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Abstract— This paper addresses the data acquisition problem mobile sink continuously updates all the sensors in the network
in sensor networks using mobile sinks. Sensor nodes’ low com-with its current location information [21], [22], [23]. However,
putational capabilities and limited energy motivate our design of such frequent updates lead to excessive consumption of the sen-

a swarm intelligence based, energy aware protocol, SIMPLE, to , - o . . .
route data to the mobile destination via the shortest paths, Us- SOTS battery in addition to creating traffic congestion. A two-

ing a swarm agent technique to integrate nodes’ residual energy tiér approach to data dissemination (TTDD) is proposed in [6]
as a metric for the shortest path selection, SIMPLE maximizes the wherein each source forms a grid like path to the sink. However,

network's lifetime by evenly balancing residual energy across the aside from being energy unaware, the communication and state
network and minimizing the protocol overhead. The protocol'sre- — arheads associated with maintaining these routes degrade the

silience against node failures is guaranteed by the multiple path , - o L o
techniqueg It scales well with both the network size and multi- Protocol’s scalability and ability to maximize network lifetime.

ple sinks. Simulation results are presented to observe and verify  \With the specific goal of maximizing the network or sensor
SIMPLE'’s performance and robustness. Compared with existing [itatime in the “data acquisition using mobile sink” scenarios,

algorithms, SIMPLE is shown to have superior performance. A .
general tradeoff model is presented to evaluate the performance this paper presents a protocol, SIMPLE, based on the concept

tradeoffs associated with different protocol parameters. of swarm intelligence [20]. Without requiring individual sen-
sors to possess much intelligence or cooperate with each other

tightly, each of them follows simple rules and by their collective
behavior the optimum is achieved. Using a packet-pair based
swarm agent, SIMPLE ensures that messages are forwarded to
I. INTRODUCTION the sink along the path with most remaining energy and tries

HE tremendous potential of sensor networks in both miﬁg balance the energy at each sensor. In particular, SIMPLE

itary and civilian environments has been widely recogelchleves the following:
nized. These networks can have thousands of sensors involvetl) Smart Data Delivery to the Mobile Sink, designed to
over large areas and nodes are typically limited in their battery  tolerate a degree of information inaccuracy regarding the
and computational capabilities. The introduction of mobility, sink’s location. Thus frequent and expensive updates of
either in the sensors or in the agents which collect data from  all sensors with sink’s location information are avoided.
them, increases the applicability and possible deployment sce- The protocol design ensures that a sensor’s knowledge
narios of these sensor networks. However, it also makes the de- of the sink’s location gets progressively more accurate as
sign of protocols more challenging and complicated. For exam- it gets nearer to the sink. Thus, even if data delivery is
ple, sensor networks could be deployed to monitor battlefields, initiated with inaccurate sink location, the route will be
forests or civilian areas. Information is generated at the sen-  rectified asymptotically and collectively.
sors and reported to the sinks, which could be soldiers, foresR) Lifetime Micro-Maximization, defined as maximizing
rangers or policemen, respectively. In these scenarios, which individual sensor’s lifetime. Due to a sensor’s limited
reflect the scenarios of interest in this paper, most of the sen- energy, storage and computational capabilities, it is not
sors stay static while sinks are mobile. The problem of interest  feasible or efficient to require each sensor to possess
is: how should the static sources report their data to the mobile  network-level intelligence for determining the optimal
sink so that network and individual sensor’s lifetime is maxi- paths. By employing a swarm intelligence approach, in-
mized?To address this issue, we present a new on-line, energy dividual sensors are relieved from the burden of collect-
aware protocol motivated by swarm intelligence theory to carry  ing, storing and processing global information while the
out data acqusition even when the source nodes are not aware global optimum is achieved and the system reliability and
of the mobile-sink’s current location. robustness is significantly improved.

The constant and unpredictable changes in the sink’s locatiorB) Lifetime Macro-Maximization, aimed at network level
form the main obstacle in the path of designing data acquisition  lifetime maximization. SIMPLE uses a lightweight
protocols in the mobile sink scenario. Most of the existing pro-  swarm agent to efficiently locate the best paths from data
posals addressing this issue are based on the assumption that the sources to the moving sink. The best paths are dynami-

Index Terms— Swarm intelligence, data acquisition, mobile-
sink, sensor network, energy awareness



cally updated based on nodes’ residual energy, even whrentes data based on data interests periodically broadcasted by
the sink stays static. Paths that involve nodes with lei®e sink. The sink reinforces certain paths for a given source
residual energy are avoided so that the whole networldsised on previously received data from the source. The fact that
residual energy distribution stays even, thereby prolongnce the sink moves the reinforced paths are not valid anymore
ing the network lifetime. makes the scheme ineligible for accommodating high level of
4) Robustness and Scalabilitywith little overhead, nodes network and sink dynamics. The author of [17] considers a sce-
can keep record of multiple path gradients to counteragario where random walks are used to route data or queries in
node failure events. When multiple sinks are present the network and the probability that they successfully reach the
the network, nodes can choose to report to the closelstination is evaluated for a number of scenarios. However
one to save energy. The protocol also scales to multigleese are all probabilistic strategies that do not guarantee query
sources. success. A data dissemination model for sensor networks with

The rest of the paper is organized as follows: Section Mobile sinks is proposed in [6] where data is sent to the sink
presents the related work. Background information and tHarough its primary and immediate agents. The first drawback
SIMPLE protocol are elaborated upon in Section Ill and Seéf this scheme is that excessive state information is maintained
tion IV respectively. Section V is devoted to the analysis of th8 the network since each source sets up its own “grid” spanning
proposed protocol. We present the simulation results in Sectié¢ whole network. The grids have to be rebuilt once they time
VI and conclude in Section VII. out. As the number of sources grows, significant overhead is in-

troduced by grid setup and maintenance, which further damages
the protocol’s scalability. Second, unlike our scheme, outdated
Il. RELATED WORK paths usually lead to data loss. Finally, all data to the sink are

