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Abstract— Polymorphic worms can change their byte sequence for modeling and evaluating the dynamics of polymorphic
as they replicate and propagate, thwarting the traditional signa- worms and their interaction with an IDS. Our model is
ture analysis techniques used by many intrusion detection systems based on biological models for the coevolution of viral guas

(IDSes). As the incidence of such worms becomes more frequent, . d their int fi ith the | t Th
it is important to understand their behavior and interaction SPECIES and their interaction wi € Immune system. Ihe

with the IDSes in order to develop effective strategies to contio  Morphing of code in polymorphic worms is analogous to the
their propagation. In this paper, we propose a model based modifications in the genetic material of biological orgamss
on coevolution of biological quasi-species to characterize the jn successive generations. The ability of the evolved dsyas
propagation of polymorphic worms and the effects of dynamic , g;rvive depends on the ability of immune system of the host

IDSes which improve their detection capability with time. The to detect th . . | to the d d
model is used to derive the maximum allowable response time of 0 detect the new quasi-species, analogous 1o the dependenc

the IDS in order to contain the worm and the optimal mutation ~ Of the survivability of new strains of the polymorphic worm o
rate the worm should use in order to escape an IDS with a given the effectiveness of the IDS. The evolution of the polymdaeph

response time. The observations from the model are validated worm's dynamics is modeled by a set of differential equation
using simulations with the ADMut at e polymorphic engine. governing the co-evolutions of the quasi-species repteden
by the code sequences generated by the polymorphic worms
and the fitness landscape representing the capabilitieseof t
The increasing complexity and sophistication of wormgS. We use these equations to evaluate the conditions under
in the Internet is evident in recently captured specimemghich the polymorphic worm may evade the IDS and provide
[11]. Polymorphic techniques, which allow a worm to changelosed form expressions for the maximum allowable response
its appearance with every instance, are increasingly beitigie at the IDS and the optimal mutation rates of the worm.
used to disguise worm payloads and attempt to bypass b@the observations from the model are validated qualitativel
signature-based [13] and anomaly-based [12] IDSes. Palymasing simulations with thé&DMrut at e polymorphic engine.
phic worms try to disguise themselves by changing their byte The rest of the paper is organized as follows. In Section
sequence using a variety of techniques with the most commiorrelated work is discussed. We discuss polymorphism and
being encryption with random keys. This disguise may allodetail the properties of specific polymorphic engines inti®ac
aggressively spreading worms to evade discovery and asalyfi while Section IV presents the assumptions made in our
for days, and more stealthy worms may go unnoticed for mamyodel. In Section V, we present our model for the dynamics
months. of polymorphic worm and the results form the model are
In order to develop effective defense strategies and counémalyzed in Section VI. Finally, Section VII presents the
measures against polymorphic worms, a key step is to wimulation results and conclusions are presented in Sectio
derstand their propagation dynamics and the limitatiorey thvIil,
put on the IDS. The objective of this paper is to develop
a model for the propagation of polymorphic worms which Il. RELATED WORK
also considers the effect of a dynamic IDS which can learn Understanding polymorphic worms remains a difficult and
and detect worms in real time. The model is then used largely open problem. We are aware of only a handful of
obtain two important factors that impact the propagatiothef papers that directly address polymorphic worms and passibl
worm and provide system design guidelin@lg:the maximum solutions to limit their negative effects. Kolesnikov andeL
allowable response time of the IDS in order to contain thenalyzed techniques that a polymorphic worm may use to
spread of the worm an(R) the optimal mutation rate that ahide itself from both signature and anomaly based IDSes [18]
polymorphic worm may employ in order to evade an IDS witPRarticularly, they proposed that stealthy worms couldemll
a known response time. and use knowledge about the normal characteristics ofdraffi
To the best of our knowledge, the few existing papers whiadn a local network to hide their propagation. Tang and Chen
directly deal with polymorphic worms either focus on deyelo propose a novel double honeypot scheme to capture preyiousl
ing mechanisms to detect them [17], [16] or study techniquesseen worms and a position-aware signature generation al-
they may use to evade the IDS [18]. This paper fills agorithm [17]. Newsome et al. argue that polymorphic worms
important void in this area by developing a analytic framewo are not immune to signature-based IDSes and present the
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Polygraph system for generating signatures from polymiorphroutine is still an easy target for IDSes. If a worm contains
payloads [16]. We will discuss some of these ideas in furtharlarge number of decoding engines, it may lead to a very
detail in IV. large signature space. Suppose therenaglecryption routines

A number of recent papers have focused on the developiagd one is chosen as the routine to be used for this iteration.
propagation models for worms and other malware in thehe remaining: — 1 routines are appended in random order,
Internet [1], [2], [3], [4], [5]. These models are usuallytredr resulting inn! possible signatures. But the worm'’s propagation
based on epidemiological models [1], [3], [4] or based orate is proportional to the payload size, so large wormsetrav
measurement studies [5]. However, none of these modeisre slowly. Also, since many exploits rely on overwriting
address polymorphic worms. Intrusion detection systenas douffers in the target's memory, a large worm may cause
their requirements have also been extensively studied§$ee unforeseen consequences on the target system such as system
[8] and the references therein). Again, these either spallifi failure before the worm is successfully executed.
focus on single strain worms and viruses or do not considerAnother method for implementing a polymorphic worm is
the coevolution of the worm and the IDS. to rearrange the order of instructions and use jump instmst

With the seminal work of Eigen on replicating moleculeso keep the instruction flow intact. This shuffling may result
[20], the evolution of quasi-species has been extensivéty a high frequency of jump instructions, which will create
studies by biologists and theoretical physicists. A vagonitg an anomalous byte distribution capable of being identifigd b
of these studies consider the asymptotic behavior withcstaiost IDSes.
immune systems. However, recent work on time dependenta|ternatively, non-meaningful instructions can be inserted
immune systems [9] has allowed the development of c@y create polymorphic worms. These instructions are garbag
evolution models of the viral quasi-species and the immuggde, and usually consist of two or more idempotent instruc-
system [10]. These studies have been extended to obtain #B8s. For example, executing+2 followed byn—1 and then
optimal mutation rates for B-cells [10] as well as solutiong — 1 is equivalent to executing nothing at all, but could serve
for arbitrary gene networks [15]. Finally, the coevolutioh to vary the appearance of the worm code surrounding it. Also,
computer viruses and the immune system has been alludeddgiacingmeaningful sequences of instructions with different,
in [7] in the sense of emergence of more sophisticated wormgt equivalent, sequences can render a worm polymorphic.
as IDSes improve in their ability to detect worms. Using this method without altering the functionality of the
code requires a good deal of knowledge regarding machine
language and architecture.

