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Abstract— Polymorphic worms can change their byte sequence
as they replicate and propagate, thwarting the traditional signa-
ture analysis techniques used by many intrusion detection systems
(IDSes). As the incidence of such worms becomes more frequent,
it is important to understand their behavior and interaction
with the IDSes in order to develop effective strategies to control
their propagation. In this paper, we propose a model based
on coevolution of biological quasi-species to characterize the
propagation of polymorphic worms and the effects of dynamic
IDSes which improve their detection capability with time. The
model is used to derive the maximum allowable response time of
the IDS in order to contain the worm and the optimal mutation
rate the worm should use in order to escape an IDS with a given
response time. The observations from the model are validated
using simulations with the ADMmutate polymorphic engine.

I. I NTRODUCTION

The increasing complexity and sophistication of worms
in the Internet is evident in recently captured specimens
[11]. Polymorphic techniques, which allow a worm to change
its appearance with every instance, are increasingly being
used to disguise worm payloads and attempt to bypass both
signature-based [13] and anomaly-based [12] IDSes. Polymor-
phic worms try to disguise themselves by changing their byte
sequence using a variety of techniques with the most common
being encryption with random keys. This disguise may allow
aggressively spreading worms to evade discovery and analysis
for days, and more stealthy worms may go unnoticed for many
months.

In order to develop effective defense strategies and counter
measures against polymorphic worms, a key step is to un-
derstand their propagation dynamics and the limitations they
put on the IDS. The objective of this paper is to develop
a model for the propagation of polymorphic worms which
also considers the effect of a dynamic IDS which can learn
and detect worms in real time. The model is then used to
obtain two important factors that impact the propagation ofthe
worm and provide system design guidelines:(1) the maximum
allowable response time of the IDS in order to contain the
spread of the worm and(2) the optimal mutation rate that a
polymorphic worm may employ in order to evade an IDS with
a known response time.

To the best of our knowledge, the few existing papers which
directly deal with polymorphic worms either focus on develop-
ing mechanisms to detect them [17], [16] or study techniques
they may use to evade the IDS [18]. This paper fills an
important void in this area by developing a analytic framework

for modeling and evaluating the dynamics of polymorphic
worms and their interaction with an IDS. Our model is
based on biological models for the coevolution of viral quasi-
species and their interaction with the immune system. The
morphing of code in polymorphic worms is analogous to the
modifications in the genetic material of biological organisms
in successive generations. The ability of the evolved organisms
to survive depends on the ability of immune system of the host
to detect the new quasi-species, analogous to the dependence
of the survivability of new strains of the polymorphic worm on
the effectiveness of the IDS. The evolution of the polymorphic
worm’s dynamics is modeled by a set of differential equations
governing the co-evolutions of the quasi-species represented
by the code sequences generated by the polymorphic worms
and the fitness landscape representing the capabilities of the
IDS. We use these equations to evaluate the conditions under
which the polymorphic worm may evade the IDS and provide
closed form expressions for the maximum allowable response
time at the IDS and the optimal mutation rates of the worm.
The observations from the model are validated qualitatively
using simulations with theADMmutate polymorphic engine.

The rest of the paper is organized as follows. In Section
II related work is discussed. We discuss polymorphism and
detail the properties of specific polymorphic engines in Section
III while Section IV presents the assumptions made in our
model. In Section V, we present our model for the dynamics
of polymorphic worm and the results form the model are
analyzed in Section VI. Finally, Section VII presents the
simulation results and conclusions are presented in Section
VIII.

II. RELATED WORK

Understanding polymorphic worms remains a difficult and
largely open problem. We are aware of only a handful of
papers that directly address polymorphic worms and possible
solutions to limit their negative effects. Kolesnikov and Lee
analyzed techniques that a polymorphic worm may use to
hide itself from both signature and anomaly based IDSes [18].
Particularly, they proposed that stealthy worms could collect
and use knowledge about the normal characteristics of traffic
on a local network to hide their propagation. Tang and Chen
propose a novel double honeypot scheme to capture previously
unseen worms and a position-aware signature generation al-
gorithm [17]. Newsome et al. argue that polymorphic worms
are not immune to signature-based IDSes and present the



Polygraph system for generating signatures from polymorphic
payloads [16]. We will discuss some of these ideas in further
detail in IV.

A number of recent papers have focused on the developing
propagation models for worms and other malware in the
Internet [1], [2], [3], [4], [5]. These models are usually either
based on epidemiological models [1], [3], [4] or based on
measurement studies [5]. However, none of these models
address polymorphic worms. Intrusion detection systems and
their requirements have also been extensively studied (see[6],
[8] and the references therein). Again, these either specifically
focus on single strain worms and viruses or do not consider
the coevolution of the worm and the IDS.

With the seminal work of Eigen on replicating molecules
[20], the evolution of quasi-species has been extensively
studies by biologists and theoretical physicists. A vast majority
of these studies consider the asymptotic behavior with static
immune systems. However, recent work on time dependent
immune systems [9] has allowed the development of co-
evolution models of the viral quasi-species and the immune
system [10]. These studies have been extended to obtain the
optimal mutation rates for B-cells [10] as well as solutions
for arbitrary gene networks [15]. Finally, the coevolutionof
computer viruses and the immune system has been alluded to
in [7] in the sense of emergence of more sophisticated worms
as IDSes improve in their ability to detect worms.

III. D ISCUSSION ONPOLYMORPHISM

Our objective in this section is to discuss some ideas and
principles of polymorphism as they relate to worms. We will
present a conceptual explanation of polymorphism followed
by a treatment of publicly available polymorphic engines.

As a tool for disguising malware, polymorphism is not new.
Polymorphic viruses first surfaced in the early 1990s [19].
The encryption of a byte sequence to alter its appearance has
obvious applications to Internet worms. IDS systems handle
enormous amounts of data in real-time, and are susceptible to
any attack which requires non-trivial computational powerto
detect. In an effort to evade detection, polymorphic worms use
several techniques to remove any static signature which may
be obtained from the payload while making it computationally
difficult to obtain other meaningful statistics from the byte
stream.