Our approach is based on swarm intelligence, as discusselyed through its primary and immediate agents, introducing
in [20]. Swarm intelligence argues that the individual agengentral points of failure.
do not have to possess much intelligence or cooperate with
each other tightly to fulfill complicated tasks. Each agent fol- [1l. BACKGROUND AND DEFINITIONS
lows simple rules and by their collective behavior the optimum s|MPLE’s assumptions and relevant definitions are presented
is achieved. Swarm intelligence approach performs greatly jashis section.
far as reliability and adaptability to network dynamics are con-
cerned. Itscales easily since global information is not necessary Assumptions and Terminology

at individual agents to achieve the global optimum. Swarm in- . . . )
. . . Following are basic assumptions about the network:
telligence based algorithms have been proposed in literature for

wired telecommunication networks [1], [2], [3]. . No prior kpowledge about the sink’s mobility characteris-
The problem of data acquisition in ad-hoc network with static tics is ava|la_ble. . .
sinks has been extensively studied in recent years. Using “hop~ All sensors in the network are potentla_l sources. N(.) prior
count” as the metric, [10], [11] use shortest path for routing knoyvledge about source data generation characteristics is
without considering the energy constraints. In [12] it is shown available. . . . -
that energy aware metrics can significantly improve the perf&ihese assumpthns reflect the conditions in most realistic de-
mance of routing protocols in wireless ad hoc network. A nunRl0yment scenarios and are necessary to ensure that the devel-
ber of minimum energy consumption routing protocols, whicﬂped protocol is practlcal._ Following are some definitions that
choose the path that consumes the minimum energy to delivél be_ us_ed throughout this paper_: ) _ _
the data are proposed in [13], [14], [15], [16]. However, this * L|fet|me of the networ!( is defined as the time till the first
leads to a much faster power drainage of nodes on the best path "ode in the network dies. Note that although the network
and consequently causes uneven energy distribution across the May still funcUon thén .certaln.n'o.des,' start to run out of
network and shortens its lifetime. In [4] the lifetime maximiza- ~ €Nergy, this network lifetime definition is an important and
tion problem is formulated as an offline linear programming ~Meaningful indicator to the protocol's efficiency.
problem and flow augmentation/redirection algorithms are pro-* Gradient of a node indicates its next hop neighbor on the
posed to balance energy consumption across nodes. In [5] a shortest p.ath leading to the sink. In add|t|qn to the shortest
technique to maximize a node’s utility given a network lifetime ~ Path gradients, nodes may record suboptimal gradients to
is discussed. However, these schemes require full knowledge Ccounteract node failures. . o
of traffic demands and do not handle node insertion and dele+ Node and “sensor” are used interchangeably within this
tion well. In [7], [8] “maximizing network lifetime” is taken paper. _ _
as the objective and online algorithms are developed for static Downstream and UpstreamDownstream is defined as
networks to route the data. The similar offline algorithm of [9] ~ “t0-the-sink” direction, while upstream refers to the op-
deals with static or slowly changing dynamic networks. posite.
Most of the aforementioned routing protocols assume knowl-
edge of the destination’s identifier-based address. In the mote Scalability Constraint on Protocol Design
sink scenario, frequently updating all sensors with sink’s cur- While protocols designed for the mobile sink scenario may
rent location leads to significant overheads. Recent literaturave very different guidelines, there exists a common con-
suggests several alternative approaches. Directed diffusion [82hint: it is impractical to keep the whole network continuously



updated with the mobile sink’s location information. Thus thim an unpredictable manner. This makes the continuous pos-
protocol should be able to tolerate a certain degree of inaccurs#ssion of the accurate sink location information at each sensor
or even no information regarding the sink’s current positiomather difficult considering the “scalability rule” mentioned ear-
Otherwise the overhead incurred to keep the whole netwdrér. To ensure reliable data delivery in the presence of partial
up-to-date will grow unboundedly as the network size grower outdated information, we develop a swarm agent based ap-
Through this paper we will refer to this as the “scalability ruleproach. The swarm agent distributively sets up and updates at

and it will be a cornerstone of the design requirements. each node the gradient pointing to the downstream neighbor on
the shortest path leading to the sink. It is advertised by the sink
C. Shortest Path Definition only when the sink loses contact with some of its one hop neigh-

The first problem in delivering data to the mobile sink is hovl\:/)ors' Each node relays the swarm agent based on a probabilistic

to choose the path. Recent literature [7], [4], [8] addresses e del so that unnecessary relays are suppressed without 5"?‘0”'
issue related to the shortest path. It is well known that staEgmg the performance. Data from the sources reache the sink

. . - taking the path marked by the gradient at each node. Since
cally choosing the route which consumes the minimum enerﬂye shortest path is setup on a max-min basis as mentioned be-
to deliver a message will actually shorten the network’s life- P P

time due to unbalanced energy consumption. To address t L data acquisition is carried out in an energy balanced man-

schemes have been proposed to keep the network energy Bgil

anced by routing data through the energy-wise shortest path

and dynamically updating these routes. In [7] different alggx A Lightweight Swarm Agent

rithms that serve this purpose are discussed: CMAKX,,.., in ) ) )

[8] and max-min. We refer the reader to [7], [8] for details re- N this section, we propose a swarm agent based technique

garding CMAX and:P,.;,, and now elaborate on the max-mirf® COMPpute the max-min paths in a wireless network. Vari-
algorithm. ous max-min routing algorithms for sensor network with static

Suppose between a given source and destination there eSiaks have been proposed in literature by adapting traditional
n paths, which we denote as,j € 1,2,---,n. The residual routing algorithms like Dijkstra or Bellman-Ford. The major

energy of thekth nodev” on pathp; is denoted bye* &k < obstacle for using Dijkstra’s algorithm in sensors network is
1,2,---,h;, whereh; is %he hop coant on path;. Mz;;(-min that too much information has to be collected at each individual

routing chooses the path where: n(_)_de before it_ can _calculate the shor_test path. While zone-based
Dijkstra algorithm is more scalable, it suffers from the problem
r =argmax min e? (1) of inaccurate information which leads to quasi-shortest paths.
GEL2,m REL2, 0, Also, oscillations of Bellman-Ford algorithm before it actually

i.e. it chooses the path which contains the node with the highgg{\verﬁes ca% cafluse Sr']gmf.'car?t er:jergy gonsllljmptlon '3 slensor
minimum residual energy. All the three algorithms mentione!EfJBtWor S. Aside Trom this, in the adapted Bellman-Ford algo-

above take the energy balance issue into consideration, whittHm Presented in [8], one shortest path calculation has to in-
voke the Bellman-Ford algorithm multiple times. All these in-

helps to prolong the network lifetime. Although their perfor- o . .
mance is close to each other, in this paper, we choose the m3$ce significant amounts of message exchanging, which greatly

min algorithm for selecting routes because: reduce the network lifetime. . . . .
. Both CMAX (and its distributed version D-CMAX) and Our shortest path protocol is motivated by swarm intelligence

2P,...., involve non-trivial parameter tuning based on spet_heory and bandwidth measurement techniques in wired net-

cific source traffic patterns (which is usually not knowvaorkS presented in [18] and references therein. Rather than

beforehand) in order to achieve their best performance. storing complete path information for the shortest path, a sen-

o 2P,;, requires multiple shortest path algorithm invoca>°" only maintains a “gradient” pqinting to it; downstream
tions to calculate one shortest path, which does not SCgﬁlghbor on the shortest path leading to the sink. As we will
when the number of edges grows bi,gger show later, in the absence of accurate location information, this

o . . kes i ible for th ify th liv-
If not indicated otherwise, through this paper the term “shorte@ta es it possible for the sensors to rectify the message deliv

o o ery path collectively. Based on Egn. (1), a “swarm agent” is
path” will be used to refer to the path specified by Eqn. (1). designed to mark out the shortest path gradient for each sensor.

