayed to
the compensators, either placed in the TPS or inside the train.

In order to attack this mechanism and hinder the safe
operation of the TPS, an attacker has two choices. They are
as follows:

o The first choice is that the attacker corrupts V;. and (Py+
jQa)) in Figure 2 and the positional data of the train,
eventually misleading the operator to take erratic control
actions, also broadly known as False Data Injection (FDI)
attacks [1].

o The other choice for the attacker is to attack command
channel, shown in Figure 2, through which updated reac-
tive power compensation setting is relayed. An attack of
this nature is considered to have a very high impact [17].
In case of attacks involving injection of false data, usually
an attacker has to inject data around the true measurement
observed in previous windows [1], as data quality checks
can detect a wide variation in measurements. However, in
case of attacks where the command channels are attacked,
the entire control range is available to the adversary. The
paper is focussed on such attacks on reactive power
compensation commands.

The attack model considered in this paper is as follows:
The adversary relays a false setting to the reactive power
compensation system and falsifies the feedback data (voltages
and power consumption profile) using values selected by the
operator which does not raise any alarm. The rest of the paper
deals with the algorithm proposed to detect such attacks.

IV. SCHEME FOR DETECTION OF ATTACKS ON REACTIVE
POWER COMPENSATION MECHANISM

A. Parameters used as classifiers

In order to develop the parameters that can be used as
classifiers, the train in Figures 1 and 2 is viewed as a six
terminal network as shown below in Figure 3. It is intended
to express the detection parameters as a function of the
terminal electrical quantities that can be practically measured
and monitored by the operator in the control center.
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Fig. 3: Representation of the train between two ATs as a six
terminal network.

The current flow in the catenary from the m!" AT to the
train can be written as

(Vmc - V%c)
(chmt)

where, Z. is the impedance of the catenary per unit distance
(this information is also included in Ziy) and d,,; is the
distance of the train from the m!* AT. Now, dividing (1) by
Vine and using phasor representations in the right hand side,
we get

(D

Imtc =

Imtc _ (|Vmc|46mc - |‘/tc‘4§tc) (2)
Vmc (chmt‘/mc)
where, § represents voltage angles.
The magnitude of the ratio in (2) is defined as
Imtc
Dy = . 3
v 3)

Similarly, for the n” AT and feeder, using notational conven-

tions defined in Section II, we get

Imnf
Viny

The parameters defined in (3), (4) and (5) can be arranged
in a vector defined as

The elements of D are estimated by the operator/control
center when the upcoming settings for reactive power com-
pensation system are chosen. The parameters estimated during
the command selection, denoted by D’"mef , Df,if and Dy,
respectively, are arranged in the vector, D"ef, across the
section of TPS between two ATs. The comparison of D when
compared to D"/ is the basis of the detection algorithm
proposed in this paper. Hence, the detection metric can be
defined as

}T

DM = ||D — D"¢/||;. (7)

B. Practical Realization of the Detection Metric, DM

Based on the developed detection metric, DM, in Section
IV-A, there are two ways to realize its application for practical
purposes. They are as follows:

o Use of Phasor Measurements Units (PMUs): Based on
(2), a PMU placed at m!" AT terminal that provides the
phasor, V,,,. would be sufficient to enable the calculation
of D,,.. The voltage of the train, V;., is monitored by
the operator. In case of an attack, V;. used in (2) would
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Fig. 4: Circuit diagram of traln and reactive power compen-
sation system between two ATs.
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be the one falsified by the adversary (usually at the value
intended by the operator before the cyber attack). This is
because the operator cannot know of the attack in advance
and hence has to rely on the available measurements.
However, it will be shown that this does not affect the
detection.

o Use of Voltage and Current meters: Based on (3), the use
of current and voltage meters at m!" AT that provides
the magnitudes of the current flowing out of the AT and
voltage at the AT would enable the calculation of D,,..
In this case, the falsification of measurements does not
affect the calculation of D,,..