The simplest method for implementing a polymorphic worm
is to encrypt the worm’s payload using a key. Each time
the worm replicates, it chooses a key and encrypts the new
copy before sending it over the wire. The key is usually sent
together with the worm and a decryption routine (or decoding
engine). When the worm executes on the target machine, the
decryption routine uses the key to obtain the worm code and
begin the next round of propagation. This method still allows
IDSes to identify the worm because the decoding engine is a
constant byte sequence. If the polymorphic engine uses several
decryption routines, it will be more successful in evading an
IDS. However, the finite number of decryption routines still
yields a finite number of static signatures. Thus, the decryption

routine is still an easy target for IDSes. If a worm contains
a large number of decoding engines, it may lead to a very
large signature space. Suppose there aren decryption routines
and one is chosen as the routine to be used for this iteration.
The remainingn − 1 routines are appended in random order,
resulting inn! possible signatures. But the worm’s propagation
rate is proportional to the payload size, so large worms travel
more slowly. Also, since many exploits rely on overwriting
buffers in the target’s memory, a large worm may cause
unforeseen consequences on the target system such as system
failure before the worm is successfully executed.

Another method for implementing a polymorphic worm is
to rearrange the order of instructions and use jump instructions
to keep the instruction flow intact. This shuffling may result
in a high frequency of jump instructions, which will create
an anomalous byte distribution capable of being identified by
most IDSes.

Alternatively, non-meaningful instructions can be inserted
to create polymorphic worms. These instructions are garbage
code, and usually consist of two or more idempotent instruc-
tions. For example, executingn+2 followed byn−1 and then
n−1 is equivalent to executing nothing at all, but could serve
to vary the appearance of the worm code surrounding it. Also,
replacingmeaningful sequences of instructions with different,
but equivalent, sequences can render a worm polymorphic.
Using this method without altering the functionality of the
code requires a good deal of knowledge regarding machine
language and architecture.

Lastly, changing the registers which are used in the worm
executable could alter its appearance. This is a weak form
of polymorphism which results in less extensive mutation
between successive iterations.

By combining two or more of these techniques, more pow-
erful polymorphism results. Consider, for example, a worm
which uses the code shuffling method to change its signature
and hides the jump instructions by encoding them to match
the byte distribution expected by an anomaly-based IDS. The
result is a highly flexible payload which attempts to evade
signature- and anomaly-based IDSes.

We now consider some specific examples of polymorphic
worm generators.

ADMmutate: In 2001 a hacker known as K2 presented a
tool for obfuscating shellcode [13]. Shellcode is machine-
executable code that is intended to open a command inter-
preter, or shell, on a remote machine so that an attacker
can type in commands just like an authorized user. In order
to launch the command interpreter, the attacker must use
an exploit to trick the remote machine into executing the
shell command (e.g./bin/sh). Such exploits are usually
some type of buffer overflow attack. For a detailed discussion
of buffer overflow attacks, see [14]. For purposes of this
discussion, it is sufficient to understand Figure 1. When a
vulnerable function is called, the attacker’s return address,R,
is written over the correct return address on the stack of the
current function. When the function attempts to return to its



calling function, it instead jumps to the attacker’s address,
slides through a series of non-operational instructions (nop),
and executes the attacker’s shellcodeS. This “nop sled” is
necessary because it is difficult to guess the exact address
where the shellcode is located. The sled allows the attacker
to establish a range of addresses which are acceptable for the
exploit to work.

Fig. 1. How a buffer overflow attack executes arbitrary code.

In order to successfully exploit a remote machine, the
attacker usually has to create a nop sled of several hundred
bytes. For an IA32 machine, the nop code is 0x90, and a string
of several hundred of these is highly anomalous, allowing it
to be easily identified by current IDSes. The same is true for
nop codes on other platforms. Thus, an IDS can stop these
obvious attacks before any damage is done.

ADMmutate attempts to disguise the nop sled by taking the
exploit shown in Figure 1 and changing it to the form:

[JJJJ][DJDJ][EEEE][RRRR]

whereJ is a “junk nop,” or garbage code which is equivalent
to no operation. K2 states that there are 55 possible junk
nops on the IA32 architecture.E represents the encoded
shellcode. The shellcode is encoded (or encrypted) because
current IDS systems also alert on strings that are known to
launch command interpreters. For example, if the attacker
disguises the nop sled, but leaves the constant string/bin/sh
in the exploit code, the IDS will still prevent the attack. For
this reason, ADMmutate encodes the shellcode with a sliding
key. The decryption routineD is interlaced with garbage code
as well, attempting to hide its location and make signature
identification more difficult. Lastly, the return addressR points
to the junk nop sled. The return address is usually the least
variable part of the payload, although ADMmutate attempts
to modulate the address by cycling through several values that
are close to the desired address.

CLET: In 2003 the CLET Polymorphic Engine was released
in an issue of phrack magazine. Included in the article is
a uuencoded executable of the polymorphic engine. CLET
attempts to further the work done by K2 by adding more
garbage instructions and including capability for crafting ex-
ploits which evade byte distribution analysis. CLET takes an
input file containing the normal traffic spectrum and makes an
effort to select encoded bytes which will deviate the least from
the normal traffic. CLET also attempts to alter the decryption
routine using equivalent instruction substitution and register
swaps.

JempiScodes:Also in 2003, Argentinian coder Matias Sedalo

released a polymorphic engine he entitled JempiScodes. This
engine is quite easy for an untrained attacker to use. The main
contribution of JempiScodes is that it provides options forthe
attacker to select from 4 different encryption algorithms (XOR,
AND and Chained XOR in 8- or 16-bit blocks) and also tells
the attacker the encryption key used. Although JempiScodes
requires more coding to automate the generation of poly-
morphic shellcode than the other two engines, it can still be
developed into an efficient tool with a minimal understanding
of the underlying mechanisms.

