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Research topics 

1. Machine-learning-based vegetation RF link prediction 
from photos 

RF communication by a terrestrial user often requires relay via a satellite or airborne node to 
overcome line of sight issues. When the user is in a vegetated environment, the RF link will be 
affected by the vegetation. There has been various works in open literature on the prediction of 
RF link generated via EM or empirical modelling. In such modelling, one usually has to 
parameterize the vegetation parameters to input into the model. Examples of such parameters 
include height of trees, some measure of density of canopy, density of tree stands etc. Real 
world vegetation may not fit precisely into the parameterization employed by such traditional 
approach 
The objective of this proposed research is to develop a neural network that can predict the RF 
link performance from aerial photo of vegetation, ground user location, and elevation angle from 
the ground user to the airborne/satellite node. The first phase of research will include 
measurement of through-vegetation RF link quality values (such as attenuation) to use as labels 
for subsequent supervised training of the neural network. The neural network will be trained to 
associate RF link quality with the visual appearance of vegetation, location of ground user 
relative to vegetation, and elevation of ground user to the air/satellite node. 

 
 

 
Figure 1. Data collection for  supervised learning labels 

https://www.ece.nus.edu.sg/star/career/ndgp.html
http://online.ece.nus.edu.sg/STAR
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Figure 2. Supervised learning framework 

 
Figure 3. Inference of RF link at with specified locations (eg the stars) relative to vegetation, and specified 
elevation angle 

Possible variations/extensions of the research include: 

• The preferred frequency band is UHF which has a higher likelihood of penetrating 

through the vegetation. However, higher frequency bands such as S band or Ku band 

(which are used in satellite comms) can also be considered.  

• Variation of elevation angles. The vegetation occlusion mechanism is expected to be 

dominated by canopy at steep elevations and by tree trunks at shallower elevation. 

• Exploration of other quality metrics such as dispersion to infer the extent of multipath 

• Explain the AI in EM terms and derive analytical formulas for predicting RF link.  

• Generalize the neural network by training on different types of vegetation. 

• Use of additional input image data to provide more physics-correct information of the 

vegetation to the neural network. For example, stereo photos can be used to provide 

3D height/structure information of the canopy; synthetic aperture data to provide more 

information of the unilluminated areas that cannot be observed by photos etc.  

 



2. Radio Frequency Interference (RFI) mitigation in 
Synthetic Aperture Radar (SAR) using machine learning 

RFI degrades the performance of radar and communication systems by raising the noise floor. 
In SAR, a traditional approach of mitigating RFI is to notch out the frequency bins of the 
interferers. However, from classical transform domain duality theory, introduction of notches in 
the frequency domain raises spatial domain sidelobe levels, which degrades the quality of the 
SAR image, especially when the interferers are many and/or wideband. This research aims to 
investigate machine learning based methods for mitigating the effect of RFI. One possible 
approach is to use machine learning based superresolution techniques. In open literature, ML 
based superresolution has been used to improve the resolution of optical and SAR images. In 
the signal processing sense, improving spatial resolution is equivalent to using AI to increase 
the spectral support in the frequency domain. A way of thinking about this research problem is 
to use AI to fill in the notched spectral regions instead of extending the spectral regions.   
There are likely other ML methods for mitigating RFI which the candidate is encouraged to 
explore. Given the data-abundant and stochastic nature of RFI, ML is a promising approach for 
the problem.  
The envisaged research approach includes literature survey, development of SAR image 
formation tools, and algo development on actual SAR data. Potential data sources for the 
research include DSO data and open source/commercial source SAR data. While some existing 
data contains RFI, different levels of RFIs can also be investigated by synthetically adding RFI 
to the datasets.  
 

3. Neural Networks for computational electromagnetics 

Maxwell’s equations may be solved with finite-difference time-domain (FTDT) method, also 
known as Yee's method or full-wave computation. It is a fully explicit computation that does not 
require matrix inversion, is accurate (with well-characterized errors, e.g. due to discretization), 
and robust. However, it requires that the entire computational domain be gridded, the grid 
spatial discretization to be sufficiently fine to resolve both the smallest electromagnetic 
wavelength and the smallest geometrical feature. Thus, for large computational domains, it 
results in very long solution times. In addition, the space-time steps must satisfy the CFL 
condition for a stable solution of electric (E) and magnetic (H) fields. Furthermore, when applied 
to inverse problems, Maxwell's equations do not give unique values for material permittivity and 
permeability. 
  
We propose the use of neural networks for computational electromagnetics. In the forward 
solving of Maxwell’s equation, we can initialize the neural network with a meta-learned prior 
distribution of E and H fields. When applied to inverse problems, we can fit the neural network 
to measured E and H fields while regularized to fit Maxwell’s equations and a prior distribution 
of material permittivity and permeability. For more challenging experiments with only magnitude 
measurements, the neural network may be trained to retrieve phase information. Neural 
networks are continuous and can represent the fields and materials at all points in space and 
time, no gridding required. To reduce computation, we can explore the trade-off between a 
uniform distribution of training points in space and time and flexibility training only on areas and 
times of interest. In addition, neural networks are differentiable, thus no approximation is needed 
to compute the difference in Maxwell’s equations. As part of the PhD, we can also explore if 
different formulations of Maxwell’s equations are more amiable to training with neural networks. 
E.g. solving for a deep generalized Green’s function (response to step input) instead of Green’s 
function (response to Dirac delta input), followed by post-processing to recover Green’s function 
or use integration-by-parts to change the mathematical framework to use generalized Green’s 
function instead. Neural networks may also be trained to get a surrogate model of Maxwell’s 
equations. Neural networks can also be flexibly conditioned and constrained to include 



additional sources of information. E.g. in ionosphere modelling, we may include solar power, 
soundings, GPSRO and WSPRnet.  
  
Using neural networks to solve PDEs is an active line of research, including quantum physics, 
seismic modelling, and medical imaging. Key techniques include physics informed neural 
networks (PINNs) and diffusion models. Using neural networks for inverse problems is also an 
active line of research. Key technique includes neural radiance field (NeRF) to learn a latent 3D 
representation for novel view generation in both electro-optical and synthetic aperture radar 
(SAR) images, where the neural network takes in spatial coordinates and outputs opacity in EO 
images, and radar cross-section in SAR images.  

 