C. Justification for the Choice of Detection Metric

The justification of the use of detection parameters from
(3)-(5) can be formally proven by means of the following
Propositions.

Proposition 1. Let the value of D,,. calculated during the
selection of reactive power compensation command be D,’;fcf .
During an attack involving malicious operation of reactive
power compensation mechanism, let the value of D,,. ob-
served by means of a PMU at m'" AT be DP,. Then, for
any TPS operation with noiseless measurements, the following
relation holds good: v D”ef| =0
mc mc :
Proof. Under normal conditions, the operator selects a value
of reactive power generation, Q"el based on (P + jQg) and
V}.. For convenience, the circuit diagram of train and reactive
power compensation system across two ATs is shown in Figure
4. The effective load of the train as seen by the TPS can be
written as

Sq" = Pa+j(Qd — Q) 8)

where, the superscript, nor, represents quantities under normal
operation, in absence of a cyber-attack.
The current drawn by the train can be written as

Pa+§(Qa — Q")
(V;c - V;Sr) .

It is known that, |V;| < |Vic|, as rails are ideally close to
zero potential [8], [9]. For the purpose of analysis, V;, is thus
neglected.

From Figure 4, we can see that I;. = I,tc + Inte. Under
normal conditions, with noiseless measurements, based on
definition in (3), we get

s (Wﬂ (Qu - (Qsel)))
= .

ITLO’I" _

€))

(10)
‘V Inor‘v ‘nor

Imtc

where, 171 = . Under a cyber-attack on reactive power

tc
compensatlon system an adversary mallclously 1njects Qatt,

where the superscript, att, is used to denote quantities under a
cyber attack. When PMUs are used, it is important to note that
from the perspective of the operator and detection mechanism
using (2), the train voltages do not change, i.e., V2" = Vnor,
as discussed in Section IV-B.

Performing analysis similar to (8)-(10), based on discussion
in Sections IIT and I'V-B, we get

( VP +(Qu- (Qg“))2>
Dgtc =M

,|att

| ‘/tc ‘ nor | ‘/mc

(11

By comparing (10) and (11), we observe that:
o /PR (Qa— (@) # \/PF + (Qu— (Q4)2.
o |Vine| % # |Vme|™", as a change in reactive power ap-

preciably affects voltage magnitudes of connected nodes,
due to their strong coupling (also discussed before).

Based on these observations, it can thus be concluded that
|D7p;zc - D;’f(ﬂ > 0.
Hence proved. O

Proposition 2. Similar to Proposition 1, let the value of D,y
observed by means of voltage and current meters at the m*"
AT be D9, Then, for any TPS operation with noiseless
measurements, the following relation holds good:

|Dined = Dyil] > 0.

Proof. For the purpose of this proof, notations used in the
proof of Proposition 1 are used. Under normal conditions, D,
would follow (10). However, the difference in this case, as
opposed to that seen in Proposition 1, would be in the value
of D,,. under a cyber attack.

When current and voltage meters are used to measure I,,;.
and |V,,.|, the values of these quantities as seen by the
detection method would be based on their true values, as
none of these quantities are directly affected due to attack.
As a result, the values of |V;.| used in the calculation of
D, to model the calculation made using I, and |Vj,|
measurements must be the value changed due to an attack,

e., V.4t and Vit £ ynor,

The expression for D49

mc

written similar to (11) as

VE
Dpe? = Ul(

[Vie|*[Vine
The comparison of (10) and (12) yields:
o PR+ (Qu— (@) # /P + (Qa— Q)2
ah‘ 7& V;nor'
. Vatt 7& Vnor'

mc mc

under a cyber-attack can be

+(Qa — (QZ”)V)
(12)

|att

Hence, we get
|Dmag

mc

Dref| > 0.

mc



Proposition 3. The conditions stated in Propositions 1 and 2
hold good even in presence of measurement errors and noise.