The polymorphic methods discussed here are not a closed
set. The possibilities for other techniques abound. As the
polymorphic engines mentioned above demonstrate, tools for
creating polymorphic worms are moving toward easier appli-
cation and more sophisticated methods. It is fortunate that
these techniques have not been widely deployed in Internet
worms yet, but developing an understanding of polymorphic
worms will prepare us to deal more effectively with their
spread and effects.

IV. M ODEL PRELIMINARIES AND ASSUMPTIONS

Our purpose here is to discuss the preliminary assumptions
which lead us to use the quasi-species model and justify
our choice of simulation parameters. We first discuss our
assumptions about the IDS followed by the assumptions about
the polymorphic worm.

As has been shown in [17], it is possible to isolate worm
traffic from normal traffic using a two honeypot scheme.
An inbound honeypot presents an image of the server to
be protected, but is configured to make no outbound con-
nections. When it does begin to make outbound connec-
tions, the machine is assumed to be compromised and its
connection requests are forwarded to an outbound honeypot
which captures and analyzes the worm packets. This system
allows for the complete isolation of worm flows from normal
traffic flows. We assume, therefore, in the following analysis
that polymorphic worms are recognizable as worms (i.e. not
considered benign traffic) and can be classified accurately
according to the quasi-species to which each mutation belongs.
Note that in this paper we refer to each distinct worm with a
different code sequence as aquasi-species.

In [16], it was shown that the code generated by a large
class of polymorphic worms has some constant content which
may be used to generate high quality signatures. In this paper,
we assume that a system like that proposed in [16] is available
to produce signatures for classifying a polymorphic worm.
The time taken to generate successive signatures determines
the effectiveness of the IDS and the likelihood that the
worm population will reach epidemic proportions before being
detected. We denote byτids the time required by the IDS to
generate a new signature for a new polymorphic worm quasi-
species.

In Figure 2, we demonstrate some sample mutation rates
from the ADMmutate polymorphic engine. We applied the
engine to the same code 2000 times, counting the number of
times the byte values in the worm payload didnot change.



From the figure we note that while a number of bytes change
frequently, some stay fairly constant or nearly always constant.
The large values shaded in gray, then, represent bytes which
could be used as part of the worm’s signature.

The procedure above was also used to obtain an estimate
of the mutation rate or the probability that a byte in the code
sequence changes in successive generations (ǫ̂). To estimatêǫ
we identify N bytes from the code sequence corresponding
to the signature and apply the mutation enginem times. We
calculate eachni, the number of mutations that occurred in
the ith byte of the signature. Ifm is sufficiently large, the
mutation rate for the signature is then said to be

ǫ̂ =

∑

i ni

Nm
(1)

UsingN = 2000 andm = 4 for the ADMmutate polymorphic
engine,ǫ̂ was estimated to be 0.52.

Fig. 2. Mutation rates from ADMmutate. The shaded values represent bytes
that mutate infrequently. The non-shaded boxes show bytes that have a high
mutation rate.

We assume that the IDS systems tries to identify the con-
stant byte sequences in the worm instances that it comes across
in order to generate the signatures. Let the number of strings
or sequences constituting the signature be denoted byn. Note
that the signature initially may contain sequences that change
in many of the worm quasi-species and the signature may
be improved with time to capture all quasi-species. Insteadof
considering the entire worm payload in order to classify worm
instances into the corresponding quasi-species which leads to
an extremely large number of possible quasi-species, we only
consider then sequences in the worm corresponding to the
signature for classification. For the sequences in the signature,
we assume that each sequence may mutate or morph in each
successive replication independently with probabilityǫ.

V. DYNAMICS OF POLYMORPHIC WORMS

In this section we develop our model for the evolution
and spreading related dynamics of polymorphic worms. We
explicitly consider the impact of the IDS on the growth of the
worm. The main goal of this section is to obtain the response

time required from the IDS in order to contain the worm and
to compute the optimal mutation rates for the worm in order
to evade the IDS system.

A. Polymorphic Worm Propagation Model

Consider a worm composed ofn strings or sequences. In
each generation the worm mutates some of the sequences to
create new quasi-species. We assume that each sequence is
mutated independently with probabilityǫ and that the mutated
sequences are chosen from an alphabet of sizeS. Each copy
of the worm replicates at a rate ofβ. Let the concentration
or the total number of copies of quasi-speciesk generated up
until time t be denoted byyk(t). The time evolution ofyk(t)
is characterized by the following equation

dyk(t)

dt
=

∑

l

βWl,kA(yl(t))yl(t) (2)

whereWl,k denotes the probability of a worm quasi-species
of type l morphing to a quasi-species of typek in the next
generation.A(yl(k)) denotes the fitness function of quasi-
speciesl and accounts for the likelihood that the IDS is able
detect and prevent the propagation of quasi-speciesl. The
summation above is carried out over all possible worm quasi-
species. Assuming each sequence to be of lengthb bits, we
have (2b)n possible worm quasi-species and thus the state
space required for modeling the worm’s dynamics can easily
become quite large. For example, if we just consider 10 byte-
long sequences characterizing a quasi-species, we have a total
of 280 possible quasi-species sequences.

To make the model tractable, we group all quasi-species
according to their Hamming distance (HD) (i.e. the number
of sequences in which the two quasi-species differ) from an
arbitrarily chosen master quasi-species. Denoting the master
quasi-species byy0, the lth group is defined as

wl =
∑

yk∈{yk|HD(yk,y0)=l}

yk (3)

and its fitness function is defined byA(l). This reduces the
problem fromSn = (2b)n dimensions ton+1 dimensions. We
now characterize the equations governing the time evolution
of wl(t).