_Ou_r objective in this _section is to discuss some ideas Q”dLastIy, changing the registers which are used in the worm
principles of polymorphism as they relate to worms. We wilkyecytable could alter its appearance. This is a weak form
present a conceptual explanation of polymorphism followeg polymorphism which results in less extensive mutation
by a treatment of publicly available polymorphic engines. petween successive iterations.

As a tool for disguising malware, polymorphism is not new. By combining two or more of these techniques, more pow-

Polymorphic_ viruses first surfaced in the garly 1990s [194?rful polymorphism results. Consider, for example, a worm
The' encryptlgn O,f a byte sequence to alter its appearance fag., yses the code shuffling method to change its signature
obvious applications to Internet worms. IDS systems handéﬁd hides the jump instructions by encoding them to match

enormous amounts of data in real-time, and are suscepiblgje pyte distribution expected by an anomaly-based IDS. The
any attack which requires non-trivial computational pOWBr oq it is a highly flexible payload which attempts to evade
detect. In an effort to evade detection, polymorphic worses “signature- and anomaly-based IDSes.

several _techniques to remove any stati(; signature Whi.Ch MaX\e now consider some specific examples of polymorphic
be obtained from the payload while making it computaanalkNorm generators
difficult to obtain other meaningful statistics from the &yt '
stream. ADMmutate: In 2001 a hacker known as K2 presented a
The simplest method for implementing a polymorphic worrtool for obfuscating shellcode [13]. Shellcode is machine-
is to encrypt the worm’s payload using a key. Each timexecutable code that is intended to open a command inter-
the worm replicates, it chooses a key and encrypts the npveter, or shell, on a remote machine so that an attacker
copy before sending it over the wire. The key is usually senan type in commands just like an authorized user. In order
together with the worm and a decryption routine (or decodirtg launch the command interpreter, the attacker must use
engine). When the worm executes on the target machine, #re exploit to trick the remote machine into executing the
decryption routine uses the key to obtain the worm code asbell command (e.g/ bi n/ sh). Such exploits are usually
begin the next round of propagation. This method still alowsome type of buffer overflow attack. For a detailed discussio
IDSes to identify the worm because the decoding engine i©h buffer overflow attacks, see [14]. For purposes of this
constant byte sequence. If the polymorphic engine usesaeveiscussion, it is sufficient to understand Figure 1. When a
decryption routines, it will be more successful in evadimg avulnerable function is called, the attacker’s return ads&,
IDS. However, the finite number of decryption routines stiis written over the correct return address on the stack of the
yields a finite number of static signatures. Thus, the dawgp current function. When the function attempts to return to its
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calling function, it instead jumps to the attacker’s addresreleased a polymorphic engine he entitled JempiScodes. Thi
slides through a series of non-operational instructiong), engine is quite easy for an untrained attacker to use. The mai
and executes the attacker's shellcagle This “nop sled” is contribution of JempiScodes is that it provides optionstiar
necessary because it is difficult to guess the exact addratsacker to select from 4 different encryption algorithid®R,
where the shellcode is located. The sled allows the attackedD and Chained XOR in 8- or 16-bit blocks) and also tells
to establish a range of addresses which are acceptableeforttie attacker the encryption key used. Although JempiScodes
exploit to work. requires more coding to automate the generation of poly-
morphic shellcode than the other two engines, it can still be
Jump developed into an efficient tool with a minimal understagdin
of the underlying mechanisms.
/—\ The polymorphic methods discussed here are not a closed
[Mop][Mop] [Mop][NeplMop] | [STSUSASIUSAS] | [RIEIRIRIRIER] set. The possibilities for other techniques abound. As the
polymorphic engines mentioned above demonstrate, tools fo
creating polymorphic worms are moving toward easier appli-
cation and more sophisticated methods. It is fortunate that
Fig. 1. How a buffer overflow attack executes arbitrary code. these techniques have not been widely deployed in Internet

. . worms yet, but developing an understanding of polymorphic
In order to successfully exploit a remote machine, t y ping g ot polymorp

orms will prepare us to deal more effectively with their
attacker usually has to create a nop sled of several hundg% ead and effects
bytes. For an IA32 machine, the nop code is 0x90, and a string '

of several hundred of these is highly anomalous, allowing it V. M ODEL PRELIMINARIES AND ASSUMPTIONS

to be easily identified by current IDSes. The same is true forour purpose here is to discuss the preliminary assumptions
nop codes on other platforms. Thus, an IDS can stop theggich jead us to use the quasi-species model and justify

obvious attacks before any damage is done. our choice of simulation parameters. We first discuss our

ADMmutate attempts to disguise the nop sled by taking tr};\(?;sumptions about the IDS followed by the assumptions about
exploit shown in Figure 1 and changing it to the form: the polymorphic worm