Each swarm agent is stamped with an unique and increasing se-
IV. THE DATA ACQuisITION PrROTOCOL SIMPLE quence number and consists of two very short packets, namely

In the previous section we addressed the problem of in wttheprecursorandfollower. We now show how the swarm agent
manner should the source data be delivered to the sink, usprgbes and updates the shortest path gradients at all nodes using
the max-min algorithm. The sink’s mobility brings up anothethe example topology shown in Figure 1.
critical issue: where should the data be delivered? In this secThe swarm agent is initially advertised to the network by the
tion we address this issue and present our protocol, SIMPLdink each time it moves out of some neighbors’ transmission
which has been specifically designed for this purpose. For easage. As indicated in Figure 2, upon receiving of gnecur-
of illustration, we first start with the case of a single sink in theor, each node immediately re-advertises it to all its neighbors
network. We address the multiple sink scenario in Section V-Bnd starts a timer with initial value as, for example:

Data delivery in the mobile sink scenario becomes compli-
cated due to the fact that the sink keeps changing its location T=2-—e, (2)



is marked out at each node. Following are events occurring at
the times indicated by the circled numbers in Figure 2:

1) Nodel receives thdollower,

2) Nodel’s timer times out at time 1.2, and tlellower is
sent out;

3) Node?2 receives thdollower at time 1.2 and sends it out
at time 1.5 when its timer times out;

4) Node 3's timer has already timed out when it receives
thefollower at time 1.5 and thus forwards it immediately.
Thefollower reaches nod¢ at time 1.5;

5) Node6 receives thdollower at time0;

6) Node6 sends out théollower at time 1.6 when it times
out. Noded gets a second copy of tliellower from node
6 at time 1.6 and it is simply dropped. Nodecan be
recorded as the backup path gradient.

7777777 'fafrli e ?"it? %7 o On path 1, the longest timer times out ahead of that from path
Sink hode 1 node2 node3 node4 node6  sink 2 even though the latter has less hops. Thus in our scheme, the
0 F=F= > > > = first copy of thefollower will always arrive along the shortest
Q{ % path. In Section V we formally prove that our technique indeed
12 m=7 ™ selects the shortest path. Since each node can safely restrain
° G{ from relaying allfollowers except the first copy, this greatly
5 ¥ suppresses the amount of swarm agent copies that are circulat-
£ . T ing in the network. In the example, since notleeceives the
- @é Cé ™ %4 follower from nodes first, it makes nod8 its “gradient” on the
18 shortest path leading to the sink. To counteract node failures or
\ sleeping, nodé can be taken as the backup path gradient to the
Em— .
Precursor sink.
—— —» It should be pointed out that for gradient initialization imme-
Follower . R
diately after the deployment of the sensor network, since every
Fig. 2. Propagation of therecursorandfollower. node has same residual energy,;;, our scheme actually ini-

tializes the shortest path as the path with minimum hops, which

is consistent with energy efficiency rules. From an individual
wheree,. is the node’s remaining energy (normalized betwegjensor’s point of view, all its operations are straightforward and
[0, 1]). Thus, nodes with higher residual energy will time ouhe globally optimal gradient is set up without involving any
faster. Note that the function above for calculatifigs just an global information collection or complicated computation al-
example. Realization of our scheme does not depend on g)ithms, which enables the scheme to scale. The scalability
specific function as long as it is monotonously decreasing wigsue will be further elaborated upon in Section V-B.
certain bounds. When a node receives fibilower with the  From the whole network’s point of view, sensors thus report
same sequence number aspiecursor it does not re-advertise their data in an energy-balanced manner. Note that the sink’s
it unless its timer times out. In Figure 1 numbers out of th@rther movement might invalidate the current shortest path and
parentheses are nodes’ normalized residual energy and nigien cause loss of messages. In section V we will address this
bers in the parentheses are sensors’ corresponding timer va§#gblem and show that the messages will be successfully deliv-
Figure 2 also shows the manner in which thBower will be  gred.
propagated at each intermediate sensor. For the sake of an eaa-strongpoint of our scheme is that it is naturally loop free
ily understandable protocol description, we omit the delays i8ince nodei will always discard any swarm agent from node
duced by queueing and MAC layer, which will be addressed injf it has already sent one tp. Also, the scheme does not
next section. rely on any assumptions regarding messages sent from the sink

The sink sends out the swarm agent at timeSince the to sensors, such as queries. If the sensors’ report is triggered

precursorsimply cuts through and we are omitting the queueingy queries from the sink to all sensors, the swarm agent can
and MAC layer delays, all nodes receive irecursorattime(.  actually be integrated into the queries with little extra cost.
Thefollower s critical for detecting the shortest path. Based on
the definition of the previous sectiofink — 1 —-2 — 3 — 4
(path 1 in the figure) is the shortest path between the sink aid
node4. Note that even though the other patk — 6 — 4 The scheme designed above updates the shortest path from
(path 2 in the figure) has less hops than the shortest path, ie&ch sensor to the sink using only one lightweight swarm agent.
still “longer” since node has only0.4 energy left, which is the However, some of these advertisement may be redundant and
least among all nodes on paths between the sink and «iodeould be suppressed without sacrificing too much of the perfor-
We will take nodet as an example to explain how the gradienhance. We first identify the scenarios with redundant swarm

Constrained Advertisement Model



agents. Then, a constrained advertisement model is presenteficenario 2: In Figure 4,i, j andk are three nodes on paths
to enhance the protocol efficiency. p;, p; andpy, between source and destinatio. If nodes has

1) Advertisement Suppression Scenariosfk first define a the maximum residual energy, then nofland ’s advertise-
“utility” for each node. Node’s utility increases by a unit for ments will lower their utility/energy ratio since finally pagi
each nodej that picks: as its next hop on the shortest pathvill be chosen as the shortest path. Ideally, we would like to
based on nodgs advertisement. Otherwise the utility of node have only the nodes on the shortest path to advertise the swarm
will decrease, for example, exponentially as time lapses. Singgent, while all other nodes suppress their advertisements to
all advertisements cost energy, a higher utility/energy consunggve energy.
tion ratio is desired for each node. Before introducing how un-
necessary advertisements are suppressed, we first identify the
scenarios where they occur.