Claim 1: The time evolution of the worm quasi-species
group with Hamming distancel from the master sequence is
approximated by

dwl(t)

dt
=

l
∑

l′=0

(

n − l′

l − l′

)

βA(l′)ǫl−l′(1 − ǫ)n−(l−l′)wl′(t)

(4)
Proof: Mutations into groupl may occur in two possible

ways: (1) up-mutations from groups with lower Hamming
distances and (2) down-mutations from groups with larger
Hamming distances. Consider the up-mutation case first with
mutations from groupl′ to groupl with l′ ≤ l. In each quasi-
species of groupl′ there arel′ sequences which have mutated
previously and are different from the master quasi-species.
There are three possibilities for the up-mutation:



i. l − l′ of the n − l′ sequence which are identical with the
master sequence mutate and all other sequences stay the same.
This case, C1, happens with probability

P [C1] =

(

n − l′

l − l′

)

ǫl−l′(1 − ǫ)n−(l−l′) (5)

where

(

n − l′

l − l′

)

is the number of ways to choosel − l′

sequences to mutate fromn−l′ non mutated sequences,ǫl−l′ is
the probability that there arel−l′ mutations and(1−ǫ)n−(l−l′)

is the probability that the remaining sequences do not mutate.

ii. i, 0 < i ≤ min{l′, n − l}, of the already mutated
sequences mutate back to the master quasi-species and there
are mutations inl− l′+ i of then− l′ non-mutated sequences.
Given that a mutation occurs, the sequence is equally likely
to change to any of the otherS − 1 possibilities. Thus the
probability that a sequence mutates and changes back to the
corresponding sequence in the master quasi-species is given
by

ǫ

S − 1
(6)

Then the probability of this case, C2, is given by

P [C2] =

min{l′,n−l}
∑

i=1

[

(

l′

i

)(

n − l′

l − l′ + i

)(

ǫ

S − 1

)i

ǫl−l′+i(1 − ǫ)n+l′−l−2i

]

(7)

where the first two combinatorial terms represent the number
of ways of choosingl − l′ + 1 sequences out ofn − l′

non-mutated sequences and the number of ways to select
i sequences from thel′ mutated ones.(ǫ/(S − 1))i is the
probability thati already mutated sequences mutate back to
the master quasi-species’ sequences,ǫl−l′+i is the probability
that there arel− l′ + i new mutations and(1− ǫ)n−l+l′−2i is
the probability that the remaining sequences do not mutate.

iii. Of the l′ already mutated sequences,i mutate back to the
corresponding sequences in the master quasi-species,j (j >
0) mutate to other sequences,l′ − i − j stay the same with
i + j ≤ l′ and 0 < i ≤ min{l′, n − l} and of then − l′

non-mutated sequences,l − l′ + i sequences mutate and the
remainingn − l − i sequences stay the same. This case, C3,
occurs with probability

P [C3] =
∑

j

∑

i

[

(

l′

i

)(

l′ − i
j

)(

n − l′

l − l′ + i

)(

ǫ

S − 1

)i

(

ǫ(S − 2)

S − 1

)j

ǫl−l′+i(1 − ǫ)n+l′−l−2i−j

]

(8)

where the summations overi and j are carried out over the
region wherej > 0, i + j ≤ l′ and 0 < i ≤ min{l′, n − l}.
The three combinatorial terms represent the number of ways
to choosei sequences froml′ mutated sequences,j sequences
from the remainingl −′ i mutated sequences andl − l′ + i
sequences fromn − l′ non-mutated sequences respectively.

The term(ǫ(S − 2)/(S − 1))j represents the probability that
j sequences mutate to sequences other than the corresponding
ones in the master quasi-species and the remaining terms are
along the lines of case C2. Note that the number of sequences
that do not mutate isn−(i)−(j)−(l−l′+i) = n+l′−l−2i−j.

We now consider the down-mutations where quasi-species
with a higher Hamming distancel′ back-mutate to generate
quasi-species with lower Hamming distancel (l < l′) from
the master quasi-species. Again, there are three possibilities:

i. l′ − l of the already mutated sequences mutate back to the
corresponding sequences in the master quasi-species whilethe
remaining sequences stay the same. This case, C4, occurs with
probability

P [C4] =

(

l′

l′ − l

) (

ǫ

S − 1

)l′−l

(1 − ǫ)n−(l′−l) (9)

The explanation for the terms in the expression above follows
the explanation for the earlier cases.

ii. i of the already mutated sequences mutate back to the
corresponding sequences in the master quasi-species with
l′ − l < i ≤ min{l′, n − l} and l − l′ + i of the n − l′

non-mutated sequences mutate while the remaining sequences
stay the same. The probability of the occurrence of this case,
C5, is given by

P [C5] =

min{l′,n−l}
∑

i=l′−l+1

[

(

l′

i

)(

n − l′

l − l′ + i

)(

ǫ

S − 1

)i

ǫl−l′+i(1 − ǫ)n−l′+l

]

(10)

The explanation for the terms in the expression above follows
the explanation for case C2 in up-mutations.

iii. Of the l′ already mutated sequences,i mutate back to the
corresponding sequences in the master quasi-species (where
l′ − l < i ≤ min{l′, n − l}), j (0 < j < i and i + j ≤ l′)
mutate to other sequences,l′ − i− j stay the same and of the
n− l′ non-mutated sequences,l− l′ + i sequences mutate and
the remainingn − l − i sequences stay the same. This case,
C6, occurs with probability

P [C6] =
∑

j

∑

i

[

(

l′

i

)(

l′ − i
j

)(

n − l′

l − l′ + i

)(

ǫ

S − 1

)i

(

ǫ(S − 2)

S − 1

)j

ǫl−l′+i(1 − ǫ)n+l′−l−2i−j

]

(11)

where the summations overi and j are carried out over the
region wherej > 0, i+ j ≤ l′ and l′ − l < i ≤ min{l′, n− l}
and the explanation for the rest of the terms is similar to case
C3 in the case of up-mutations.