[JJIJ][DIDJ][EEEE][RRRR] As has been shown in [17], it is possible to isolate worm
where.J is a “junk nop,” or garbage code which is equivalentraffic from normal traffic using a two honeypot scheme.
to no operation. K2 states that there are 55 possible juA® inbound honeypot presents an image of the server to
nops on the IA32 architecturel represents the encodedbe protected, but is configured to make no outbound con-
shellcode. The shellcode is encoded (or encrypted) becangstions. When it does begin to make outbound connec-
current IDS systems also alert on strings that are known tiens, the machine is assumed to be compromised and its
launch command interpreters. For example, if the attacke@nnection requests are forwarded to an outbound honeypot
disguises the nop sled, but leaves the constant sthimgsh which captures and analyzes the worm packets. This system
in the exploit code, the IDS will still prevent the attack.rFoallows for the complete isolation of worm flows from normal
this reason, ADMmutate encodes the shellcode with a sliditigffic flows. We assume, therefore, in the following analysi
key. The decryption routin® is interlaced with garbage codethat polymorphic worms are recognizable as worms (i.e. not
as well, attempting to hide its location and make signatug@nsidered benign traffic) and can be classified accurately
identification more difficult. Lastly, the return addre@oints according to the quasi-species to which each mutation gelon
to the junk nop sled. The return address is usually the led$dte that in this paper we refer to each distinct worm with a
variable part of the payload, although ADMmutate attempglfferent code sequence asjaasi-species.
to modulate the address by cycling through several valuas th In [16], it was shown that the code generated by a large
are close to the desired address. class of polymorphic worms has some constant content which

may be used to generate high quality signatures. In thisrpape

.CLET: . In 200? thhe CtET Poly_morp|h|c| Edn%ln_e V;/ﬁs reltgallse\g/e assume that a system like that proposed in [16] is availabl
N an Issue of phrack magazine. inciuded in the ar 'CeE‘r produce signatures for classifying a polymorphic worm.

a uuencoded executable of the polymorphic engine. CL e time taken to generate successive signatures determine
attempts to further the work done by K2 by adding mor

garbage instructions and including capability for craftiex- fhe effectiveness of the IDS and the likelihood that the
ploits which evade byte distribution analysis. CLET takes worm population will reach epidemic proportions beforerigei

%Yetected. We denote the time required by the IDS to
input file containing the normal traffic spectrum and makes as q y

) X . nerate a new signature for a new polymorphic worm quasi-
effort to select encoded bytes which will deviate the lessf species 9 polymorp g

the normal traffic. CLET also attempts to alter the decryptio In Figure 2, we demonstrate some sample mutation rates

routine using equivalent instruction substitution andistsy from the ADMmutate polymorphic engine. We applied the
SWaps. engine to the same code 2000 times, counting the number of
JempiScodesAlso in 2003, Argentinian coder Matias Sedaldimes the byte values in the worm payload didt change.
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From the figure we note that while a number of bytes changjeme required from the IDS in order to contain the worm and
frequently, some stay fairly constant or nearly always tamts to compute the optimal mutation rates for the worm in order
The large values shaded in gray, then, represent bytes whigctevade the IDS system.
could be used as part of the worm'’s signature. . .

The procedure above was also used to obtain an estimétepdymorph'c Worm Propagation Model
of the mutation rate or the probability that a byte in the code Consider a worm composed of strings or sequences. In
sequence changes in successive generatin3dq estimateg  €ach generation the worm mutates some of the sequences to
we identify N bytes from the code sequence correspondirfgeate new quasi-species. We assume that each sequence is
to the Signature and app|y the mutation engjnaimes_ We mutated independently with prObabl'ltded that the mutated
calculate each:;, the number of mutations that occurred irfequences are chosen from an alphabet of SizEach copy
the 4th byte of the signature. Ifn is sufficiently large, the of the worm replicates at a rate of Let the concentration

mutation rate for the signature is then said to be or the total number of copies of quasi-speciegenerated up
until time ¢ be denoted by, (¢). The time evolution ofy,(t)
o 2t is characterized by the followi i
e= St (1) s characterized by the following equation
m
dyk(t)

Using N = 2000 andm = 4 for the ADMmutate polymorphic

engine,é was estimated to be 0.52. dt

=" BWis Aw(t)m(t) @)
l

where W, ;, denotes the probability of a worm quasi-species

?; 1;; gg gg 1%86 of type I morphing to a quasi-species of tygein the next
7 T 73 53 4 7 generation.A(y;(k)) denotes the fithess function of quasi-
1886 19 | 1955 | 1955 | 1955 specied and accounts for the likelihood that the IDS is able
A ]g ]?2' = L detect and prevent the propagation of quasi-speti€Ehe
12 14 g 1 15 summation above is carried out over all possible worm quasi-
195 ‘1'? 13 173 H species. Assuming each sequence to be of lehdiits, we
B 3 14 5 = have (2°)" possible worm quasi-species and thus the state
13 19 12 15 19 space required for modeling the worm’s dynamics can easily
i 12 12 ! 155 become quite large. For example, if we just consider 10 byte-
%7 B 13 | 1888 | 195 long sequences characterizing a quasi-species, we haval a to
47 | 128 [1896 | 199 48 of 280 possible gquasi-species sequences.
1132984 12%516 ]f; 14288 1132988 To make the model tractable, we group all quasi-species
199 48 128 | 1896 | 199 according to their Hamming distance (HD) (i.e. the number
40 | 120 DEeee 199 -2 of sequences in which the two quasi-species differ) from an

arbitrarily chosen master quasi-species. Denoting thetanas

Fig. 2. Mutation rates from ADMmutate. The shaded valuesesgmt bytes . . . .
g o guasi-species by, the th group is defined as

that mutate infrequently. The non-shaded boxes show bystshdve a high

mutation rate.
w; = > Yk 3)

We assume that the IDS systems tries to identify the con- yr€{yr|HD(yr,y0)=1}
stant byte sequences in the worm instances that it comessaci( its fitness function is defined by(l). This reduces the
in order to generate the signatures. Let the number of stringroblem froms™ = (2°)" dimensions to:+1 dimensions. We
or sequences constituting the signature be denoted Bjote  now characterize the equations governing the time evaiutio
that the signature initially may contain sequences thahgéa of wy(t).
in many of the worm quasi-species and the signature maycjaim 1: The time evolution of the worm quasi-species
be improved with time to capture all quasi-species. Inst#fad group with Hamming distance from the master sequence is
considering the entire worm payload in order to classifywor gpproximated by
instances into the corresponding quasi-species whicts lead . /
an extremely large number of possible quasi-species, we onl dw;(t) n—I N1 ne(l—1'
consider then sequences in the worm corresponding to the dt - Z < =0 ) BAI)E™ (1 —¢) oy (*)
signature for classification. For the sequences in the gigaa 4)
we assume that each sequence may mutate or morph in each proof: Mutations into groug may occur in two possible
successive replication independently with probabitity ways: (1) up-mutations from groups with lower Hamming
distances and (2) down-mutations from groups with larger
Hamming distances. Consider the up-mutation case first with