Sink
\
()
| Data
Sink's old Report / / @

position

Sink's new
position

Fig. 5. Sensors relaying more data should advertise more actively

Scenario 3:In Figure 5 node frequently relays data to the
Fig. 3. Scenario 1: Sink's movement has lower effect on nodes further awa§.mk' Whlle nOdej seldom do_es so. In this case, ".‘Q'CH]OUld
advertise more than nodgsincei’s upstream neighbors are
Scenario 1: In Figure 3 suppose nodds not updated with expecting’s advertisement, and the advertisement will increase
the sink's movement. Messages originating at or relayed b}podei’s utility. In the extreme case, if a node is never chosen
will be sent along gradient;, set up based on the sink's old po_to relay data for others, its advertisement will not increase its
sition. Denoting the progress along gradienby I, we define utility but cause decreasing of its utility/energy consumption

the “effective progressli’ as: ratio. Thus, we should have nodes that seldom relay data to
advertise less than nodes that often relay data.
7| = I x cos(6;) 3 2) A Probabilistic Advertising Model:A deterministic solu-

tion to suppress advertisements in the scenarios described above

As we can see, when a node is further away from the sink, sU&§quires global information at each node, which makes it im-
as node, # becomes smaller and the effective progress is Cbs}g_ﬂactlcal._ We introduce a probabilistic model Wher(_e_each node
to I. This suggests that with the same sink displacement, sép-advertises the swarm agent based on a probapili§ased
sors further away are less affected. Thus, gradients of sensdidhe discussion above, we will have a sensor’s re-advertising
further away from the sink can be updated less frequently BQPability :
compared to sensors nearer to the sink. Note that the gradient) increase each time it relays data for its neighbors;
is updated based on downstream sensors’ advertisements. Af) decrease if the node does not relay any data as time
these imply that the advertisement intensity can be dampened €lapses;
as the sensor gets further away from the sink. 3) have a hlgher lower-bound when the node has more resid-
ual energy.
Note that we set a lower bound so that a senso¥sll never
reach 0 except when its energy is fully depleted. Thus, even
st e less active nodes will advertise occasionally so that they may be
selected when the energy of other nodes depletes. By applying
this probabilistic model, nodes further away from the sink will
have a smaller advertisement intensity as compared to nodes
closer to the sink. In addition, nodes with more residual energy
will have a higher probability to join the advertisement.

The model described above is essentially a tradeoff model
between network’s energy balance and overhead energy con-
sumption. Non suppression of advertisements makes the net-
work most balanced but causes maximum energy consumption,
Fig. 4. Scenario 2: Sensors with more residual energy should advertise metaile suppressing all advertisements causes the opposite. The
actively. model adapts to node insertions and deaths fairly easily. When




a new sensor joins the network, it can simply start to forwarthe swarm agent will be re-advertised by nmfewhen Tf
any received swarm agent to make its neighbors aware oftitees out. Thus, finally node will receive from pathp; a
existence. When a sensor leaves or dies, its upstream negliarm agent with attached agent timer of value:

bors will not receive any further swarm agent, which naturally

removes the node from their next hop candidates list. T;= 1208, M(ef)
C. Networks with Multiple Sinks whereh; is the total hop count along pajf). Now consider

When multiple sinks are present in the network, two differefifiat nodev rec;1e|ves swarm agf]”ts f;lomd|ff‘<‘erent p"’,‘ths'nlt IIS
schemes can be applied based on the network scales to avoi to see that an agent with a shorter “agent timer” always

energy consumption incurred by too much swarm agent bro&"Ves earller._ From the monotonous decr_easmg_ nature of the
cast: mapping function (4), agent timer of the first arriving swarm

1) In networks of small scale each sink can move liberally agentisr;, where:
within the whole supervised area. Its swarm agent will

. x = argminT}
also traverse the whole network. Note that if a sensor re- 1<5<n
ceives multiple swarm agents from different sin.ks, it will = argmin max M( e?)
choose to relay the one from the the closest sink. Thus, 1<j<n 1<k<h;
each r_10de will report to the_z closest sinl_< via the corre- = argmax min €§ (6)
sponding shortest path. This also effectively suppresses 1<j<n 1<k<h;

the amount of swarm agents circulating in the network. . . .
2) In networks of large scale the supervised area can b The equation above is exactly the same as Eqn. (1) which de-
pre-divided into sub-regions with one sink in each o nes the shortest path thereby proving the theorem. u
Note that all then paths leading to node can share many

them. An example of the application scenario is a po- . .
P bp b intermediate nodes among each other, but this does not affect

liceman patrolling in the areas that he is responsible fqy. - . .
In this case the swarm agent from each sink will only trgE]e validity of our conclusion. Duplicates of the swarm agent

verse sensors located in the area that the sink beIongs%gT]ply get dropped at each node, which saves energy.
These two schemes can be applied collaboratively in the same .
network, in which case each sub-area is covered by multigte Scalability of SIMPLE
sinks. Simulation results in Section VI verify that multiple SIMPLE is developed based on the theory of swarm intelli-

sinks do not necessary leads to shorter lifetime. gence which has been proved to scale in biological areas. The
first potential scalability issue of SIMPLE concerns the adver-
V. ANALYSIS OF SIMPLE tisement scope of the swarm agent as the network size grows.

gwarm agent’s “advertisement scope” is define by its radius
, indicating that at least one node advertising the swarm agent
is R hops away from the sink. In order to prove the scalability
- of the probabilistic advertising model, we now show tiiais
A. Validity of the Shortest Path bounded even when the network size is not. If we defii(&’)