Combining the six cases above, the probability of mutations
from groupl′ to groupl, P [wl′→l], is given by

P [wl′→l] = P [C1]+P [C2]+P [C3]+P [C4]+P [C5]+P [C6]
(12)



Note that the expressions for all cases exceptP [C1] have the
term (S−1)i in the denominator. For even moderate alphabet
size S, (for exampleS = 256 for sequences of byte length)
these probabilities thus become very small compared toP [C1]
and can be neglected to a good degree of approximation. Thus

P [wl′→l] ≈ P [C1]

=

(

n − l′

l − l′

)

ǫl−l′(1 − ǫ)n−(l−l′) (13)

The time evolution of thelth quasi-species group is thus
governed by the the rate of up-mutations from quasi-species
groups with lower Hamming distances. In each time unit,
the concentration of the quasi-species groupl′ increases by
βA(l′)wl′(t) and a fractionP [wl′→l] of these mutate to quasi-
species groupl. Summing up these contributions, the time
evolution ofwl(t) is then given by

dwl(t)

dt
=

l
∑

l′=0

P [wl′→l]βA(l′)wl′(t)

=

l
∑

l′=0

(

n − l′

l − l′

)

βA(l′)ǫl−l′(1 − ǫ)n−(l−l′)wl′(t)

which completes the proof of Claim 1.

In the equation governing the growth and dynamics of each
group of worm quasi-species as given in Claim 1, a key
parameter is the fitness landscapeA(l′) corresponding to each
group. In the absence of any defense mechanism or known
signatures, the fitness landscape for each group will be the
same since all of them are equally likely to propagate without
detection. We thus consider a scenario where initially all the
quasi-species have an identical fitness landscape (we introduce
the effect of the IDS later in this section)

A(yl) = η ∀l (14)

which implies
A(wl) = η ∀l (15)

In order to determine the optimal worm mutation rates and
the maximum allowable response time of the IDS, we now
obtain the concentrations of arbitrary members of different
quasi-species groups. In the following, we assume that each
quasi-species has the same initial concentrations, i.e.

yl(0) = y0(0) ∀l (16)

Claim 2: The concentration of an arbitrary member of the
0th, 1th and nth quasi-species group, represented bywa

0 , wa
1

andwa
n respectively is given by

wa
0(t) = w0(0)e(1−ǫ)nβηt (17)

wa
1(t) = w0(0)

e(1−ǫ)nβηt

n(S − 1)

[

1 + nβηǫ(1 − ǫ)n−1t
]

(18)

wa
n(t) = w0(0)e(1−ǫ)nβηt (19)

wherew0(0) = y0(0) is the initial concentration of the master
quasi-speciesw0(t).

Proof: We consider each quasi-species group separately
and solve Equation (4) to obtain the expressions above.

Quasi-species group 0: Note that there is only one quasi-
species (the master quasi-species) which belongs to the0th

quasi-species group and thuswa
0(t) = w0(t). From Equation

(4), substitutingl = 0, we have

dwa
0(t)

dt
=

dw0(t)

dt
= A(w0)(1 − ǫ)nβw0(t)

= η(1 − ǫ)nβw0(t) (20)

Solving the ordinary differential equation above, we obtain

wa
0(t) = w0(0)e(1−ǫ)nβηt (21)

where w0(0) = wa
0(0) = y0(0), the initial concentration of

the master quasi-species.

Quasi-species group 1: Each member of quasi-species group
1 has a Hamming distance of 1 from the master quasi-species.
With each worm quasi-species consisting ofn sequences and
an alphabet of sizeS, there aren(S−1) possible quasi-species
which have a Hamming distance of 1 from the master quasi-
species and thus form group 1. Thus the dynamics of the group
(w1(t)) is n(S−1) times faster than an arbitrary quasi-species
(wa

1(t)) in the group. Substitutingl = 1 in Equation (4) we
then have

dwa
1(t)

dt
=

1

n(S − 1)

dw1(t)

dt

=

1
∑

l′=0

(

n − l′

l − l′

)

βA(l′)ǫl−l′(1 − ǫ)n−(l−l′)

n(S − 1)
wl′(t)

=
ηβǫ(1 − ǫ)n−1

S − 1
w0(t) +

βη(1 − ǫ)n

n(S − 1)
w1(t)

=
ηβǫ(1−ǫ)n−1

S − 1
e(1−ǫ)nβηtw0(0) +

βη(1−ǫ)n

n(S − 1)
w1(t)

Solving the differential equation above and using the fact that
the initial concentrations of all the quasi-species are thesame,
i.e. wa

1(0) = wa
0(0) = w0(0), we obtain

wa
1(t) = w0(0)

e(1−ǫ)nβηt

n(S − 1)

[

1 + nβηǫ(1 − ǫ)n−1t
]

(22)

Quasi-species group n: Consider an arbitrary member of
quasi-species groupn, wa

n. Increase in its concentration results
from the mutations from members of all other groups, other
members of its own group as well as its own growth. These
contributions can be written as

dwa
n(t)

dt
=

n−1
∑

i=0

A(wi)β

(

ǫ

S − 1

)n−i

(1 − ǫ)i wi(t)

(S − 1)i
+

∑

w
j
n∈{wn|wj

n 6=wa
n}

A(wn)β

(

ǫ

S−1

)n

wj
n(t) +A(wn)β(1−ǫ)nwa

n(t)

In the expression above we note that a mutation from a quasi-
species of groupi to the quasi-specieswa

n occurs only when:
(1) the n − i sequences that were not mutated so far mutate



to the corresponding sequences inwa
n which happens with

probability (ǫ/(S − 1))n−i and (2) thei sequences that had
already mutated had mutated to the corresponding sequences
in wa

n, the probability of which is1/(S−1)i. Similarly, other
members of the quasi-species groupn mutate towa

n only if
all of their sequences mutate to the corresponding sequence
in wa

n, an event which occurs with probability(ǫ/(S − 1))n.
Finally, members of the quasi-specieswa

n continue to replicate
their own if no mutation occurs, i.e. with probability(1− ǫ)n.
Note that in the expression above, all terms except for the last
have (S − 1)n in the denominator. For even small alphabet
sizeS and number of sequencesn, the contribution of these
terms becomes quite small and we can thus write

dwa
n(t)

dt
≈ A(wn)β(1 − ǫ)nwa

n(t)

= βη(1 − ǫ)nwa
n(t) (23)

Another way to interpret the expression above is that for quasi-
species far removed from the master sequence, mutations
in and out of the quasi-species cancel and its growth is
determined by its own environmental or uninhibited growth
rate of βη(1 − ǫ)n. Solving the differential equation defined
in Equation (23) we obtain

wa
n(t) = wa

n(0)eβη(1−ǫ)nt (24)

This completes the proof of Claim 2.