In this section we develop our model for the evolutiomutations from groug’ to group! with I’ < [. In each quasi-
and spreading related dynamics of polymorphic worms. Vépecies of groupy there ard’ sequences which have mutated
explicitly consider the impact of the IDS on the growth of th@reviously and are different from the master quasi-species
worm. The main goal of this section is to obtain the respon3dere are three possibilities for the up-mutation:

V. DYNAMICS OF POLYMORPHIC WORMS



i. L — 1" of then — I’ sequence which are identical with theThe term(e(S — 2)/(S — 1))? represents the probability that
master sequence mutate and all other sequences stay the sarmequences mutate to sequences other than the corresponding

This case, C1, happens with probability ones in the master quasi-species and the remaining terms are
el ) ) along the lines of case C2. Note that the number of sequences
P[CY] = ( L ) (1 — om0 (5) that do not mutate is—(i)—(j)—(I—1'+i) = n+1l'—1—2i—j.

We now consider the down-mutations where quasi-species
with a higher Hamming distancl back-mutate to generate
quasi-species with lower Hamming distancé/ < [’) from
sequences to mutate from-I’ non mutated sequence$;” is  the master quasi-species. Again, there are three potisiili
the probability that there ade-I’ mutations and1—¢)"~ =) 1 of the already mutated sequences mutate back to the
is the probability that the remaining sequences do not m“taéorresponding sequences in the master quasi-speciestivaile
i. i, 0 < 4 < min{l’,n — [}, of the already mutated remaining sequences stay the same. This case, C4, occhrs wit
sequences mutate back to the master quasi-species and thaiBability
are mutations il — I’ 4+ of then — I’ non-mutated sequences. .

Given that a mutation occurs, the sequence is equally likely P[c4 — ( v ) (;) (1- 6)n—(z’—l) Q)
to change to any of the othe¥ — 1 possibilities. Thus the -1

_
where ( ?_ ll, > is the number of ways to choode— !

S—1

probability that a sequence mutates and changes back to 'Fﬁ% explanation for the terms in the expression above fallow

corresponding sequence in the master quasi-species is gimae explanation for the earlier cases

by € ©6) ii. ¢ of the already mutated sequences mutate back to the
S—1 corresponding sequences in the master quasi-species with
Then the probability of this case, C2, is given by U'=1 <i<min{l',n—1} andl —I' +i of then — V'
, non-mutated sequences mutate while the remaining sequence
min{ln=Uyr ) n—1 e \* stay the same. The probability of the occurrence of this,case
pPlc= ) [(i)(ll’+i)(ﬁ) C5, is given by
i=1

min{l’,n—1}

@ pPlcs = i};m [(i)(ﬂ;i)({_l)

where the first two combinatorial terms represent the number Vi 1

of ways of choosingl — I’ + 1 sequences out ofi — I € (I—¢) (10)
non-mutated sequences and the number of ways to select

i sequences from th& mutated ones(e/(S — 1)) is the The explanation for the terms in the expression above fallow
probability that: already mutated sequences mutate back the explanation for case C2 in up-mutations.

the master quasi-species’ sequene&s, * is the probability jji. Of the ’ already mutated sequencésnutate back to the
that there aré — I’ +4 new mutations andl —€)"~"*" ~>"is  corresponding sequences in the master quasi-speciesgwher
the probability that the remaining sequences do not mutatg — | « ; < min{l’,n —1}), j (0 < j <iandi+j <)

iii. Of thel’ already mutated sequenceésnutate back to the mutate to other sequencés;- i — j stay the same and of the
corresponding sequences in the master quasi-specigs;> n — I’ non-mutated sequencds; I’ + i sequences mutate and
0) mutate to other sequencd$,— i — j stay the same with the remainingn — I — i sequences stay the same. This case,
i+j <l and0 < i < min{l',n — I} and of then — 1’ C6, occurs with probability

non-mutated sequences;- I’ + 7 sequences mutate and the

remainingn — [ — i sequences stay the same. This case, C3,p[cel = ZZ <zf)<l/ - @>( n- I >( € )z
occurs with probability e 1 j ="+ )\ S—-1

P[C3| = ;ZKZZXZJ— z)(l ﬁ;i)(ﬁ) (f#)y b=l - e)wzzm‘] (11)

(6(5 _ 2))3' A () 6)%[/_1_22._].] ®) where the summations ovérand j are carried out over the

6l—l’—&—i(]_ N 6)n-{-l/—l—2i

S_1 region wherej > 0, i+ j <!’ andl’ — ! < i < min{l’,n — 1}
and the explanation for the rest of the terms is similar teecas
where the summations ovérand j are carried out over the C3 in the case of up-mutations.

region wherej > 0, i +j < 1"and0 <i < min{l',n —I}.  compining the six cases above, the probability of mutations
The three combinatorial terms represent the number of WaY¥Sm group!’ to groupl, P[wy_.j], is given by

to choose sequences frorf mutated sequencegsequences ’ o

from the remaining —' i mutated sequences and- I’ +i Plwy_,;] = P[C1]+ P[C2]+ P[C3 + P[C4] + P|C5 + P|[C6]
sequences fromn — I’ non-mutated sequences respectively. (12)



Note that the expressions for all cases exdefit1] have the Proof: We consider each quasi-species group separately

term (S —1)% in the denominator. For even moderate alphabahd solve Equation (4) to obtain the expressions above.