Theorem 1:When MAC and other delayS are negl|g|b|%s coverage of the sensor netwtﬁ‘kthen we have:
compared to the swarm agent’s timer, paths to the sink speciTheorem 2:

fied by Eqgn. (1) are accurately marked out by the swarm agent.
Proof: Consider an arbitrary nodewith n paths to the lim ProR — c0) =0 (7)
sink which form a sef” = {p;|i € 1,2---n}. Attimet the C(G) o0

ik d ¢ t that ist q Proof: Suppose the mobile sink is advertising the swarm
Sink sends out a swarm agent that consis smbaursorand a agent with an intensity', i.e. swarm agents are advertised to
follower. Define a mapping function:

the network at a rate df ;/second. Defind",, as the adver-
ty = M(ey) (4) tisement intensity of an arbitrary nodgin the sensor network.
Denote node;’s re-advertisement probability as,, andSP,,
whereM (e, ) could be any bounded and monotonous decreass the set of all nodes on the shortest path from ngde the
ing function, where,, is the residual energy of nodet, gives sink. Then at node;:
the initial value of nodev’s timer for the swarm agent. The

In this section, we analytically address various aspects
SIMPLE.

swarm agent traveling along path is also attached with an Iy, =T X py, X H Pu;
“agent timer”,T;, with initial value0 when advertised from the v €SPy,
sink.

wherewv; are all nodes on node;’s shortest path to the sink,

Let v* denote thek-th hop on pattp; with initial energye” J . o .
Y P on patty, ave; tﬁgdpw is re-advertisement probability of node. Since

and timertg?. As the swarm agent passes through this node,
agent timer, denoted d#“ will be updated as: pu; < 1,for anyv;

Tf = max{Tfﬁl, t?} we have
- li ProhT, =0)=1
= maX{Tf la M(ef)} (5) h(vil)nioo d ‘ )



whereh(v;) is nodev;’s hop count to the sink antl(v;) — co  wheren may not be large enough to satisfy the central limit
whenC(G) — oo. The equation above indicates that a nodetheorem, in [25] it is shown that the pdf &f(¢) is given by
advertisement intensity goes to 0 as its distance from the sink

increases. Thus, following equation is proved: e 3 ([ E[dY] rd 92
plr) = sn\B@? N2t~ a ] @
C(g)m ProfR — o0) =0 (8)

wherea = nE[d?]. Note that the term outside the square braces
W s the Rayleigh distribution and thus fpfr) to be withine of
Egn. (8) indicates that the “advertisement scope” is boundds distribution

even when the sensor network’s size grows larger. In the sec- 3 Eld] oA 92

tion above we assume that the delay introduced by the MAC — ( S 2> <2 -—+ 1)‘ <e (10)
layer can be ignored since typically they are small (queueing 8n \ Bld’] 2a a

delay can be eliminated by assigning the swarm agent a higigf our random walk model where the step size is fixed,
priority). This is not true when hop counts from the sink 90€g(44] = ¢* andE[d?] = d2. Using these in Eqn. (10):

to infinity, whence the accumulated delay might become quan-

titatively comparable with the timer’s value. The swarm agent 3 rd 272

consists of two very short packets, whose typical one-hop trans- 8n (and4 TaE T 1) Se
mission delay would be less than 1ms in typical MAC protocols

[24]. If we bound the timer’s minimum value as 1s, it will takewhich can be simplified to

1000 hops for the accumulative transmission delay to reach the A 34 5 510
magnitude of the timer’s value. 3r® < 16en”d” — 6n”d” + 12nr"d”. (12)

Due to the “scalability rule” mentioned in section III-B, asyy

; 3 2 _
updated often. In Section V-D we address the problem of h N 9 9 '

nodes far away from the sink and thus with possibly outdated en we have i
Py

(11)

location information correctly deliver their data to the sink.
Another scalability issue concerns multiple sinks in the net-

work. As described above, two schemes are proposed for both ] u

large and small scale networks. Simulation results in Sectiéfius for large enough the PDF of the distance traveled by the

VI verify that SIMPLE’s performance will not be deterioratecfink is Rayleigh and is given by

as the number of sinks increases.

(13)

7'7'2
Prob{R(t) <r}=1—¢ w?, 0<r<oo (14)

C. Swarm Agent Frequency Now consider an arbitrary sensor with transmission radiys

To keep the sensors abreast of its current location, the sinkange of the sink with the location of the sink being equally
occasionally sends out swarm agents. This may be done eitfilesly anywhere within the circle describing the sensor’s trans-
periodically or only when the sink loses contact with some of itission region. Then from the results in [26], the probabijfity
neighboring sensors. In this section, we determine the updgiat the sink is still within the range of the sensor after tinge
frequency required to ensure that the probability that the sigiven by

loses contact with any of the sensors currently in its range after > (a)p2"

t units of time is less than an arbitrary constant < g < 1. p= Z (b) k! (15)
For our analysis, we assume that the sink’s mobility is gov- k=1 '

erned by a two dimensional random walk. After everynits wherea = 1/2,b = 2, 2 = —47R?/(td?) and(a); and (b)

of time, the sink randomly chooses an angl@listributed uni- are Pochhammer symbolgi);, = a(a+1)(a+2)--- (a+k—1)
formly over(0, 2) and moves a distanckalong that direction. and(a);, = b(b+1)(b+2)--- (b+k —1). For the desired sink
After a random amount of time(which for ease of derivations miss rate3 after the end of units of time, Egn. (15) can then
is assumed to be an integral multiple 9f the sink moves a be solved to obtain the required update frequenyey
distanceR(t). We first establish the distribution &i(¢).

Claim 1: If t/7 > ¢ 12:24 then ProfR(t) < r} follows a D. Robustness of SIMPLE

Rayleigh distribution with parametex? /2. As described above, initially each sensor is installed with the