B. Maximum Allowable IDS Response Time

With the expressions developed for the evolution of the
concentration of the various worm quasi-species, we now
derive the maximum allowable IDS response time in order
to contain the worm. In the following analysis, we assume
that the IDS is first detects the quasi-species with the highest
concentration and we call the quasi-species which currently
has the highest concentration thedominant quasi-species.
Without loss of generality, we can assume that the quasi-
species detected first contains the master sequence, and thus
we call it the master quasi-species. Based on the detected
quasi-species’ code sequence, the IDS now tries to generate
signatures for other morphed versions of the worm. If the IDS
cannot detect other worm quasi-species fast enough, it willnot
be able to contain their spread. Our interest in this sectionis
to obtain the maximum allowable difference between the time
of detection of the worm quasi-species which currently has
the highest concentration and the detection time of the quasi-
species with the next highest concentration. We show that if
this detection time is below a certain threshold, successive
peaks of the currently dominant quasi-species will be smaller,
eventually leading to the worm’s elimination.

We now consider the interaction between the polymorphic
worm and the IDS in greater detail. Once the IDS detects
the quasi-species with the highest concentration, it applies a
large kill rate to that specific worm quasi-species. Thus the
value of its fitness function decreases and its effective growth
rate drops. Until the IDS is capable of detecting the other
strains of the polymorphic worm, other worm quasi-species
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Fig. 3. An example of the time evolution of three worm quasi-species for a
case where the IDS is capable of containing the worm’s spread.At each shift a
new quasi-species becomes dominant but is unable to attain theconcentration
of the previous dominant quasi-species before it is detected.

will now have a higher growth rate as compared to the earlier
dominant strain. In other words, the fitness landscape for the
worm moves. From Equations (17), (18) and (19) we note
that a member of the quasi-species group 1 will now have
the next highest growth rate. The polymorphic worm adapts
to this change in the fitness function on a timescaleτw, the
time required for the population of the new dominant strain
to overtake that of the old. The IDS system now tries to adapt
to this new dominant quasi-species and we denote the time
required for it to detect the new dominant quasi-species by
τids. Through the iteration of the steps above, the worm scours
through the sample space of quasi-species and the IDS system
follows on its heels. Note that the iteration repeats everyτ =
τw + τids seconds.

If τids is large, the IDS moves slowly and the new dominant
strain reaches or exceeds the concentration of the previous
dominant strain and the worm will survive for all time.
If however the new dominant strain cannot regenerate fast
enough (or equivalently, the IDS is fast enough) the new
dominant quasi-species will be detected and consequently a
shift in the worm’s fitness landscape will occur before it
reaches the population level of the previous dominant strain.
The next dominant quasi-species will not be able to reach
the concentration level of the previous dominant quasi-species
and so on. This continues till there is no discernible worm
presence in the network. This pattern of chaining quasi-species
concentrations is shown in Figure 3.

We now determine the required growth rate of the new
dominant quasi-species over a full cycleτ as a criterion for
the quasi-species’ survival. Consider timet = 0 at the instant
when the fitness landscape shifts and an arbitrary quasi-species
from the 1st quasi-species group becomes dominant. Using
Equation (18) the normalized growth of this quasi-species over
a periodτ is then given by

wa
1(τ)

wa
1(0)

=
e(1−ǫ)nβητ

n(S − 1)

[

1 + nβηǫ(1 − ǫ)n−1τ
]

(25)

The quasi-specieswa
1 is currently the fittest. But if another



quasi-species far away from the fitness peak is able to surpass
its population in the intervalτ , then the currently dominant
quasi-species will die out. With the current dominant quasi-
species being from the quasi-species group1 and the quasi-
species group 0 having already been detected, we turn to an
arbitrary member of the quasi-species groupn, wa

n, since it
has the largest Hamming distance from the master sequence.
Using Equation (19), its normalized growth rate is then given
by

wa
n(τ)

wa
n(0)

= eβη(1−ǫ)nτ (26)

The ratio of these growth rates is then

k =

wa
1 (τ)

wa
1 (0)

wa
n(τ)

wa
n(0)

=
1 + nβηǫ(1 − ǫ)n−1τ

n(S − 1)
(27)

The quasi-species will die out ifk < 1 and survives only when
k ≥ 1.

1) Obtaining τw and τids: In order to obtain the maximum
allowable limit on τids, we first obtainτw and substitute it
in Equation (27). Consider the situation when the IDS system
detects the original dominant quasi-species and exerts a kill
rate of δ on it. To estimate the timescale for the shift in
the worm’s fitness landscape,τw, we first iterate the quasi-
species propagation model for a full cycle of lengthτ starting
at t = 0. The switch in the dominant quasi-species is made
at t = τ when the IDS starts applying the decay rate ofδ
on the previous dominant quasi-species. The relative sizesof
the new and old dominant quasi-species are then determined
for another intervalτw and the timescaleτw is given by the
waiting time until the new dominant quasi-species population
exceeds the old one. Note that the populations of the old
and new dominant quasi-species as the end ofτ are given
by wa

0(τ) andwa
1(τ) in Equations (17) and (18) respectively.

In the subsequent intervalτw, the growth rates of the old and
new dominant quasi-species aree(1−ǫ)nηβ−δ and e(1−ǫ)nβη

respectively. Equating the populations of the old and new
dominant quasi-species atτw and usingwa

0(0) = wa
1(0) i.e.

equal initial conditions, we obtain

e(1−ǫ)nβητwwa
1(τ) = e(1−ǫ)n(βη−δ)τwwa

0(τ)

⇒ e(1−ǫ)nβητwe(1−ǫ)nβητ 1 + nβηǫ(1 − ǫ)n−1τ

n(S − 1)
w0(0)

= e(1−ǫ)n(βη−δ)τwe(1−ǫ)nβστw0(0)

⇒ e−δτw =
1 + nβηǫ(1 − ǫ)n−1τ

n(S − 1)

⇒ τw =
1

δ
ln

(

n(S − 1)

1 + nβηǫ(1 − ǫ)n−1τ

)

(28)

where we needn(S − 1) > 1 + nβηǫ(1 − ǫ)n−1τ for τw to
be positive.