size 5, (for exampleS = 256 for sequences of byte length)Quasi-species group 0: Note that there is only one quasi-

these probabilities thus become very small compared[@1]  species (the master quasi-species) which belongs tdthe

and can be neglected toa gOOd degree of apprOXimation. T%g Spec|es group and thuﬁ( ) = wO( ) From Equat|on
Plwy_y] ~ P[CY (4), substituting = 0, we have

_r , , dwg(t dwo(t
Awo)(1 — €)" fuwo ()
The time evolution of thg®h quasi-species group is thus = (1 - &)"Buw(t) (20)

governed by the the rate of up-mutations from quasi-species
groups with lower Hamming distances. In each time uni§olving the ordinary differential equation above, we abtai
the concentration of the quasi-species graujncreases by a (1—e)" Bt

. . t) = n 21
BA(")wy (t) and a fractionP[w;._,;] of these mutate to quasi- wh(t) = wo(0)e (1)
species groud. Summing up these contributions, the timavhere wy(0) = w§(0) = yo(0), the initial concentration of

evolution ofw;(t) is then given by the master quasi-species.

dun (¢ Quasi-species group 1: Each member of quasi-species group
wy(t) _ Z Plwy_i)BA1 Ywy (t) 1 has a Hamming distance of 1 from the master quasi-species.
dt =0 With each worm quasi-species consistingnofequences and

1 _y / an alphabet of siz8, there arex(S—1) possible quasi-species
= > (7 ) BAI)E V(1= )" =Py, (¢)  which have a Hamming distance of 1 from the master quasi-
1'=0 species and thus form group 1. Thus the dynamics of the group
which completes the proof of Claim 1. m (wi(t))isn(S—1) times faster than an arbitrary quasi-species

In the equation governing the growth and dynamics of ea Wl( )) in the group. Substituting = 1 in Equation (4) we

group of worm quasi-species as given in Claim 1, a key®© n have
parameter is the fitness landscap@’) corresponding to each dwi(t) 1 dwi(?)
group. In the absence of any defense mechanism or knowndt n(S—1) dt
signatures, the fitness landscape for each group will be the L St BA() (1—e)n—0=1)
same since all of them are equally likely to propagate withou = Z( I—1 ) ) wy (t)
detection. We thus consider a scenario where initially adl t '=0
quasi-species have an identical fitness landscape (welinteo _nBe(l =)} ) + Bn(l—e)" ()
the effect of the IDS later in this section) B S—1 o n(S—1) b
A(yl) =17 Vi (14) _ 7756(1—6)” 16(1—6)"577t 0( ) /677( ) wl(t)

S—1 n(S—1)
Solving the differential equation above and using the faat t
the initial concentrations of all the quasi-species arestirae,
In order to determine the optimal worm mutation rates ar: w{(0) = w((0) = wo(0), we obtain
the maximum allowable response time of the IDS, we now e(1—€)" Bt
obtain the concentrations of arbitrary members of differen w{(t) = wo(o)m [1+nBne(l—e)" '] (22)
guasi-species groups. In the following, we assume that each

which implies
A(w) =n vi (15)

guasi-species has the same initial concentrations, i.e. Quasi-species group n: Consider an arbitrary member of
quasi-species group, we. Increase in its concentration results
41(0) = 40(0) Vi (16)  from the mutations from members of all other groups, other

g1embers of its own group as well as its own growth. These

Clam 2: The concentration of an arbitrary member of th
contributions can be written as

oth, 1t and pth quasi-species group, representedutfy; w

andw? respectively is given b n—1 n—i W
n resp yis g ‘ y dt ZA ( 1) (1= o) ;Ul(tl)i+
w§(t) = wo(0)et " At (17) (S-1)
(1—e)™pnt no
wi () = wo(0) e ( 5 [1+nBne(1 —e)" '] (18) ZA(wn)ﬁ<ﬁ> wy (1) +A(wn ) F(1—€)"wy (1)
1(6) = wo(0)e=" 1 A9 | ot
w = w
" 0 In the expression above we note that a mutation from a quasi-
wherew(0) = yo(0) is the initial concentration of the masterspecies of group to the quasi-species? occurs only when:

quasi-speciesu(t). (1) then — ¢ sequences that were not mutated so far mutate



to the corresponding sequences-iff which happens with
probability (¢/(S — 1))"~* and (2) thei sequences that had 0
already mutated had mutated to the corresponding sequences
in w?, the probability of which isl /(S —1)¢. Similarly, other
members of the quasi-species groupnutate tow? only if

all of their sequences mutate to the corresponding sequence
in w, an event which occurs with probabilifg/(S — 1))".
Finally, members of the quasi-specie$ continue to replicate
their own if no mutation occurs, i.e. with probability —€)™.

Note that in the expression above, all terms except for tsie la

1
o

w
o

n
o

Quasi—species Concentration
N
o

=
o

have (S — 1)™ in the denominator. For even small alphabet 0 ! ! ; ;
size S and number of sequences the contribution of these 40 45 00 ® 60 65 70
terms becomes quite small and we can thus write
o Fig. 3. An example of the time evolution of three worm quasiesge for a
dwn (t) ~ A(w )5(1 N E)nwa (t) case where the IDS is capable of containing the worm’s spigagach shift a
dt " n new quasi-species becomes dominant but is unable to attagotiventration
_ _\n,,a of the previous dominant quasi-species before it is detected
= Ol — )" wi(t) (23)

Another way to interpret the expression above is that fosgua

species far removed from the master sequence, mutatiovid now have a higher growth rate as compared to the earlier
in and out of the quasi-species cancel and its growth d®minant strain. In other words, the fitness landscape fr th
determined by its own environmental or uninhibited growttvorm moves. From Equations (17), (18) and (19) we note
rate of Sn(1 — €)™. Solving the differential equation definedthat a member of the quasi-species group 1 will now have
in Equation (23) we obtain the next highest growth rate. The polymorphic worm adapts
to this change in the fitness function on a timescale the

wi(t) = wy (0)e 1= (24) " time required for the population of the new dominant strain