Proof: In an intervalt, the sink changes its direction=  shortest path gradient to the sink. Nodes far away from the sink
t/7 times and its final position is the sum@frandom phasors will not be able to get their paths updated very often as the sink
of magnituded. The x and y coordinates of this position arenoves. Consider a hodewhose shortest path gradient is out
given by: X,, = 3"  dcosb; andY,, = Y dsinf;. Asn of date, and still leads to the sink’s old positiof,as shown in
becomes large, the use of central limit theorem implies that thegure 6. At timet nodei sends a packet to the sink, which has
distribution of X,, andY,, become Gaussian with mean 0 andiow moved to positiorB and this new location information is
variancend? /2. Transforming the joint distribution ok,, and available to nodes in the shaded cloud in Figure 6. Since node
Y, to polar coordinates then gives the pdfi®ft). In the case i's gradient still leads to positioA, the information will follow




the solid line starting from nodéto position A (note that the F. Miscellaneous Issues

information’s actual track is not necessarily straight). Upon the 1) Heterogeneity of Node Batteriesthe node batteries are
packets arrival at4, it will follow the sink's movement track ajjowed to be heterogeneous as far as their capacities and en-
since gradients of nodes along the track have been updatedgy consumption rates are concered. In SIMPLE a sensor's
the direction of the sink’s movement. The packet will be fofyattery capacity is normalized in terms of how many messages
warded along the track until it reaches the cloud region. Nodg$.an forward.
in this region fall within the advertisement scope and are up-2) Detecting Node Failures:When node forwards a mes-
dated with sink’s movement in the manner as described befoggge to the sink via its downstream neighbipit can detect
Thus, from that point, the information delivery path will be recnodey's failure by listening for the expected transmission from
tified on the fly instead of having to follow the sink's movemen} |t the channel is available but no transmission is detected
track. from nodej, nodei could assume nodgis dead and retransmit
the message via another downstream neighbor.

3) Static Sink: When the sink stays static, the swarm agent
can be advertised after receiving certain amount of data from

Sink's movement

o track a given source. Thus, the chosen paths will not drift far away
S L from the optimal ones. Unaffected nodes in the network can
\ A simply suppress the advertisement.
A N 4) Energy Saving by SleepindSIMPLE allows nodes to go

into the sleep mode. A node can start or stop advertising the
swarm agent to switch between sleeping and awakening.

VI. SIMULATION RESULTS

In this section we present the simulation results that are
Fig. 6. The sink's track is indicated by the dashed, curved line. Nodes ifjsaq to evaluate and verify SIMPLE’s performance and effect
side the‘cloud get thel{rgradlents_ updated based_on’ sink’s up-to_—c‘iate pqsmo]p. . . .
Information from node is first delivered taA, the sink's dated position. Itis Of various environmental factors. We compare SIMPLE with
then forwarded along the sink’s track(the solid, curved line) until it reaches thth minimum hop count routing algorithm ([10], [11]) and the
cloud, where the path starts to get rectified on the fly. TTDD algorithm designed for mobile sink scenarios in [6]. A
critical observation showing how SIMPLE achieves a tradeoff
Besides registering the neighbor on the shortest path, nodgetween energy consumption and network performance is pre-
can keep record of other neighbors that relay the swarm agesgsted. We also evaluate the effect of various control and en-
to it through the suboptimal paths to the sink. Thus, if theronment factors on SIMPLE’s performance. Finally the net-
neighbor on the shortest path becomes unavailable, the repadtk average energy depletion rates are evaluated in multiple
message can still be sent out through the backup paths to sfigks scenario to show that SIMPLE does scale to the number
sink. This greatly enhances SIMPLE’s resilience against nodésinks. SIMPLE's resilience against node failures is also ver-
instability due to node/link failures or node sleeping. The sinified.
ulation result from Section VI shows the resilience of SIMPLE Given that the receiving energy consumption is 1 unit, we
with multiple path against node failure. normalize the transmission energy according to the 1st order
radio model described in [19]. The energy consumption for
transmission £, (k, d)) and reception K, (k, d))costs for a
k-bit message transmitted over a distaridés shown below:

E. SIMPLE'’s Overhead Message Complexity
Er,(k,d) = FEeec X k+ €amp x k x d*

The algorithms presented in [7] are mainly designed for the
Egr, (k,d) = Feoee Xk (16)

static sink scenario and data could be exchanged between any
arbltra“ry pair of nodes. Re"s_ldual energy of nodes W't.hm.t. clec = D0OnJ/bit is the energy dissipated to run the transmit-
same “local broadcast area” is synchronized. From an indivi L or receiver circuitry and — 100p.J/bit/m? is for the
ual node’s point of view, this makes the algorithm overhead’s y amp = 2UUP

message complexity wheren > 1 is the number of transmitter amplifier.
ge comp i (n) , " =, e “Random Walk” is taken as sinks’ mobility model in the sim-
nodes within the “local broadcast area”. In addition, it is hard

. Lo . lations.
to adapt these algorithms for the mobile sink scenario. THe '

TTDD protocol in [6] is even more complicated since each po- _ ) . _ )

tential source builds a grid structure of its own spanning tfe Comparison with Minimum Hop Count Routing Algorithm
whole network. The message complexity is actu@lyN), We first compare SIMPLE with the Minimum Hop Count
where N is the number of sources in the network. Based dRouting algorithm, denoted as “min-hop algorithm” in the fig-
the description above, SIMPLE has an overhead message comes. Min-hop algorithm always uses the path with the mini-
plexity O(1), which is induced by the swarm agent from thenum hop count from the source to the sink. Since we assume
sink. Quantitative comparison results of TTDD and SIMPLIExed transmission range, min-hop algorithm actually mini-
are presented in next section. mizes the energy consumption for each data report to the sink.
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Fig. 7. The energy will not deplete faster in multi- Fig. 8. The average hop count between nodes arfeig. 9. Lifetime comparison between SIMPLE and
sink scenario compared to single-sink scenario  the sink decreases as the number of sinks increaseBT DD with different grid sizes