Proof. The measurements relevant to the calculation of D]%9,
under normal conditions, using current and voltage meters to
calculate the magnitudes of I,,;. and V,,,., can be written in
matrix form as

2] o
|V |nor |‘/"w|nor7t ey
where, T' is the set { Py, (Qa— Qg); |[Vinel, [Vic|, Ome, Otc }, the

superscript, nor, denotes quantities under normal conditions,
the superscript, nor — t, represents true value (without noise)

(13)

under normal conditions, h;(-) denotes “function of”, and
T
ler ev]” ~N(0,0).
When there is a cyber-attack, we observe that
‘Imtc|att B hI(Tatt) er
|:|‘/mc|att - |Vmc|att7t + ey (14)

where, the superscript, att, denotes under normal conditions.
Even though the adversary hides the changes in Py, (Qq—Qy),
[Vie| and &,c, the set T would only contain true values
as the current meter placed at m!® AT can measure I,
that results from a true change in the variables contained
in the set, 7. As a result, it can be inferred that, 7% —=
{Pu, (Qu — Q211), | Ve |, | Vic] 2%, 624 217} Hence, based
on relation between measurements and variables and using
notations defined in Proposition 2, it can be inferred that

> 0.
1

H |Imtc|mag [|Lntcmrj| (15)

H/mc‘mag |Vmc|nor

Based on the definition in (3) and the proven relation in (15),
we can see that D% — Dref| > 0 holds good in presence
of noise.

Using similar analysis and arguments in the proofs of
Propositions 1 and 2, it can be shown that |DE, . — Dr¢f| > 0
holds good in presence of noise. Hence, the conditions in
Propositions 1 and 2 hold good in presence of noise. O

The propositions 1, 2 and 3 can be extended to other
parameters defined in (4) and (5). The direct consequence of
these propositions is that that the £ — 1 norm of (D — D"¢/)
is greater than zero.

In order to beat this approach, the adversary has to falsify
the PMU and meter data at every AT as the train passes
through. As railway networks are spread across large distances,
this practically implies that the adversary has to take over
the entire system and control center. However, though such
controls are theoretically possible, it is not practically likely
[17].

D. The Algorithm

The steps of the proposed algorithm are presented in Algo-
rithm 1. This algorithm basically involves monitoring of DM
defined in (7). If the value of DM exceeds a threshold, Th,
an attack on the reactive power compensation is detected. The
calculation of DM depends on equipment placed in TPS to
monitor the system (as discussed in Section IV-B).

Algorithm 1: Proposed algorithm to detect attacks on
TPS reactive power compensation system

Data: Vector, D¢/ and the predefined Threshold, Th.
Output: Tr

1 Calculate DM using (7);

2 if DM > Th then

3 Tr=1;
4 An attack on reactive power compensation system
is detected;
else
Tr = 0;

N S »n

| go back to step 1;

V. RESULTS AND DISCUSSION

The developed algorithm is tested on a AT TPS [9] with lay-
out given in Figure 1. The impedance parameters are available
in [9]. The train is modeled as a constant power load. In this
section, it is considered that the train contains Pulse Width
Modulated (PWM) converters that can also provide reactive
power support [9]. The extent of reactive power compensation
is controlled by the operator by relaying the command to
the train, depending on the requirement. In order to study
the effectiveness of the developed algorithm, it is essential to
first establish the normal condition (or the condition intended
by the operator). For the purpose of analysis of the system,
various values (measurements) are generated using a load
flow algorithm. In this paper, the Backward-Forward Sweep
(BFS) algorithm is used [9]. The conditions during the normal
operation of TPS are as follows:

o Py=2MW.
e cos(¢) =0.7.
e Qg = 0.5 MVAR (instructed by the operator).