This completes the proof of Claim 2. m to overtake that of the old. The IDS system now tries to adapt
) to this new dominant quasi-species and we denote the time

B. Maximum Allowable IDS Response Time required for it to detect the new dominant quasi-species by

With the expressions developed for the evolution of thmgs. Through the iteration of the steps above, the worm scours
concentration of the various worm quasi-species, we ndiwough the sample space of quasi-species and the IDS system
derive the maximum allowable IDS response time in ordéollows on its heels. Note that the iteration repeats evegy
to contain the worm. In the following analysis, we assumm, + 7;qs seconds.
that the IDS is first detects the quasi-species with the lsighe If 7,45 is large, the IDS moves slowly and the new dominant
concentration and we call the quasi-species which cugrengtrain reaches or exceeds the concentration of the previous
has the highest concentration tlimminant guasi-species. dominant strain and the worm will survive for all time.
Without loss of generality, we can assume that the qua#i-however the new dominant strain cannot regenerate fast
species detected first contains the master sequence, and @mough (or equivalently, the IDS is fast enough) the new
we call it the master quasi-species. Based on the detectuninant quasi-species will be detected and consequently a
guasi-species’ code sequence, the IDS now tries to geneghit in the worm’s fithess landscape will occur before it
signatures for other morphed versions of the worm. If the ID®aches the population level of the previous dominantrstrai
cannot detect other worm quasi-species fast enough, inwill The next dominant quasi-species will not be able to reach
be able to contain their spread. Our interest in this sedionthe concentration level of the previous dominant quastiggse
to obtain the maximum allowable difference between the tir@d so on. This continues till there is no discernible worm
of detection of the worm quasi-species which currently hggesence in the network. This pattern of chaining quastiepe
the highest concentration and the detection time of theiquasoncentrations is shown in Figure 3.
species with the next highest concentration. We show that ifWe now determine the required growth rate of the new
this detection time is below a certain threshold, successi#ominant quasi-species over a full cyeteas a criterion for
peaks of the currently dominant quasi-species will be smallthe quasi-species’ survival. Consider tirhe- 0 at the instant
eventually leading to the worm’s elimination. when the fithess landscape shifts and an arbitrary quasiespe

We now consider the interaction between the polymorphitom the 15t quasi-species group becomes dominant. Using
worm and the IDS in greater detail. Once the IDS detedkqjuation (18) the normalized growth of this quasi-species o
the quasi-species with the highest concentration, it eppdi a periodr is then given by
large kill rate to that specific worm gquasi-species. Thus the wi(r) -9
value of its fitness function decreases and its effectivevtiro L = [1+nBne(l—e)" ']  (25)
rate drops. Until the IDS is capable of detecting the other wi(0)  n(S-1)
strains of the polymorphic worm, other worm quasi-specide quasi-species{ is currently the fittest. But if another




guasi-species far away from the fitness peak is able to ssirpalowable IDS response time. Using Equation (28), we can
its population in the intervat, then the currently dominant write 7 as
guasi-species will die out. With the current dominant quasi

species being from the quasi-species graugnd the quasi- = Tw T Tids
species group 0 having already been detected, we turn to an - 11 ( n(S—1) ) + Tis
arbitrary member of the quasi-species groupw?, since it 6 \1+nfBne(l—emtr '
has the largest Hamming distance from the master sequence. _ }LamW(;z:) _ 1 (29)
Using Equation (19), its normalized growth rate is then give d npne(l —e)n=*
by ") wherez is given by

WnlT) _ oma-enr T

0 (0) — e (26) B(S—1)  stbngneoonlry (30)

T Bpe(l—en1°

The ratio of these growth rates is then
g and LamW(-) is the Lambert W function, i.e., a function which

wy () n—1 satisfies
wi©  1+nfne(l—e)" 7 LamW,
k w: 28 W5 =) 27) LamW(y)e Yy (31)

Now, solvingk < 1 using Equation (27) for, we obtain
The quasi-species will die outkf < 1 and survives only when

k> 1, k- 1+nBne(l —e)" 11 <1
1) Obtaining 7, and 7;4s: In order to obtain the maximum n(S—1)

allowable limit on 7,45, we first obtaint,, and substitute it - < n($—1)—1

in Equation (27). Consider the situation when the IDS system nfne(l —e)nt

detects the original dominant quasi-species and exertdl a Kupstituting the value of in terms of7;4, from Equations

rate of 4 on it. To estimate the timescale for the shift |r(29) and (30) in the expression above, we have
the worm’s fithess landscape,,, we first iterate the quasi- 1 (S —1) -1

species propagation model for a full cycle of lengtistarting —LamW(z) < — —
att = 0. The switch in the dominant quasi-species is made nBne(l — e nBne(l — e
at ¢t = 7 when the IDS starts applying the decay ratejof which can be solved for;;, to obtain the maximum allowable
on the previous dominant quasi-species. The relative sifesIDS response time in order to contain the worm and this
the new and old dominant quasi-species are then determimetution is given by
for another intervalr,, and the timescale,, is given by the

waiting time until the new dominant quasi-species popaiati Tids < —
exceeds the old one. Note that the populations of the old nfne(l —e)
and new dominant quasi-species as the end afre given C. Optimal Worm Mutation Rates

by w§ () andw§ (7) in Equations (17) and (18) respectively. We now further analyze the quasi-species model to deter-
In the subsequent interval,, the growth rates of the old andmine the optimal mutation rate of the polymorphic worm.
new dominant quasi-species at€ ~9""=% and e(!=9"#  Gjven an estimate of the response timg, of the IDS,
respectively. Equating the populations of the old and newyutations at a rate greater than the optimal mutation rate
dominant quasi-species af, and usingwg(0) = w{(0) i.e. guarantees that the IDS will not be able to contain the worm’s
equal initial conditions, we obtain proliferation and the spread will reach epidemic propaio
With the ratiok in Equation (27) governing the survivability

V of the worm, optimizing the worm’s mutation rate requires
= e(1=6)" BTy (1—€)" BT 1+ nfne(l — )" T'wo(O) solving for