In this set of experiments, 200 nodes are uniformly distributeglids and all nodes are located at cross points of grids. Nodes’
in a100 x 100m? network area. Node’s transmission range iansmission range is 11m. We ignore TTDD’s overhead in-
25m. The swarm agent is 64 bytes and the report messageused by each source to construct and maintain the grid.
512 bytes. Each node has 500 units of initial energy. The swarm agent is 64 byte and the average data length is
1) Network Lifetime vs. Sink Speedi Figure 7, data re- 512 bytes. The sink node’s movement is assumed to be a 2-
ports are generated at each node with the Poisson arrival @iteensional random walk with speed 10m/s. Data report is
A = 0.3 messages per second, and the sink’s speed is varigmherated at each node by a Poisson process with rat8.05
from 2m/s to 10m/s (note that this speed is relatively fast comessages per second. In these comparisons SIMPLE does not
sidering nodes’ 25m transmission range). Both SIMPLE arstippress any swarm agents. Later we will show SIMPLE's per-
min-hop’s network lifetime is observed. As the sink’s movindormance with and without suppression of the swarm agent.
speed increases, SIMPLE introduces more energy consumptitath node has an initial energy of 250 units.
with more frequent path updates. But its lifetime increases be-Figure 9 shows the lifetime of SIMPLE compared with that
cause the network energy depletion rate is more balanced acufssear-ideal TTDD with different grid sizes. Aside from the
the network. Sink’s mobility actually helps avoid draining enmajor drawback of energy unawareness that we mentioned ear-
ergy of the same set of nodes. This is also verified by the miier, another issue in TTDD is that each source has to repeatedly
hop algorithm’s result. The reason that SIMPLE outperfornmsonstruct and maintain its own grid, which spans the whole net-
min-hop algorithm with a significant margin is that SIMPLEwvork and is a major obstacle for TTDD to perform efficiently. It
not only tries to minimize each data report’s energy consumghould be noted that although we ignore this overhead, it actu-
tion, but also takes energy balance into consideration. ally grows unboundedly with increase of the number of source
2) Network Lifetime vs. Report IntensityEigure 8 presents nodes and decrease of grid size, which makes TTDD unscal-
SIMPLE and min-hop’s lifetime for different report intensi-able.
ties. When the reporting intensity is moderate, SIMPLE has
a much better performance compared t_o min—hop algorithm t@_— Effect of the Environmental Eactors
cause SIMPLE takes energy balance into consideration when i ) _
updating the shortest path. Each update tries to avoid employ!N this section we ot')serve the effect of various environmen-
ing the node with the least energy to prolong the network lifé@! factors on SIMPLE's energy consumption or lifetime. The
time, while min-hop algorithm sticks to the least hop path evgﬁstelr the sink moves, the more swarm agents.lt generates. Thus
when the path residual energy becomes very low. When it sink’s speed and the_swarm agent length directly aff_e_ctSIM-
reporting rate is very high (at each node the report has a Pdis-E'S €nergy consumption due to its overhead. In addition, we
son arrival rate of 0.3 message per second), SIMPLE only H4E also_lnterested in the node density’s effect to SIMPLE’s I!fe—
a slightly longer lifetime because between two updates of tfig'e- Finally we present SIMPLE's performance model with
shortest path the reporting events are so frequent that a laffferent suppression ratios. In this sect|20n’s simulations, nodes
percent of energy is already consumed. This suggests that wAgh Uniformly distributed in 200 > 100m= network area. The
the sink is static or moving slowly and the data report is ifrfansmission range is 25m and nodes’ initial energy is 500 units.

tense, SIMPLE can accordingly adjust to a higher path updatel) Effectof the Sink's Speed and Length of the Swarm Agent:
frequency than the analytical value presented in Section V-C, Ve consider 200 nodes to be deployed in the network. Figure
10 shows the effect of the sink’s speed and the ratio of data

] ] length and swarm agent length on the energy consumption in-

B. Comparison with TTDD duced by the swarm agent. It can be seen that for different
In this section we compare SIMPLE with TTDD and shovength ratios, energy consumption induced by the swarm agent

that a critical drawback of TTDD is its energy unawarenessnly increases slightly as the sink moves faster. This is in con-

which degrades its performance even when we ignore its higteert with the results in Figure 7. When the swarm agent is much
protocol overhead. We consider a grid network of 100 nodes lemaller than the data, the energy consumption induced by the
cated in a 00 x 100m? region. The area is divided infd® x 10 swarm agent can be as low as 1%-5%. This suggests that data
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percentage of node energy consumed by swarm agents. The
< curve is drawn by 10th degree exponential curve fitting, with

] error bounded within 15%. Note thaiaxis only indicates rela-

tive lifetime.
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Fig. 10. Effect of Sink’s Speed and swarm agent’s length relative to the data '
report’s length.
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aggregation at the source area could be employed to decrease overhead/Total energy consumption
SIMPLE’s overhead.

2) Effect of Node Density:In Figure 11 we plot the swarm
agent's energy consumption as a function of the node density
for data and swarm agent length ratios of 10:1 and 50:1. When

Fig. 12. Lifetime achieved with different suppression ratios.

A
swarm agent lengths are small compared to the data, the energy 2
consumption can drop to as low as 5% when the node density g
reaches\ = 0.08 nodesi?. When node density increases, the lg
. |

burden of relaying data becomes less on each node. Accord- 12
ing to our constrained model in IV-B, nodes relaying less data 3 Suppression degree X
will have a lower advertisement probabiliy Thus, energy
consumption induced by the swarm agent also decreases. This No suppression Full suppression
. . . y . 1 reﬂqueenergy rnps balanced 1 reﬂdueenergyvleas balanced;
indirectly verifies that SIMPLE’s probability model guarantees 2.Optimdl deta defivery pth 2 Worst dataddlivery peth

, . . . 3. overhead consumes significant 3. overhead consumes little
the protocol’s scalability with the node density. P energy

. with no failure 4. with possible failure
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Fig. 13. The system performance’s tradeoff model: protocol overhead’s energy
1 consumption and balance of network residual energy.
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Figures 12 and 13 show that the network survives the longest
with neither zero nor full suppression of the swarm agent. Fig-
ure 13 is a general evaluation model regarding the tradeoff be-
tween the network’s residual energy distribution and the over-
head of any possible protocol designed for mobile sink scenar-
0 ] ios. Going left to right, the two extremes in the figure are elab-
oob T orated as follows:

BRETEELEL « Dynamic: Protocols in this category try to continuously
update the whole network with sink’s latest location. The
Fig. 11. Node Density vs. Swarm Agent's Energy Consumption shortest path chosen will thus be optimal and the network’s
residual energy is optimally balanced, which prolongs the

3) Suppression Degree versus Network Lifetirethis sec- network’s lifetime. Information delivery failure is fully
tion we use a similar simulation configuration as the previous avoided. Although [22] is not energy aware, it does be-
one, except for the node density and the average data length. long to this category as does SIMPLE without suppres-
Here 200 nodes are uniformly distributed in the area. We in- sion. Note that although protocols in this category can find
crease the ratio of swarm agent length and average data length the energy-wise optimal path, the significant overhead in-
to 2 : 5. These changes are to enable a more effective obser- duced thereby actually decreases the network’s lifetime.
vation of the tradeoff between protocol overhead and networke Static: Paths to the sink are updated as infrequently as
residual energy balance. possible. Most nodes are unaware of sink's movement

Swarm agents are advertised in the network to dynamically and information is delivered through stale and usually sub-
update the shortest paths to the mobile sink, and represent the optimal and longer routes. However, energy is conserved
overhead in SIMPLE. In order to save energy, a swarm agent in the sense that protocol overhead is trivial compared to
suppression technique is introduced in IV-B. Figure 12 presents the previous case. In addition, energy of nodes on the
the sensor network’s lifetime (y axis) under different swarm  static paths may get depleted very soon, which actually
agent suppression degrees (x axis), which is represented by the contributes to shortening of the network lifetime.