To find the maximum allowableτids, we note that the worm
population dies out and its spread is contained ifk < 1
in Equation (27). Thus by substitutingτ = τw + τids in
Equation (27) and solving forτids we can obtain the maximum

allowable IDS response time. Using Equation (28), we can
write τ as

τ = τw + τids

=
1

δ
ln

(

n(S − 1)

1 + nβηǫ(1 − ǫ)n−1τ

)

+ τids

=
1

δ
LamW(x) −

1

nβηǫ(1 − ǫ)n−1
(29)

wherex is given by

x =
δ(S − 1)

βηǫ(1 − ǫ)n−1
e

δ(1+nβηǫ(1−ǫ)n−1τids)

nβηǫ(1−ǫ)n−1 (30)

and LamW(·) is the Lambert W function, i.e., a function which
satisfies

LamW(y)eLamW(y) = y (31)

Now, solvingk < 1 using Equation (27) forτ , we obtain

k =
1 + nβηǫ(1 − ǫ)n−1τ

n(S − 1)
< 1

⇒ τ <
n(S − 1) − 1

nβηǫ(1 − ǫ)n−1

Substituting the value ofτ in terms of τids from Equations
(29) and (30) in the expression above, we have

1

δ
LamW(x) <

1

nβηǫ(1 − ǫ)n−1
+

n(S − 1) − 1

nβηǫ(1 − ǫ)n−1
(32)

which can be solved forτids to obtain the maximum allowable
IDS response time in order to contain the worm and this
solution is given by

τids <
n(S − 1) − 1

nβηǫ(1 − ǫ)n−1
(33)

C. Optimal Worm Mutation Rates

We now further analyze the quasi-species model to deter-
mine the optimal mutation rate of the polymorphic worm.
Given an estimate of the response timeτids of the IDS,
mutations at a rate greater than the optimal mutation rate
guarantees that the IDS will not be able to contain the worm’s
proliferation and the spread will reach epidemic proportions.
With the ratiok in Equation (27) governing the survivability
of the worm, optimizing the worm’s mutation rate requires
solving for

∂k

∂ǫ
= 0 (34)

which can be written as

∂k

∂ǫ
=

∂

∂ǫ

1 + nβηǫ(1 − ǫ)n−1τ

n(S − 1)

=
∂

∂ǫ

βηǫ(1 − ǫ)n−1τ

S − 1

Substituting the value ofτ from Equations (28) and (30) into
the equation above, we have

0 =
∂

∂ǫ

βηǫ(1 − ǫ)n−1

S − 1

[

1

δ
LamW(x) −

1

nβηǫ(1 − ǫ)n−1

]

(35)
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After some algebraic manipulations of the equation above we
have the optimal mutation rateǫopt as the solution of the
following equation forǫ

[

1 + LamW(x)
]

x =
ǫ(1 − ǫ)

nǫ − 1
(36)

VI. M ODEL EVALUATION

In this section we evaluate the results of the previous section
to draw insights into the behavior of the complex system
characterized by the jointly evolving polymorphic worm and
the IDS. We first consider the limit on the response time of
the IDS and the effect of various parameters on its value and
then consider the optimal worm mutation rates.

A. Maximum Allowable IDS Response Time

In Figure 4 we showτids as a function of the mutation
rate ǫ and n for η = 1.0, β = 100, δ = 100 and S = 256.
We note that as expected, when the mutation rate decreases,
the maximum allowable IDS response time increases. This
is because with lowerǫ the IDS has more time to generate
the signatures since now the rate of appearance of new quasi-
species is lower. Also,τids increases asn increases since larger
signatures allow for more accurate signatures and thus better
chances of detecting the worm. Also, note that for low values
of ǫ, n does not have an appreciable impact on the value of
τids.

In Figure 5 we showτids as a function of the worm growth
rateβ andn for η = 1.0, ǫ = 0.25, δ = 100 andS = 256. We
note that as the worm growth rate increases, the the maximum
allowable IDS response time decreases exponentially. As in
the previous figure, a larger signature or worm lengthn leads
to higher allowable values forτids. We also note that as the
worm growth rate increases, the signature length has very little
impact on the maximum allowable value ofτids.

In Figure 6 we showτids as a function ofǫ andβ, η = 1.0,
n = 6, δ = 100 andS = 256. We observe that at high values
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of the growth rateβ the mutation rate does not affect the IDS
response time appreciably. However, at small growth rates the
allowable IDS response time increases andǫ has a considerable
impact on the value ofτids.

B. Worm Survivability and Optimal Mutation Rates

In this section we observe the effect of various parameters
on the optimal worm mutation rates and the worm’s surviv-
ability. To show the existence of an optimum and the region
around it, in Figure 7 we plotk given by Equation (27) as
a function of of the mutation rateǫ for η = 1.0, β = 150,
δ = 150, n = 6, S = 256 and τids = 40.0. Note that values
of k ≤ 1 implies that the worm is able to evade the IDS and
able to survive at all times. From Figure 7 it is clear that there
is an optimal mutation rate for a given set of parameters.
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In Figure 8 we plotk as a function ofǫ andn for η = 1.0,
β = 100, δ = 100, τids = 40 and S = 256. We note that as
n increases, the value ofk decreases. This is because as the
signature length increases, the IDS becomes better at detecting
the worm quasi-species. We note that a higher mutation rate
does not necessarily mean greater survivability for the quasi-
species.