(32)

n(S—-1)—1 (33)

=" BnTw 0 (1) = (1= (Bn=3)Tu g0 (7

~—

—

n(S—1) ok
= 4
= 6(1*6)"'(,377*5)%6(1*6)”’60711)0(0) Oe 0 (34)
N bor, _ Lt nBne(l —e)" 11 which can be written as
n(S—1) Ok 9 14nfpe(l—e" '
1 n(S —1) de  Oe n(S—1)
- Tw =5 (1 + nBne(l — 6)"17') (28) 9 PBne(l — )"t

where we needi(S — 1) > 1 + nfne(l — )" *r for 7, to o e S—1 _ .
be positive. Substituting the value of from Equations (28) and (30) into

To find the maximum allowable, ., we note that the worm the eguation above, we have

population dies out and its spread is containedkif< 1 d Bne(1 —e)n 1 [1 1
in Equation (27). Thus by substituting = 7, + Ti4s In 0= He S _—1 gLamW(q;)  nBne(l —e)n1
5

Equation (27) and solving fat;;s we can obtain the maximum
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Fig. 4. ;45 versuse andn. The parameters used age= 1.0, 3 = 100, Fig. 5. 7;4s versusg andn. The parameters used ae= 1.0, ¢ = 0.25,
d = 100 and S = 256. § = 100 and S = 256.

After some algebraic manipulations of the equation above
have the optimal mutation rate,,, as the solution of the
following equation fore

e(l—e)
[1+ LamW(z)|z = v (36) 25000
VI. M ODEL EVALUATION 20000

In this section we evaluate the results of the previous@ec
to draw insights into the behavior of the complex syst igs 1°0%°
characterized by the jointly evolving polymorphic worm a
the IDS. We first consider the limit on the response time
the IDS and the effect of various parameters on its value
then consider the optimal worm mutation rates.
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A. Maximum Allowable IDS Response Time

In Figure 4 we showr;ys as a function of the mutatiol epsilon
ratee andn for n = 1.0, 8 = 100, 6 = 100 and S = 256.
We note that as expected, when the mutation rate decreaS@s$. 7ids versuse and . The parameters used ane= 1.0, 8 = 100,
the maximum allowable IDS response time increases. THig 100 and:s = 256.
is because with lowet the IDS has more time to generate
the signatures since now the rate of appearance of new qu
species is lower. Alsay;4s increases as increases since larger
signatures allow for more accurate signatures and thusrbe
chances of detecting the worm. Also, note that for low value
of ¢, n does not have an appreciable impact on the value 0

3f'the growth rate3 the mutation rate does not affect the IDS
esponse time appreciably. However, at small growth rdttes t
llowable IDS response time increases ahds a considerable
pact on the value of;y;.

Tids- . - . .
In Figure 5 we show;4, as a function of the worm growth B. Worm Survivability and Optimal Mutation Rates
rate 3 andn for n = 1.0, e = 0.25, § = 100 and S = 256. We In this section we observe the effect of various parameters

note that as the worm growth rate increases, the the maximom the optimal worm mutation rates and the worm'’s surviv-
allowable IDS response time decreases exponentially. Asahility. To show the existence of an optimum and the region
the previous figure, a larger signature or worm lengtleads around it, in Figure 7 we plok given by Equation (27) as
to higher allowable values for;;;. We also note that as thea function of of the mutation rate for n = 1.0, § = 150,
worm growth rate increases, the signature length has w#lgy li 6 = 150, n = 6, S = 256 and ;4 = 40.0. Note that values
impact on the maximum allowable value of;,. of k£ < 1 implies that the worm is able to evade the IDS and

In Figure 6 we show;,, as a function ot and3, n = 1.0, able to survive at all times. From Figure 7 it is clear thar¢he
n =6, d =100 and S = 256. We observe that at high valuesis an optimal mutation rate for a given set of parameters.
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Fig. 7. K versuse showing the region where the worm quasi-species sun 0.8 0.6 0.4 0.2

and the optimal mutation rate. The parameters usedyarel.0, 8 = 150, epsilon
§ =150, n =6, S = 256 and 7,45 = 40.0.

Fig. 9. k versuse and ;4. The parameters used ane= 1.0, 8 = 100,
§ =100, n = 6 and S = 256.
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Fig. 8. k versuse andn. The parameters used are= 1.0, 3 = 100, beta

§ = 100, 7545 = 40 and S = 256.
Fig. 10. k versusg andé. The parameters used ane= 1.0, ¢ = 0.25,
Tigs = 40, n = 6 and S = 256.
In Figure 8 we plotk as a function ok andn for n = 1.0,

/=100, 6 = 100, 7igs = 40 and $§ = 256. We note that as . ¢ ihe worm growth rat@ increases, the worm quasi-
n increases, the value &f decreases. This is because as the ~ .= . : . . . X
species is more likely to survive aridincreases linearly with

signature Iength increases, the IDS becomgs better aitn'igec _On the other hand stays almost constant with
the worm quasi-species. We note that a higher mutation rate

does not necessarily mean greater survivability for thesgqua VII. SIMULATION RESULTS

specigs. _ In this section we present the simulation results to qualita
In Figure 9 we plot: as a function of and the IDS response tyely validate the proposed model for polymorphic worms W

time 74, for n = 1.0, § = 100, § = 100, n = 6 andS = 256.  first present the details of the simulation environment teefo
We note that as;q, increases, the values éfincreases since presenting the actual simulation results.