°
@
T

°
N
T

Swarm Agent's Energy
)
T
x

Consymption / Node's Total Energy
5
)
*

°
T
i

/

SO---- - --0--

. . . .
0.01 0.02 0.03 0.04 0.05
Node Density



11

- - 1sink X S

N 2 sinks N O o —+— single-path|

450} S 3 sinks E . dual-path
L - - 4sinks 0.9r ‘+\ o < - tri-path

<

0
N 0
N

T
o o
< ®
+

o
>

the average hop count
=

report deliver rate
*

N
@
S

o

o

average residue energy (unit)
T

2001

o

=

¥
i

o
W

150
0

7 5 0 01 03 04 05

200 400 600 800 1000 1200 1 2 02
node failure rate

3 4 5
time (s) the number of sinks

Fig. 14. The energy will not deplete faster in multi- Fig. 15. The average hop count decreases as tifég. 16.  Multiple paths improve the protocol’s re-
sink scenario compared to single-sink scenario number of sinks increases silience against node failures

D. Multi-sink Scenarios VII. CONCLUSIONS

In this section we investigate the energy depletion issue inThis paper presents an energy aware data acquisition proto-
multi-sink scenarios. When multiple sink are present in a smakl for the mobile sink scenario: SIMPLE. It is designed based
scale network, swarm agents from all sinks can traverse the techniques of swarm intelligence, energy-wise shortest path
whole network so that nodes can find the closest sink to delivatd a probabilistic model for dynamically updating the shortest
their information. A large scale network can be subdivided infaths. The swarm intelligence approach maximizes individual
small scale ones and sinks, with their associated swarm agenggle’s lifetime since it greatly simplifies sensors’ operations,
will be confined into their belonged subarea. Since the subar&geping requirements in line with a typical sensor’s low com-
in a large scale network are equivalent to small scale networksitational capabilities, restricted storage and limited energy.
simulations in this section focus on the energy depletion inTde protocol tries to maximize the network’s lifetime by dy-
small scale network with multiple sinks. namically choosing the energy efficient paths and balancing the

In this simulation, 400 nodes, with 25m as their transmigesidual energy at each node. SIMPLE scales to multiple sinks
sion range and 500 units of initial energy, are present in a néfd is robust against node failures. We analytically verify the
work of 200 x 200m? area. Sinks are moving in the networkcorrectness and scalability of SIMPLE. Extensive simulations
with a speed of 10m/s. Reporting traffic is generated at ea@f¢ also reported to demonstrate its robustness and superior per-
node with the Poisson arrival rafe = 0.05. Each reporting formance as compared to existing protocols.
message is 512 bytes and the swarm agent is 64 bytes. Figure
14 shows that with the same reporting intensity, as the num-
ber of sinks increases from 1 to 4, the time it takes the av-
erage node residual energy to drop from 500 to 150 beconﬂ@sg- Bonabeau, F. Henaux, S. Guerin, D. Snyers, P. Kuntz, and G. Theraulaz,

. . . outing in telecommunications network with “smart” ant-like agents,
longer instead of shorter. The reason is that although multiple proc. Of Intelligent Agents for Telecommunications Applications "98.
sinks introduce more energy consumption due to more swaizh G. Di Caro and M. DorigoAntNet: A Mobile Agents Approach to Adaptive

: : outing in Communication Networ8th Dutch Conf. on Atrtificial Intelli-
agents, it also helps decrease the average hop distance betweeg‘bnce (NAIC '97) November 1997.

nodes and their corresponding sinks, as shown in Figure §$. G. Di Caro and M. DorigoAnt colonies fro adaptive routing in packet-
Energy saving due to lower hOp counts from reporting nodes switched communications networl&oc. Of PPSN V-5th Intl. Conf. on

. . . Parallel Problem Solving from Nature, September 1998
to the sinks aCtua”y OUtwelgh energy consumption due to m%? J. Chang and L. Tassiula&nergy Conserving Routing in Wireless Ad-hoc
swarm agents. Networks Proc. Of Infocom 2000, March 2002.
[5] V. Srinivasan, C. Chiasserini, P. Nuggehalli, and R. Raptimal Rate

Allocation and Traffic Splits for Energy Efficient Routing in Ad Hoc Net-
works,Proc. Of Infocom 2002.

E. Protocol Resilience Against Node Failures [6] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhany,Two-Tier Data Dissem-
ination Model for Large-scale Wireless Sensor NetwoRwmc. Of Mobi-

We verify SIMPLE’s resilience against node failures and the com'02 September 2002.

: ; e : ] K. Kar, M. Kodialam, T.V. Lakshman, and L. Tassiuld&uting for Net-
results are shown in Figure 16. Initially, 200 nodes, with thelf work Capacity Maximiztion in Energy-constrained Ad-hoc NetwaPkss.

initial energy 500 units and the transmission range 25m, are of infocom 2003, April 2003.
uniformly distributed in al00 x 100m? area. One mobile sink [8] Q. Li, J. Aslam, and D. Run-line power-aware routing in wireless ad-

. . . . hoc networksProc. Of Mobicom’01, July 2001.
is present in the network with a moving speed of 10m/s. Eafdj' A. Sankar and Z. LiuMaximum Lifetime Routing in Wireless Ad-hoc Net-

node has a failure probability, as indicated by the x-axis in Fig- works,Proc. Of Infocom 2004, March 2004.
ure 16. Report events are generated at each node with a PBf- D. B. Johnson and D. A. Malthynamic source routing in ad hoc wire-

. . less networksylobile Computing, Imielinski and korth, Eds., vol. 353, pp.
son arrival rate ob.05 messages per second. In addition t0 ;=5 151 Kjuwer Academic Publishers, 1996

the shortest path, nodes can keep record of suboptimal pathg1p c. E. Perkins and E. M. RoyeAd hoc on-demand distance vector rout-

counteract node failures. Figure 16 shows that with only two ing. Proc. Of the 2nd IEEE Workshop on Mobile Computing Systems and
, . . . . Applications, 1999, pp. 90-100.

backup paths the prOtOCOI s resilience against node fa"ures[llﬁ S. Singh, M. Wu, and C. S. RaghavendPawer-aware routing in mobile

greatly improved. ad-hoc networksProc. Of Mobicom’98, October 1998.
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