In Figure 9 we plotk as a function ofǫ and the IDS response
time τids for η = 1.0, β = 100, δ = 100, n = 6 andS = 256.
We note that asτids increases, the values ofk increases since
now the worm quasi-species have more time to grow before
the IDS acts on them. This is because as the signature length
increases, the IDS becomes better at detecting the worm quasi-
species. Also, the optimalǫ changes very little with changes
in τids.

In Figure 10 we plotk as a function ofβ and the IDS kill
rateδ for η = 1.0, ǫ = 0.25, τids = 40 andS = 256. We note
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that as the worm growth rateβ increases, the worm quasi-
species is more likely to survive andk increases linearly with
β. On the other handk stays almost constant withδ.

VII. S IMULATION RESULTS

In this section we present the simulation results to qualita-
tively validate the proposed model for polymorphic worms. We
first present the details of the simulation environment before
presenting the actual simulation results.

A. Worm Generator

To simulate polymorphic worm propagation and IDS re-
sponse, we developed a simulator which used the ADMmutate
polymorphic engine to produce variants of exploit code with
a total size of 640 bytes. We used the same growth model
as assumed in Section V, with the number of active worms



doubling with each time step, i.e., withβ = 1.0. We begin
by generating a worm whose signature is used as the master
sequence, and then begin replicating with growth rateβ =
1.0. Each generated worm is then sent to the IDS simulator
for processing.

B. IDS Response

The IDS simulator takes one parameter,τ̂ids, which de-
termines the time required by the IDS to generate the sig-
nature for the currently dominant quasi-species. As a worm
is received from the worm generator, the worm is classified
based on its Hamming distance from the master sequence’s
code sequence. The Hamming distance indicates which quasi-
species group the worm belongs to and the corresponding
concentration is incremented. After all polymorphic worms
from the current time step have been processed, the IDS
checks to see if̂τids time units have elapsed. If so, a kill
rate ofδ = 1.0 is applied to the quasi-speciesgroup with the
highest concentration. That is, no more worms of that group
are allowed to pass the IDS and propagate in the network.

C. Simulation Results

The objective of the simulations is to verify our assumptions
about applying the quasi-species model to polymorphic worm
propagation and containment. Specifically, we wish to
demonstrate the effect of̂τids and β on the concentration of
each worm quasi-species whereτ̂ids is the time required by
the IDS to generate the signature for the currently dominant
quasi-species andn0 is the initial size of the worm pool. For
convenience, we will refer to these parameters using the form
{τ̂ids, n0}.

Our simulations used the following values:S = 256 (we
look at byte-long sequences);n = 4 (signature bytes);ǫ =
0.52 (determined experimentally for the 4 signature bytes in
Section IV);β = 1.0 (exponential growth rate).

Fig. 11. Simulation with parameters{4, 1}. The choice of̂τids is sufficiently
small to contain the worm.

The graph in Figure 11 shows the result of a simulation
with {4, 1} and plots the concentration of the 5 quasi-species
groups as a function of time. This plot matches the expected
result from the quasi-species model. Forτ̂ids = 4, the IDS is

sufficiently effective to generate the signature for the dominant
quasi-species and thus control their propagation. The peak
concentrations of the successive dominant quasi-species die
out until all 5 quasi species are eliminated from the network.
It is interesting to note that the highest peak concentration
occurs during the second interval, not the first. This is due
to the fact that the IDS misidentified the most dominant
quasi-species in the first interval because of the small worm
population and the initial transients in the systems. However,
it can be seen that it does identify the dominant strain and
apply the kill rate after 2̂τids. This was common among many
of our simulations with smalln0. After the initial transient,
we see that the concentration of each successive dominant
strain never exceeds the previous dominant strain’s peak.
Note that even though we plot and apply the kill rates on
a quasi-species group rather than individual quasi-species for
illustrative purposes, the validity of the results is not affected
since this is a special case of our model.

Fig. 12. Simulation with parameters{4, 8}. We can see how the size of the
initial population has made the IDS ineffective for the sameτ̂ids.

In Figure 12 we can see the effect of a larger initial
worm population. Choosing the parameters{4, 8}, we cannot
contain the worm. The exponential growth of each quasi-
species group, which begins with a population of 8 worms,
overwhelms the IDS during each intervalτ̂ids and the worm
continues to spread. In practical terms, even though the IDS
will apply the kill rate δ after each interval, the propagation
rate is high enough to ensure the survival of the worm. For
example, suppose that the signature of the worm consists ofn
bytes. It will take the IDS(n + 1)τ̂ids time steps to eliminate
all quasi-species groups. If the peak concentration of the new
dominant quasi-species group grows at a rateγ, the last quasi-
species group will attain a peak concentration of

n0e
γτ̂ids(n+1) (37)

For the valuesn0 = 8, γ = 1.0, τ̂ids = 4, n = 4, the peak
concentration of the final quasi species is 3.88 billion. This
would be enough to infect the entire Internet with just the
last iteration. The worm would achieve a total concentration
of over 7.5 billion, clearly indicating successful spread under
these conditions.



Other simulations were performed with varying values for
n, n0, τ̂ , andǫ, all supporting the claims made in Section VI.

VIII. C ONCLUSIONS

With their ability to change appearance at every replication
step, polymorphic worms have the ability to evade existing
IDSes and have the potential to cause large scale damage. In
this paper we presented a framework based on coevolution of
quasi-species to model the dynamics of polymorphic worms
and their interaction with an IDS that has the capability to
evolve with time. The model provides a theoretical basis to
explain polymorphic worm outbreaks and the limitations they
put on the IDS and thereby aid the development of defense
strategies which can respond effectively to such outbreaks.

The model is used to obtain the conditions that govern
the survivability of the worm and we obtain closed form
expressions for the maximum allowable response time of the
IDS in order to contain the spread of the worm. We also
obtain the optimal mutation rate that a polymorphic worm
may employ in order to evade an IDS with a known response
time. The analytic results are qualitatively validated using
simulation results. The results of the paper provide valuable
insights and design guidelines for the development of realistic
IDSes capable of containing polymorphic worms.
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