now the worm quasi-species have more time to grow before

the IDS acts on them. This is because as the signature lenfthWorm Generator

increases, the IDS becomes better at detecting the wornirquasTo simulate polymorphic worm propagation and IDS re-

species. Also, the optimal changes very little with changessponse, we developed a simulator which used the ADMmutate

in Tigs- polymorphic engine to produce variants of exploit code with
In Figure 10 we plot: as a function ofg and the IDS kill a total size of 640 bytes. We used the same growth model

rated for n = 1.0, e = 0.25, 7;4s = 40 and S = 256. We note as assumed in Section V, with the number of active worms



doubling with each time step, i.e., with = 1.0. We begin sufficiently effective to generate the signature for the olamt
by generating a worm whose signature is used as the masfeasi-species and thus control their propagation. The peak
sequence, and then begin replicating with growth réte concentrations of the successive dominant quasi-speéies d
1.0. Each generated worm is then sent to the IDS simulatout until all 5 quasi species are eliminated from the network
for processing. It is interesting to note that the highest peak concentmatio
occurs during the second interval, not the first. This is due
to the fact that the IDS misidentified the most dominant
The IDS simulator takes one parametéy;;, which de- quasi-species in the first interval because of the small worm
termines the time required by the IDS to generate the sigopulation and the initial transients in the systems. Harev
nature for the currently dominant quasi-species. As a wolifican be seen that it does identify the dominant strain and
is received from the worm generator, the worm is classifieghply the kill rate after 2,4,. This was common among many
based on its Hamming distance from the master sequencgfSour simulations with smalh,. After the initial transient,
code sequence. The Hamming distance indicates which quag@ see that the concentration of each successive dominant
species group the worm belongs to and the correspondigigain never exceeds the previous dominant strain’s peak.
concentration is incremented. After all polymorphic wormgjote that even though we plot and apply the kill rates on
from the current time step have been processed, the IRSuasi-species group rather than individual quasi-spdoie
checks to see iff;4s time units have elapsed. If so, a killjjlustrative purposes, the validity of the results is ndeafed

rate of§ = 1.0 is applied to the quasi-specigsoup with the  since this is a special case of our model.
highest concentration. That is, ho more worms of that group

are allowed to pass the IDS and propagate in the network. Fitness landscape

B. IDS Response

3500

C. Smulation Results

The objective of the simulations is to verify our assumption
about applying the quasi-species model to polymorphic worm
propagation and containment. Specifically, we wish t0  :u
demonstrate the effect &f,;, and 3 on the concentration of :
each worm quasi-species whetg, is the time required by
the IDS to generate the signature for the currently dominant ™
guasi-species and, is the initial size of the worm pool. For
convenience, we will refer to these parameters using tha for .
{#ias, o} I

3000

S 1500

Our simulations used the following valueS: = 256 (We Fig. 12. simulation with parametefg, 8}. We can see how the size of the

look at byte-long sequences:)z; =4 (signature bytes)'g = initial population has made the IDS ineffective for the safpg,.
0.52 (determined experimentally for the 4 signature bytes i
Section IV); 3 = 1.0 (exponential growth rate). In Figure 12 we can see the effect of a larger initial
worm population. Choosing the parametéds 8}, we cannot
Fitness Landscape contain the worm. The exponential growth of each quasi-

species group, which begins with a population of 8 worms,
N overwhelms the IDS during each interva);; and the worm
continues to spread. In practical terms, even though the IDS
» will apply the kill rate 6 after each interval, the propagation
rate is high enough to ensure the survival of the worm. For
example, suppose that the signature of the worm consists of

0 bytes. It will take the IDS(n + 1)7;45 time steps to eliminate

all quasi-species groups. If the peak concentration of #ve n

: dominant quasi-species group grows at a rgtthe last quasi-
species group will attain a peak concentration of

noe"ﬁ'ids(n"rl) (37)

Fig. 11. Simulation with parametefd, 1}. The choice off; 4 is sufficiently .
small to contain the worm. 4 o For the valuesyy = 8, v = 1.0, 7i4s = 4, n = 4, the peak

concentration of the final quasi species is 3.88 billion.sThi
The graph in Figure 11 shows the result of a simulatiomould be enough to infect the entire Internet with just the
with {4, 1} and plots the concentration of the 5 quasi-speciésst iteration. The worm would achieve a total concentratio
groups as a function of time. This plot matches the expectetiover 7.5 billion, clearly indicating successful spreadier
result from the quasi-species model. Fgf, = 4, the IDS is these conditions.



Other simulations were performed with varying values fdure] J. Newsome, B. Karp and D. Song, “Polygraph: Automatjc@kener-

n, ng, 7, ande, all Supporting the claims made in Section VI. atlng‘S|gnature_s for Polymorphic Worms,” Rroc. |[EEE Symposium on
Security and Privacy, Oakland, CA, May 2005.

[17] Y. Tang and S. Chen. “Defending Against Internet WormsSignature-

VIIl. CONCLUSIONS Based Approach,” IfProc. of IEEE INFOCOM' 05, Miami, Florida, USA,

. - .. May 2005.
With their ability to change appearance at every repllmthlg] O}' Kolesnkov and W. Lee. “Advanced Polymorphic

step, polymorphic worms have the ability to evade existing "worms: Evading IDS by Blending in with Normal Traffic
IDSes and have the potential to cause large scale damage. Irhttp://wwv. cc. gatech. edu/ ok/w ok_pw. pdf.

. P ) 1990, htt p: // www. vi rusl i st. com en/ vi ruses/ encycl o-
this paper we presented a framework based on coevolutlon]t?ﬂpedi a2chapt er =153311162.

quasi-species to model the dynamics of polymorphic worn) M. Eigen and P. Schustethe Hypercycle - A Principle of Natural Self-
and their interaction with an IDS that has the capability to Organization, Springer-Verlag, Berlin, 1979.
evolve with time. The model provides a theoretical basis to
explain polymorphic worm outbreaks and the limitationsythe
put on the IDS and thereby aid the development of defense
strategies which can respond effectively to such outbreaks
The model is used to obtain the conditions that govern
the survivability of the worm and we obtain closed form
expressions for the maximum allowable response time of the
IDS in order to contain the spread of the worm. We also
obtain the optimal mutation rate that a polymorphic worm
may employ in order to evade an IDS with a known response
time. The analytic results are qualitatively validatedngsi
simulation results. The results of the paper provide vdtab
insights and design guidelines for the development of sgali
IDSes capable of containing polymorphic worms.
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