In order to study the practical application of any algorithm,
it is necessary to consider noise in measurements. The noise
is modeled as a zero-mean Gaussian noise. The voltage and
current meters have noise with o = 0.3%. On the other hand,
voltage magnitude coming from the PMUs have o = 0.0001
pu, whereas the angles have o = 0.001 degrees [19]. To
account for the effect of noise in the performance of the
algorithm, the algorithm is run for 100 times for each case.
Important statistical parameters, viz., mean, maximum and
minimum values and standard deviation, are noted. The re-
sults are first obtained using voltage and current magnitude
measurements at the ATs. These results are tabulated in Table
I. Then, the results using PMU measurements are tabulated in
Table II. The attacks usually involve an adversary launching a
command to change the reactive power profile from the rated
or selected values. The attack scenarios are represented using
a set of malicious reactive power injections, (), in Tables II
and I and include both generation and absorption.

From Table I, it can be seen that the minimum values
observed during an attack are greater than the maximum
values observed under normal conditions. This holds good



Qg Statistical parameters

(MVAR) maximum | minimum mean Std. Dev.
0.5 (Normal) 19.185 0.5786 6.1099 4.3027
0.75 87.5475 44.1493 64.3421 8.3841
1 152.6512 105.6585 | 127.9286 8.5109

2 317.9699 | 255.8835 | 285.1978 13.4976

5 289.8798 | 269.3807 | 279.3995 3.8715

8 600.647 592.879 597.004 1.468

0 136.1866 112.6576 | 123.9458 5.0736

-1 334.5631 314.2343 325.235 4.069

2 473.046 460.1412 467.128 2.369
-5 695.78 690.697 693.222 0.9555
-8 798.3677 794.98 796.6433 0.6436

TABLE I: Maximum and minimum values, mean and standard
deviation of DM under both normal and attack scenarios using
voltage and current measurements

Qg Statistical parameters
(MVAR) maximum | minimum mean Std. Dev.
0.5 (Normal) | 41.9795 1.2497 14.7272 8.9539
0.75 176.23 125.113 154.561 10.4669
1 289.5215 | 251.4768 269.65 7.97
2 529.4339 | 505.5363 | 519.5976 4.5678
5 712.08 708.9159 | 710.5326 0.6488
8 828.163 826.5813 | 827.3758 0.2764
0 507.4846 330.504 403.002 29.9347
-1 188.3251 | 161.4878 | 177.4649 5.1984
2 575.9679 | 554.4414 566.94 3.6809
-5 823.885 820.104 | 822.0967 0.7285
-8 814.1807 | 811.2916 | 812.6552 0.6403

TABLE II: Maximum and minimum values, mean and standard
deviation of DM under both normal and attack scenarios using
PMU measurements

even when the change in reactive power generation is changed
by 0.25 MV AR. Same observations can be made regarding
values seen in Table II. However, it is interesting to note
that the threshold, Th, would differ depending on the type
of monitoring system used. In case of measurements using
PMUs, the threshold is higher. Based on the data in Tables I
and II, the threshold chosen are as follows:

e Th = 35, when voltage and current magnitudes are
measured using meters.
e Th =75, when PMUs are used.

It is worth emphasizing again that in these AT TPS, Bad Data
Detection (BDD) is not inherently present. So, an adversary
has to just corrupt the data regarding the power consumption
and voltage of train to hide the injection of malicious com-
pensation command. The attacks demonstrated in this section
has been carried out taking that into account.

VI. CONCLUSIONS

In this paper, issues pertaining to malicious command
injection in reactive power compensation system of an AT TPS
are studied. Various attack scenarios are investigated and based
on the results, an algorithm is developed to detect such attacks.
The algorithm uses detection metrics that are functions of
electrical parameters of the AT TPS and the train. Theoretical
justifications for the applicability of these detection metrics for
the separation of attacks from normal scenarios are presented.
The proposed algorithm is a simple, one step algorithm that is
computationally inexpensive. The proposed algorithm is found
to be reliable when investigated using simulation studies. It is

important to note that this is first paper to address cyber attacks
on AT TPS in railway systems.
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